
Published as a conference paper at ICLR 2020

WHY NOT TO USE ZERO IMPUTATION? CORRECTING

SPARSITY BIAS IN TRAINING NEURAL NETWORKS

Joonyoung Yi1, Juhyuk Lee1, Kwang Joon Kim3, Sung Ju Hwang1,2, Eunho Yang1,2

KAIST1, AITRICS2, Yonsei University College of Medicine3, South Korea
{joonyoung.yi, sehkmg, sjhwang82, eunhoy} @kaist.ac.kr,
preppie@yuhs.ac

ABSTRACT

Handling missing data is one of the most fundamental problems in machine learning.
Among many approaches, the simplest and most intuitive way is zero imputation,
which treats the value of a missing entry simply as zero. However, many studies
have experimentally confirmed that zero imputation results in suboptimal perfor-
mances in training neural networks. Yet, none of the existing work has explained
what brings such performance degradations. In this paper, we introduce the vari-
able sparsity problem (VSP), which describes a phenomenon where the output
of a predictive model largely varies with respect to the rate of missingness in the
given input, and show that it adversarially affects the model performance. We first
theoretically analyze this phenomenon and propose a simple yet effective technique
to handle missingness, which we refer to as Sparsity Normalization (SN), that
directly targets and resolves the VSP. We further experimentally validate SN on
diverse benchmark datasets, to show that debiasing the effect of input-level sparsity
improves the performance and stabilizes the training of neural networks.

1 INTRODUCTION

Many real-world datasets often contain data instances whose subset of input features is missing.
While various imputing techniques, from imputing using global statistics such as mean, to individually
imputing by learning auxiliary models such as GAN, can be applied with their own pros and cons, the
most simple and natural way to do this is zero imputation, where we simply treat a missing feature as
zero. In neural networks, at first glance, zero imputation can be thought of as a reasonable solution
since it simply drops missing input nodes by preventing the weights associated with them from being
updated. Some what surprisingly, however, many previous studies have reported that this intuitive
approach has an adverse effect on model performances (Hazan et al., 2015; Luo et al., 2018; Śmieja
et al., 2018), and none of them has investigated the reasons of such performance degradations.

In this work, we find that zero imputation causes the output of a neural network to largely vary with
respect to the number of missing entries in the input. We name this phenomenon Variable Sparsity
Problem (VSP), which should be avoided in many real-world tasks. Consider a movie recommender
system, for instance. It is not desirable that users get different average of predicted ratings just because
they have rated different number of movies (regardless of their actual rating values). One might argue
that people with less ratings do not like movies in general and it is natural to give higher predicted
values to people with more ratings. This might be partially true for users of some sparsity levels, but
it is not a common case uniformly applicable for a wider range of sparsity levels. This can be verified
in real collaborative filtering datasets as shown in Figure 1 (upper left corner) where users have a
similar average rating for test data regardless of the number of known ratings (see also other two
examples in Figure 1). However, in standard neural networks with zero imputation, we observe that
the model’s inference correlates with the number of known entries of the data instance as shown in

1

Published as a conference paper at ICLR 2020

0 200 400 600
2.0

2.5

3.0

3.5

4.0

4.5

5.0

m
ea

n
of

 ta
rg

et
 v

al
ue

s

Collaborative Filtering

0 200 400 600
0.00

0.05

0.10

0.15

0.20

0.25
Electronic Medical Records

400 500 600
0

5

10

15
Single-cell RNA Sequence

10 20 30

3.0

3.2

3.4

m
od

el
 p

re
di

ct
io

n
w/

o
SN

100 200

0.2

0.4

0.6

0.8

10 20 30 40
11.0

11.5

12.0

12.5

13.0

10 20 30
2.0

2.5

3.0

3.5

4.0

4.5

m
od

el
 p

re
di

ct
io

n
w/

 S
N

100 200
known entries

0.0

0.2

0.4

0.6

0.8

1.0

10 20 30 40

10.0

12.5

15.0

17.5

20.0

Figure 1: First column: Sedhain et al. (2015) on Movielens 100K (collaborative filtering) dataset.
Second column: LSTM on Physionet 2012 (electronic medical records) dataset. Third column:
Talwar et al. (2018) on Blakeley (single cell RNA sequence) dataset. First row: Mean of target values
according to the number of known entries in training set. Second row: Predicted values of models
with zero imputation according to the number of known entries for a randomly selected test point.
Input masks are randomly sampled (to artificially control its sparsity level). For each target sparsity
level through x-axis, 50 samples are drawn, scattering the predicted values and plotting the average in
solid line. Third row: Figures on how plots in second row are corrected by Sparsity Normalization.

the second row of Figure 11. It would be fatal in some safety-critical applications such as a medical
domain: a patient’s probability of developing disease for example should not be evaluated differently
depending on the number of medical tests they received (we do not want our model to predict the
probability of death is high just because some patient has been screened a lot!).

In addition, we theoretically analyze the existence of VSP under several circumstances and propose a
simple yet effective means to suppress VSP while retaining the intuitive advantages of zero imputation:
normalizing with the number of non-zero entries for each data instance. We refer to this regularization
as Sparsity Normalization, and show that it effectively deals away with the VSP, resulting in significant
improvements in both the performance and the stability of training neural networks.

Our contribution in this paper is threefold:

• To best of our knowledge, we are the first in exploring the adverse effect of zero imputation, both
theoretically and empirically.

1Note that, this tendency is very consistent with other test points and is observed throughout the entire
learning process (even before the training).

2

Published as a conference paper at ICLR 2020

(a) Neural network with variable sparsity levels (b) with Sparsity Normalization

Figure 2: The change of output values according to the sparsity level of inputs (darker color indicates
greater absolute value and dotted circles indicate missing nodes with zero imputation). SN makes the
possible output range of a network be more stable with respect to the sparsity level.

• We identify the cause of adverse effect of zero imputation, which we refer to as variable sparsity
problem, and formally describe how this problem actually affects training and inference of neural
networks (Section 2). We further provide new perspectives using VSP to understand phenomena
that have not been clearly explained or that we have misunderstood (Section 4 and 5).

• We present Sparsity Normalization (SN) and theoretically show that SN can solve the VSP under
certain conditions (Section 3). We also experimentally reaffirm that simply applying SN can
effectively alleviate or solve the VSP yielding significant performance gains (Section 4).

2 VARIABLE SPARSITY PROBLEM

We formally define the Variable Sparsity Problem (VSP) as follows: a phenomenon in which the
expected value of the output layer of a neural network (over the weight and input distributions)
depends on the sparsity (the number of zero values) of the input data (Figure 2a). With VSP, the
activation values of neural networks could become largely different for exactly the same input
instance, depending on the number of zero entries; this makes training more difficult and may mislead
the model into incorrect predictions.

While zero imputation is intuitive in the sense that it drops the missing input features, we will show
that it causes variable sparsity problem for several example cases. Specifically, we show the VSP
under assumptions with increasing generality: (Case 1) where activation function is an identity
mapping with no bias, (Case 2) where activation function is an affine function, and (Case 3) where
activation function is a non-decreasing convex function such as ReLU (Glorot et al., 2011), leaky
ReLU (Maas et al., 2013), ELU (Clevert et al., 2016), or Softplus (Dugas et al., 2001).

Here, we summarize the notation for clarity. For a L-layer deep network with non-linearity σ, we
use W i ∈ Rni×ni−1 to denote the weight matrix of i-th layer, bi ∈ Rni to denote the bias, hi ∈ Rni

to denote the activation vector. For simplicity, we use h0 ∈ Rn0 and hL ∈ RnL to denote input and
output layer, respectively. Then, we have

hi = σ(W ihi−1 + bi), for i = 1, · · · , L.

Our goal in this section is to observe the change in hL as the sparsity of h0 (input x) changes. To
simplify the discussion, we consider the following assumption:

Assumption 1. (i) Every coordinate of input vector, h0l , is generated by the element-wise multipli-
cation of two random variables h̃0l and ml where ml is binary mask indicating missing value and
h̃0l is a (possibly unobserved) feature value. Here, missing mask ml is MCAR (missing completely
at random), with no dependency with other mask variables or their values h̃0. All ml follow some
identical distribution with mean µm. (ii) The elements of matrix W i are mutually independent and
follow the identical distribution with mean µi

w. Similarly, bi and h̃0 consist of i.i.d. coordinates with
mean µi

b and µx, respectively. (iii) µi
w is not zero uniformly over all i.

3

Published as a conference paper at ICLR 2020

(i) assumes the simplest missing mechanism. (ii) is similarly defined in Glorot & Bengio (2010)
and He et al. (2015) in studying weight initialization techniques. (iii) may not hold under some
initialization strategies, but as the learning progresses, it is very likely to hold.

(Case 1) For simplicity, let us first consider networks without the non-linearity nor the bias term.
Theorem 1 shows that the average value of the output layer E[hLl] is directly proportional to the
expectation of the mask vector µm:

Theorem 1. Suppose that activation σ is an identity function and that bil is uniformly fixed as zero
under Assumption 1. Then, we have E[hLl] =

∏L
i=1 ni−1µ

i
wµxµm.

(Case 2) When the activation function is affine but now with a possibly nonzero bias, E[hLl] is
influenced by µm in the following way:

Theorem 2. Suppose that activation σ is an affine function under Assumption 1. Suppose further
that fi(x) is defined as σ(ni−1µi

wx+ µi
b). Then, E[hLl] = fL ◦ · · · ◦ f1(µxµm).

(Case 3) Finally, when the activation function is non-linear but non-decreasing and convex, we can
show that E[hLl] is lower-bounded by some quantity involving µm:

Theorem 3. Suppose that σ is a non-decreasing convex function under Assumption 1. Suppose
further that fi(x) is defined as σ(ni−1µi

wx+ µi
b) and µi

w > 0. Then, E[hLl] ≥ fL ◦ · · · ◦ f1(µxµm).

If the expected value of the output layer (or the lower bound of it) depends on the level of spar-
sity/missingness as in Theorem 1-3, even similar data instances may have different output values
depending on their sparsity levels, which would hinder fair and correct inference of the model. As
shown in Figure 1 (second row), the VSP can easily occur even in practical settings of training neural
networks where the above conditions do not hold.

3 SPARSITY NORMALIZATION

Algorithm 1 Sparsity Normalization (SN)

Input: Dataset D, constant K.
Output: Sparsity Normalized Dataset DSN.

Empty set S = φ
for each (h0,m) ∈ D do

h0
SN ← K · h0/ ‖m‖1
S ← S ∪

{
h0

SN

}
end for
DSN ← S

In this section, we propose a simple yet surpris-
ingly effective method to resolve the VSP. We first
revisit (Case 2) to find a way of making expected
output independent of input sparsity level since the
linearity in activation simplifies the correction. Re-
calling the notation of h0 = h̃0�m (� represents
the element-wise product), we find that simply nor-
malizing via h0

SN = (h̃0 �m) ·K1/µm for any
fixed constant K1, can debias the dependency on
the input sparsity level. We name this simple nor-
malizing technique Sparsity Normalization (SN)
and describe it in Algorithm 1. Conceptually, this
method scales the size of each input value accord-
ing to its sparsity level so that the change in output
size is less sensitive to the sparsity level (Figure 2b). The formal description on correcting sparsity
bias by SN is as follows in this particular case:

Theorem 4. (With Sparsity Normalization) Suppose that activation σ is an affine function under
Assumption 1. Suppose further that fi(x) = σ(ni−1µ

i
wx+ µi

b) and replace the input layer using SN,
i.e. h0

SN = (h̃0 �m)·K1/µm for any fixed constantK1. Then, we haveE[hLl] = fL◦· · ·◦f1(µx·K1).

Unlike in Theorem 2, SN in Theorem 4 makes average activation to be independent of µm, which
determines the sparsity levels of input. It is not trivial to show the counterpart of (Case 3) using SN
since E[σ(x)] = σ(E[x]) does not hold in general. However, we show through extensive experiments
in Section 4 that SN is practically effective even in more general cases.

4

Published as a conference paper at ICLR 2020

Table 1: Debiasing variable sparsity using SN on Movielens datasets. Test RMSE with 95% confidence
interval of 5-runs is provided.

Datasets Movielens 100K Movielens 1M Movielens 10M

user vector
w/o SN 0.9346 ± 0.0007 0.8831 ± 0.0002 0.8859 ± 0.0014

AutoRec w/ SN 0.9208 ± 0.0023 0.8742 ± 0.0003 0.8462 ± 0.0005
(Sedhain et al., 2015)

item vector
w/o SN 0.8835 ± 0.0003 0.8320 ± 0.0003 0.7807 ± 0.0017
w/ SN 0.8809 ± 0.0011 0.8294 ± 0.0004 0.7706 ± 0.0023

user vector
w/o SN 0.9253 ± 0.0010 0.8530 ± 0.0006 0.8113 ± 0.0058

CF-NADE w/ SN 0.9231 ± 0.0012 0.8525 ± 0.0006 0.7854 ± 0.0006
(Zheng et al., 2016)

item vector
w/o SN 0.8982 ± 0.0005 0.8405 ± 0.0007 N/A
w/ SN 0.8900 ± 0.0018 0.8366 ± 0.0008 N/A

CF-UIcA (Du et al., 2018)
w/o SN 0.8945 ± 0.0024 0.8223 ± 0.0016 N/A
w/SN 0.8793 ± 0.0017 0.8178 ± 0.0007 N/A

Table 2: Comparison of AutoRec with SN and CF-UIcA with SN against state-of-the-art collaborative
filtering methods for each datasets. Bold font indicates neural network based models. The results
marked † are taken from Zhang et al. (2017) and all other baselines are taken from original papers.
The result of CF-UIcA with SN on Movielens 10M is not provided because the authors of CF-UIcA
did not provide the results for it due to the complexity of the model.

Models Movielens 100K Models Movielens 1M Models Movielens 10M
Koren (2008) 0.913† Fu et al. (2018) 0.836 Sedhain et al. (2015) 0.782

Zhuang et al. (2017) 0.9114 ± 0.0093 Lee et al. (2016) 0.8333 Berg et al. (2018) 0.777
Koren et al. (2009) 0.911† Yi et al. (2019) 0.8321 Chen et al. (2016) 0.7712 ± 0.0002

Dziugaite & Roy (2015) 0.903 Berg et al. (2018) 0.832 Zheng et al. (2016) 0.771
Zhang et al. (2017) 0.901 Sedhain et al. (2015) 0.831 AutoRec w/ SN (ours.) 0.7690 ± 0.0023

Yi et al. (2019) 0.8889 Zheng et al. (2016) 0.829 Li et al. (2016) 0.7682 ± 0.0003
Lee et al. (2016) 0.8881 ± 0.0017 AutoRec w/ SN (ours.) 0.8260 ± 0.0023 Chen et al. (2017) 0.7672 ± 0.0001

AutoRec w/ SN (ours.) 0.8816 ± 0.0087 Du et al. (2018) 0.823 Fu et al. (2018) 0.766
CF-UIcA w/ SN (ours.) 0.8779 ± 0.0159 CF-UIcA w/ SN (ours.) 0.8215 ± 0.0037 Li et al. (2017) 0.7634 ± 0.0002

While Theorem 4 assumes that µm is known and fixed across all data instances, we relax this
assumption in practice and consider varying µm across data instances. Specifically, by a maximum
likelihood principle, we can estimate µm for each instance by

∥∥h0
∥∥
0
/n0 = ‖m‖1/n0. Thus, we

have h0
SN = K · h0/ ‖m‖1 where K = n0 · K1 (see Algorithm 1)2. In practice, we recommend

using K as the average of ‖m‖1 over all instances in the training set. We could encounter the dying
ReLU phenomenon (He et al., 2015) if K is too small (e.g., K = 1). Since the hyper-parameter K
can bring in a regularization effect via controlling the magnitude of gradient (Salimans & Kingma,
2016), we define K = E(h0,m)∈D[‖m‖1] so that the average scales remain constant before and after
the normalization, minimizing such side effects caused by SN.

4 EXPERIMENTS

In this section, we empirically show that VSP occurs in various machine learning tasks and it can be
alleviated by SN. In addition, we also show that resolving VSP leads to improved model performance
on diverse scenarios.

4.1 COLLABORATIVE FILTERING (RECOMMENDATION) DATASETS

We identify VSP and the effect of SN on several popular benchmark datasets for collaborative filtering
with extremely high missing rates. We train an AutoRec (Sedhain et al., 2015) using user vector on
Movielens (Harper & Konstan, 2016) 100K dataset for validating VSP and SN. Going back to the first
column of Figure 1, the prediction with SN is almost constant regardless of ‖m‖1. Another perceived
phenomenon in Figure 1 is that the higher the ‖m‖1, the smaller the variation in the prediction of

2When ‖m‖1 is 0, calculation is impossible. Hence, in this case, the ‖m‖1 is assumed to be 1.

5

Published as a conference paper at ICLR 2020

Table 3: Debiasing variable sparsity using SN and comparisons against other missing handling
techniques on five disease identification tasks of NHIS dataset. Test AUROC with 95% confidence
interval of 5-runs is provided.

Dataset Cardiovascular Fatty Liver Hypertension Heart Failure Diabetes

Zero Imputation w/o SN 0.7057 ± 0.0027 0.6750 ± 0.0050 0.7977 ± 0.0027 0.7834 ± 0.0036 0.9121 ± 0.0097
Zero Imputation w/ SN (ours.) 0.7106 ± 0.0005 0.6911 ± 0.0022 0.8096 ± 0.0010 0.7914 ± 0.0012 0.9283 ± 0.0011

Zero Imputation w/ BN 0.7033 ± 0.0035 0.6691 ± 0.0081 0.7828 ± 0.0136 0.7749 ± 0.0083 0.9026 ± 0.0105
Zero Imputation w/ LN 0.7049 ± 0.0035 0.6811 ± 0.0062 0.7944 ± 0.0015 0.7820 ± 0.0007 0.9127 ± 0.0056

Dropout 0.7047 ± 0.0021 0.6747 ± 0.0069 0.7926 ± 0.0038 0.7802 ± 0.0049 0.9101 ± 0.0054
Mean Imputation 0.7054 ± 0.0025 0.6766 ± 0.0067 0.7913 ± 0.0019 0.7839 ± 0.0021 0.9117 ± 0.0075

Median Imputation 0.7056 ± 0.0012 0.6713 ± 0.0058 0.7865 ± 0.0034 0.7818 ± 0.0014 0.8975 ± 0.0060
k-NN 0.7052 ± 0.0010 0.6874 ± 0.0045 0.8000 ± 0.0050 0.7843 ± 0.0024 0.9107 ± 0.0075
MICE 0.7075 ± 0.0022 0.6902 ± 0.0058 0.7957 ± 0.0037 0.7875 ± 0.0032 0.9224 ± 0.0021

SoftImpute 0.7014 ± 0.0030 0.6868 ± 0.0040 0.7990 ± 0.0050 0.7828 ± 0.0042 0.9224 ± 0.0019
GMMC 0.7072 ± 0.0016 0.6816 ± 0.0067 0.7984 ± 0.0062 0.7884 ± 0.0029 0.9109 ± 0.0045
GAIN 0.7065 ± 0.0015 0.6765 ± 0.0060 0.7956 ± 0.0020 0.7847 ± 0.0031 0.9091 ± 0.0067

the model with SN. Note that the same tendency has been observed regardless of test instances or
datasets. This implies that models with SN yield more calibrated predictions; as more features are
known for a particular instance, the variance of prediction for that instance should decrease (since
we generated independent masks in Figure 1). It is also worthwhile to note that an AutoRec is a
sigmoid-based network and Movielens datasets are known to have no MCAR hypothesis (Wang et al.,
2018), in which Assumption 1 does not hold at all.

It is also validated that performance gains can be obtained by putting SN into AutoRec (Sedhain
et al., 2015), CF-NADE (Zheng et al., 2016), and CF-UIcA (Du et al., 2018), which are the state-of-
the-art among neural network based collaborative filtering models on several Movielens datasets (see
Appendix B for detailed settings). In Table 13, we consider three different sized Movielens datasets.
Note that AutoRec and CF-NADE allow two types of models according to data encoding (user- or
item-rating vector based) and we consider both types. While we obtain performance improvements
with SN in most cases, it is more prominent in user-rating based model in case of AutoRec and
CF-NADE.

Furthermore, Table 2 compares our simply modification using SN on AutoRec and CF-UIcA with
other state-of-the-art collaborative filtering models beyond neural networks. Unlike experiments of
AutoRec in Table 1, which use the same network architectures proposed in original papers, here
we could successfully learn more expressive network due to the stability obtained by using SN4.
For Movielens 100K and 1M datasets, applying SN yields better or similar performance compared
to other state-of-the-art collaborative filtering methods beyond neural network based models. It is
important to note that all models outperforming AutoRec with SN on Movielens 10M are ensemble
models while AutoRec with SN is a single model and it shows consistently competitive results across
all datasets.

4.2 ELECTRONIC MEDICAL RECORDS (EMR) DATASETS

We further test VSP and SN for clinical time-series prediction with two Electronic Medical Records
(EMR), namely PhysioNet Challenge 2012 (Silva et al., 2012) and the National Health Insurance
Service (NHIS) datasets, which have intrinsic missingness since patients will only receive medical
examinations that are considered to be necessary. We identify whether the VSP exists with the
PhysioNet Challenge 2012 dataset (Silva et al., 2012). We randomly select one test point and plot
in-hospital death probabilities as the number of examinations varies (Second column of Figure 1).
Without SN, the in-hospital death probability increases as the number of examinations increases,

3We consider a CF-NADE without weight sharing and re-run experiments for fair comparisons because
applying SN with weight sharing is not trivial. We also exclude averaging possible choices because it does not
make big differences given unnecessary extra computational costs.

4Because overfitting is less with SN in AutoRec, we use twice the capacity than the existing AutoRec model.

6

Published as a conference paper at ICLR 2020

0.25 0.50 0.75

10

15

20

25

RM
SE

blakeley

0.25 0.50 0.75

10

20

30

40

kolodziejczyk

0.25 0.50 0.75

2

4

6

8
zeisel

0.25 0.50 0.75

5

10

15

RM
SE

usoskin

0.25 0.50 0.75
Test Set Size (Ratio)

5.0

7.5

10.0

12.5

quake

w/o SN w/ SN

0.25 0.50 0.75
5

0

5

10

jurkat

Figure 3: Debiasing variable sparsity using SN according to test set ratio on six imputation tasks of
single cell RNA sequence dataset. Test RMSE with 95% confidence interval of 10-runs is provided.

0.25 0.50 0.75

2.0

2.5

3.0

3.5

RM
SE

boston

0.25 0.50 0.75
Dropout Prob.

55

60

65
diabetes

w/o SN w/ SN

0.25 0.50 0.75

0.5

0.6

0.7

california

Figure 4: Debiasing variable sparsity using SN with respect to drop rates on three popular UCI
regression datasets. Test RMSE with 95% confidence interval of 5-runs is provided.

even though there is no such tendency in the dataset statistics. However, SN corrects this bias so that
in-hospital death probability is consistent regardless of the number of examinations. We observe a
similar tendency for examples from the NHIS dataset as well.

Although SN corrects the VSP in both datasets, we perceive different behaviors in both cases in
terms of actual performance changes. While SN significantly outperforms its counterpart without SN
on NHIS dataset as shown in Table 3, it just performs similarly on PhysioNet dataset (results and
detailed settings are deferred to Appendix C). However, SN is still valuable for its ability to prevent
biased predictions in this mission-critical area.

In addition, we compare SN with other missing handling techniques to show the efficacy of SN
although our main purpose is to provide a deeper understanding and the corresponding solution about
the issue that the zero imputation, which is the simplest and most intuitive way of handling missing
data, degrades the performance in training neural networks. Even with its simplicity, SN exhibits
better or similar performances compared to other more complex techniques. Detailed descriptions of
other missing handling techniques are deferred to Appendix H.

7

Published as a conference paper at ICLR 2020

2 4 6 8
mask

82

84

86

88

90

NL
L

w/o SN
w/ SN
w/ SN (all)

Figure 5: Negative log likelihood of MADE on binarized MNIST with and without SN.

4.3 SINGLE-CELL RNA SEQUENCE DATASETS

Single-cell RNA sequence datasets contain expression levels of specific RNA for each single cells.
AutoImpute (Talwar et al., 2018) is one of the state-of-the-art methods that imputes missing data on
single-cell RNA sequence datasets. We reproduce their experiments using authors’ official implemen-
tation, and follow most of their experimental settings (see Appendix D for details).

As before, we first check whether VSP occurs in AutoImpute model. The third column in Figure 1
shows how the prediction of a AutoImpute model changes as the number of known entries changes.
Although the number of RNAs found in the specific cell is less related to cell characteristics (upper
right corner in Figure 1), the prediction increases as the number of RNAs found in the cell increases.
This tendency is dramatically reduced with SN.

Figure 3 shows how imputation performance changes by being worked with SN to several single cell
RNA sequence datasets with respect to the portion of train set (see Appendix D for more results).
As we can see in Figure 3, SN significantly increases the imputation performance of AutoImpute
model. In particular, the smaller the train data, the better the effect of SN in all datasets consistently.
AutoImpute model is a sigmoid-based function and single cell RNA datasets (Talwar et al., 2018) do
not have the MCAR hypothesis, unlike Assumption 1. Nevertheless, VSP occurs even here and it
can be successfully alleviated by SN with huge performance gain. It implies that SN would work for
other neural network based imputation techniques.

4.4 DROPOUT ON UCI DATASETS

While SN primarily targets to fix the VSP in the input layer, it could be also applied to any layers of
deep neural networks to resolve VSP. The typical example of having heterogeneous sparsity in hidden
layers is when we use dropout (Srivastava et al., 2014), which can be understood as another form of
zero imputation but at the hidden layers; with Bernoulli dropout, the variance of the number of zero
units across instances is np(1− p) (n: the dimension of hidden layer, p: drop rate). While dropout
partially handles this VSP issue by scaling 1/(1− p) in the training phase5, SN can exactly correct
VSP of hidden layers by considering individual level sparsity (Note that the scaling of dropout can be
viewed as applying SN in an average sense: E [‖m‖1] = n(1− p) and K = n).

5In almost all of the deep learning frameworks such as PyTorch, TensorFlow, Theano and Caffe, this inverted
dropout is supported.

8

Published as a conference paper at ICLR 2020

Figure 4 shows how the RMSE changes as the drop rate changes with and without SN on three
popular UCI regression datasets (Boston Housing, Diabetes, and California Housing)6. As illustrated
in Figure 4, the larger the drop rate, the greater the difference of RMSE between with and without SN.
To explain this phenomenon, we define the degree of VSP as the inverse of signal-to-noise ratio with
respect to the number of active units in hidden layers:

√
p/(n(1− p)) (expected number of active

units over its standard deviation). As can be seen from the figure, the larger drop rate p is, the more
severe degree of VSP is and thus the greater protection by SN against performance degradation.

4.5 DENSITY ESTIMATION

In the current literature of estimating density based on deep models, inputs with missing features are
in general not largely considered. However, we still may experience the VSP since the proportion of
zeros in the data itself can vary greatly from instance to instance. In this experiment, we apply SN to
MADE (Germain et al., 2015), which is one of the modern architectures in neural network-based
density estimation. We reproduce binarized MNIST (LeCun, 1998) experiments of Germain et al.
(2015) measuring negative log likelihood (the lower the better) of test dataset while increasing the
number of masks. Figure 5 illustrates the effect of using SN. Note that MADE uses masks in the
hidden layer that are designed to produce proper autoregressive conditional probabilities and variable
sparsity arises across hidden nodes. SN can be trivially extended to handle this case as well and the
corresponding result is given in the figure denoted as w/SN(all)7. We reaffirm that SN is effective
even when MCAR assumption is not established.

5 RELATED WORKS

Missing handling techniques Missing imputation can be understood as a technique to increase
the generalization performance by injecting plausible noise into data. Noise injection using global
statistics like mean or median values is the simplest way to do this (Lipton et al., 2016; Śmieja
et al., 2018). However, it could lead to highly incorrect estimation since they do not take into
consideration the characteristics of each data instance (Tresp et al., 1994; Che et al., 2018). To
overcome this limitation, researchers have proposed various ways to model individualized noise
using autoencoders (Pathak et al., 2016; Gondara & Wang, 2018), or GANs (Yoon et al., 2018; Li
et al., 2019). However, those model based imputation techniques have not properly worked for high
dimensional datasets with the large number of features and/or extremely high missing rates (Yoon
et al., 2018) because excessive noise can ruin the training of neural networks rather increasing
generalization performance.

For this reason, in the case of high dimensional datasets such as collaborative filtering or single cell
RNA sequences, different methods of handling missing data have been proposed. A line of work
simply used zero imputation by minimizing noise level and achieved state-of-the-art performance
on their target datasets (Sedhain et al., 2015; Zheng et al., 2016; Talwar et al., 2018). In addition,
methods using low-rank matrix factorization have been proposed to reduce the input dimension, but
these methods not only cause lots of information loss but also fail to capture non-linearity of the
input data (Hazan et al., 2015; Bachman et al., 2017; He et al., 2017). Vinyals et al. (2016); Monti
et al. (2017) proposed recurrent neural network (RNN) based methods but computational costs for
these methods are outrageous for high dimensional datasets. Also, it is not natural to use RNN-based
models for non-sequential datasets.

6The most experimental settings are adopted from Klambauer et al. (2017); Littwin & Wolf (2018)’s UCI
experiments (see Appendix E for detail).

7The detailed description of the extension is deferred to Appendix F.

9

Published as a conference paper at ICLR 2020

Other forms of Sparsity Normalization We discuss other forms of SN to alleviate VSP, already
in use unwittingly due to empirical performance improvements. DropBlock (Ghiasi et al., 2018)
compensates activation from dropped features by exactly counting mask vector similar to SN (similar
approach discussed in Section 4.4.) It is remarkable that we can find models using SN-like normal-
ization even in handling datasets without missing features. For example, in CBOW model (Mikolov
et al., 2013) where the number of words used as an input depends on the position in the sentence,
it was later revealed that SN like normalization has a practical performance improvement. As an
another example, Kipf & Welling (2017) applied Laplacian normalization which is the standard
way of representing a graph in graph theory, can naturally handle heterogeneous node degrees and
precisely matches the SN operation. In this paper, we explicitly extend SN, which was limited and
unintentionally applied to only few settings, to a model agnostic technique.

6 CONCLUSION

We identified variable sparsity problem (VSP) caused by zero imputation that has not been explicitly
studied before. To best of our knowledge, this paper provided the first theoretical analysis on why
zero imputation is harmful to inference of neural networks. We showed that variable sparsity problem
actually exists in diverse real-world datasets. We also confirmed that theoretically inspired normalizing
method, Sparsity Normalization, not only reduces the VSP but also improves the generalization
performance and stability of feed-forwarding of neural networks with missing values, even in areas
where existing missing imputation techniques do not cover well (e.g., collaborative filtering, single
cell RNA datasets).

ACKNOWLEDGMENTS

This work was supported by the Institute of Information & Communications Technology Planning
& Evaluation (IITP) grants (No.2016-0-00563, No.2017-0-01779, and No.2019-0-01371), the Na-
tional Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) grants
(No.2018R1A5A1059921 and No.2019R1C1C1009192), the Samsung Research Funding & Incu-
bation Center of Samsung Electronics via SRFC-IT1702-15, the National IT Industry Promotion
Agency grant funded by the Ministry of Science and ICT, and the Ministry of Health and Welfare
(NO. S0310-19-1001, Development Project of The Precision Medicine Hospital Information System
(P-HIS)).

REFERENCES

Philip Bachman, Alessandro Sordoni, and Adam Trischler. Learning algorithms for active learning. In
Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 301–310.
JMLR. org, 2017.

Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix completion.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining Deep Learning Day. ACM, 2018.

S van Buuren and Karin Groothuis-Oudshoorn. mice: Multivariate imputation by chained equations
in r. Journal of statistical software, pp. 1–68, 2010.

Wei Cao, Dong Wang, Jian Li, Hao Zhou, Lei Li, and Yitan Li. Brits: Bidirectional recurrent
imputation for time series. In Advances in Neural Information Processing Systems, pp. 6775–6785,
2018.

Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural
networks for multivariate time series with missing values. Scientific reports, 8(1):6085, 2018.

10

Published as a conference paper at ICLR 2020

Chao Chen, Dongsheng Li, Qin Lv, Junchi Yan, Stephen M Chu, and Li Shang. Mpma: Mixture
probabilistic matrix approximation for collaborative filtering. In IJCAI, pp. 1382–1388, 2016.

Chao Chen, Dongsheng Li, Qin Lv, Junchi Yan, Li Shang, and Stephen M Chu. Gloma: Embedding
global information in local matrix approximation models for collaborative filtering. In Thirty-First
AAAI Conference on Artificial Intelligence, 2017.

Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochreiter. Fast and accurate deep network learn-
ing by exponential linear units (elus). In International Conference on Learning Representations,
2016.

Chao Du, Chongxuan Li, Yin Zheng, Jun Zhu, and Bo Zhang. Collaborative filtering with user-item
co-autoregressive models. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Charles Dugas, Yoshua Bengio, François Bélisle, Claude Nadeau, and René Garcia. Incorporating
second-order functional knowledge for better option pricing. In Advances in neural information
processing systems, pp. 472–478, 2001.

Gintare Karolina Dziugaite and Daniel M Roy. Neural network matrix factorization. arXiv preprint
arXiv:1511.06443, 2015.

Mingsheng Fu, Hong Qu, Dagmawi Moges, and Li Lu. Attention based collaborative filtering.
Neurocomputing, 311:88–98, 2018.

Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. Made: Masked autoencoder for
distribution estimation. In International Conference on Machine Learning, pp. 881–889, 2015.

Golnaz Ghiasi, Tsung-Yi Lin, and Quoc V Le. Dropblock: A regularization method for convolutional
networks. In Advances in Neural Information Processing Systems, pp. 10727–10737, 2018.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256, 2010.

Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks. In
Proceedings of the fourteenth international conference on artificial intelligence and statistics, pp.
315–323, 2011.

Lovedeep Gondara and Ke Wang. Mida: Multiple imputation using denoising autoencoders. In
Pacific-Asia Conference on Knowledge Discovery and Data Mining, pp. 260–272. Springer, 2018.

F Maxwell Harper and Joseph A Konstan. The movielens datasets: History and context. Acm
transactions on interactive intelligent systems (tiis), 5(4):19, 2016.

Elad Hazan, Roi Livni, and Yishay Mansour. Classification with low rank and missing data. In
Proceedings of the 32nd International Conference on Machine Learning-Volume 68, pp. 257–266.
JMLR. org, 2015.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rectifiers: Surpassing
human-level performance on imagenet classification. In Proceedings of the IEEE international
conference on computer vision, pp. 1026–1034, 2015.

Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng Chua. Neural
collaborative filtering. In Proceedings of the 26th International Conference on World Wide Web,
pp. 173–182. International World Wide Web Conferences Steering Committee, 2017.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

11

Published as a conference paper at ICLR 2020

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In International Conference on Learning Representations, 2017.

Günter Klambauer, Thomas Unterthiner, Andreas Mayr, and Sepp Hochreiter. Self-normalizing
neural networks. In Advances in neural information processing systems, pp. 971–980, 2017.

Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model.
In Proceedings of the 14th ACM SIGKDD international conference on Knowledge discovery and
data mining, pp. 426–434. ACM, 2008.

Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix factorization techniques for recommender
systems. Computer, pp. 30–37, 2009.

Yann LeCun. The mnist database of handwritten digits. http://yann. lecun. com/exdb/mnist/, 1998.

Joonseok Lee, Seungyeon Kim, Guy Lebanon, Yoram Singer, and Samy Bengio. Llorma: Local
low-rank matrix approximation. The Journal of Machine Learning Research, 17(1):442–465, 2016.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv preprint
arXiv:1607.06450, 2016.

Dongsheng Li, Chao Chen, Qin Lv, Junchi Yan, Li Shang, and Stephen Chu. Low-rank matrix
approximation with stability. In International Conference on Machine Learning, pp. 295–303,
2016.

Dongsheng Li, Chao Chen, Wei Liu, Tun Lu, Ning Gu, and Stephen Chu. Mixture-rank matrix
approximation for collaborative filtering. In Advances in Neural Information Processing Systems,
pp. 477–485, 2017.

Steven Cheng-Xian Li, Bo Jiang, and Benjamin Marlin. Misgan: Learning from incomplete data with
generative adversarial networks. arXiv preprint arXiv:1902.09599, 2019.

Zachary C Lipton, David C Kale, and Randall Wetzel. Modeling missing data in clinical time series
with rnns. Machine Learning for Healthcare, 2016.

Etai Littwin and Lior Wolf. Regularizing by the variance of the activations’ sample-variances. In
Advances in Neural Information Processing Systems, pp. 2115–2125, 2018.

Yonghong Luo, Xiangrui Cai, Ying Zhang, Jun Xu, et al. Multivariate time series imputation with
generative adversarial networks. In Advances in Neural Information Processing Systems, pp.
1596–1607, 2018.

Andrew L Maas, Awni Y Hannun, and Andrew Y Ng. Rectifier nonlinearities improve neural network
acoustic models. In Proc. icml, volume 30, pp. 3, 2013.

Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algorithms for
learning large incomplete matrices. Journal of machine learning research, 11(Aug):2287–2322,
2010.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word representa-
tions in vector space. In International Conference on Learning Representations, 2013.

Federico Monti, Michael Bronstein, and Xavier Bresson. Geometric matrix completion with recurrent
multi-graph neural networks. In Advances in Neural Information Processing Systems, pp. 3697–
3707, 2017.

Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2536–2544, 2016.

12

Published as a conference paper at ICLR 2020

Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann machines for
collaborative filtering. In Proceedings of the 24th international conference on Machine learning,
pp. 791–798. ACM, 2007.

Tim Salimans and Durk P Kingma. Weight normalization: A simple reparameterization to accelerate
training of deep neural networks. In Advances in Neural Information Processing Systems, pp.
901–909, 2016.

Suvash Sedhain, Aditya Krishna Menon, Scott Sanner, and Lexing Xie. Autorec: Autoencoders meet
collaborative filtering. In Proceedings of the 24th International Conference on World Wide Web,
pp. 111–112. ACM, 2015.

I. Silva, George B. Moody, Daniel J. Scott, L. A. Celi, and R. Gritz Mark. Predicting in-hospital
mortality of icu patients: The physionet/computing in cardiology challenge 2012. 2012 Computing
in Cardiology, pp. 245–248, 2012.

Marek Śmieja, Łukasz Struski, Jacek Tabor, Bartosz Zieliński, and Przemysław Spurek. Processing
of missing data by neural networks. In Advances in Neural Information Processing Systems, pp.
2719–2729, 2018.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Divyanshu Talwar, Aanchal Mongia, Debarka Sengupta, and Angshul Majumdar. Autoimpute:
Autoencoder based imputation of single-cell rna-seq data. Scientific reports, 8(1):16329, 2018.

Volker Tresp, Subutai Ahmad, and Ralph Neuneier. Training neural networks with deficient data. In
Advances in neural information processing systems, pp. 128–135, 1994.

Oriol Vinyals, Samy Bengio, and Manjunath Kudlur. Order matters: Sequence to sequence for sets.
In International Conference on Learning Representations, 2016.

Menghan Wang, Mingming Gong, Xiaolin Zheng, and Kun Zhang. Modeling dynamic missingness
of implicit feedback for recommendation. In Advances in neural information processing systems,
pp. 6669–6678, 2018.

Baolin Yi, Xiaoxuan Shen, Hai Liu, Zhaoli Zhang, Wei Zhang, Sannyuya Liu, and Naixue Xiong.
Deep matrix factorization with implicit feedback embedding for recommendation system. IEEE
Transactions on Industrial Informatics, 2019.

Jinsung Yoon, James Jordon, and Mihaela Van Der Schaar. Gain: Missing data imputation using
generative adversarial nets. In Proceedings of the 35th International Conference on Machine
Learning-Volume 71, 2018.

Shuai Zhang, Lina Yao, and Xiwei Xu. Autosvd++: An efficient hybrid collaborative filtering model
via contractive auto-encoders. In Proceedings of the 40th International ACM SIGIR conference on
Research and Development in Information Retrieval, pp. 957–960. ACM, 2017.

Yin Zheng, Bangsheng Tang, Wenkui Ding, and Hanning Zhou. A neural autoregressive approach to
collaborative filtering. In Proceedings of the 33rd International Conference on Machine Learning-
Volume 69. JMLR. org, 2016.

Fuzhen Zhuang, Zhiqiang Zhang, Mingda Qian, Chuan Shi, Xing Xie, and Qing He. Representation
learning via dual-autoencoder for recommendation. Neural Networks, 90:83–89, 2017.

13

Published as a conference paper at ICLR 2020

A PROOFS

A.1 PROOF OF THEOREM 1

Proof. From the definition of hl, w1
l , h

0
l , h̃

0
l ,ml, the following equation holds.

E[h1l] = n0E[w1
l h

0
1] = n0E[w1

l h̃
0
lml]

From the Assumption 1, w1
l , h̃0l , and ml are independent of each other. Thus,

E[h1l] = n0E[w1
l]E[h̃0l]E[ml]

Similarly, the following holds.

E[hil] = ni−1E[wi
lh

i−1
l] for i = 1, · · · , L

Since hi−1l and wi
l are independent of each other by the Assumption 1 and the definition of hi−1l ,

E[hil] = ni−1E[wi
l]E[hi−1l]. Therefore,

E[hLl] =

L∏
i=1

ni−1E[wi
l]E[h̃0l]E[ml] =

L∏
i=1

ni−1µ
i
wµxµm

A.2 PROOF OF THEOREM 2

Proof. From the definition of hl, w1
l , h

0
l , h̃

0
l ,ml and the property of an affine function σ(E[·]) =

E[σ(·)], the following equation holds.

E[h1l] = σ
(
n0E[w1

l h
0
l] + E[b1l]

)
= σ

(
n0E[w1

l h̃
0
lml] + E[b1l]

)
From the Assumption 1, w1

l , h̃0l , and ml are independent of each other. Thus,

E[h1l] = σ
(
n0E[w1

l]E[h̃0l]E[ml] + E[b1l]
)

= σ
(
n0µ

1
wµxµm + µ1

b

)
= f1(µxµm)

Similarly, the following holds.

E[hil] = σ
(
ni−1E[wi

lh
i−1
l] + E[bil]

)
for i = 1, · · · , L

Since hi−1l and wi
l are independent of each other by the Assumption 1 and the definition of hi−1l ,

E[hil] = σ
(
ni−1E[wi

l]E[hi−1l] + E[bil]
)

= σ
(
ni−1µ

i
wE[hi−1l] + µi

b

)
= fi(E[hil])

Therefore,

E[hLl] = fL ◦ · · · ◦ f1(µxµm)

14

Published as a conference paper at ICLR 2020

A.3 PROOF OF THEOREM 3

Proof. From the definition of hl, w1
l , h

0
l , h̃

0
l ,ml and the property of a convex function E[σ(·)] ≥

σ(E[·]), the following equation holds.

E[h1l] ≥ σ
(
n0E[w1

l h
0
l] + E[b1l]

)
= σ

(
n0E[w1

l h̃
0
lml] + E[b1l]

)
From the Assumption 1, w1

l , h̃0l , and ml are independent of each other. Thus,

E[h1l] ≥ σ
(
n0E[w1

l]E[h̃0l]E[ml] + E[b1l]
)

= σ
(
n0µ

1
wµxµm + µ1

b

)
= f1(µxµm)

Similarly, the following holds.

E[hil] ≥ σ
(
ni−1E[wi

lh
i−1
l] + E[bil]

)
for i = 1, · · · , L

Since hi−1l and wi
l are independent of each other by the Assumption 1 and the definition of hi−1l ,

E[hil] ≥ σ
(
ni−1E[wi

l]E[hi−1l] + E[bil]
)

= σ
(
ni−1µ

i
wE[hi−1l] + µi

b

)
= fi(E[hi−1l])

Since we assume that σ is non-decreasing, we finally get

E[hLl] ≥ fL ◦ · · · ◦ f1(µxµm)

A.4 PROOF OF THEOREM 4

Proof. By theorem 2, E[hLl] = fL ◦ · · · ◦ f1(E[h0
SN]). Since E[h0

SN] = E[h0] ·K/µm,

E[hLl] = fL ◦ · · · ◦ f1(µxµm ·K/µm) = fL ◦ · · · ◦ f1(µx ·K)

15

Published as a conference paper at ICLR 2020

B COLLABORATIVE FILTERING (RECOMMENDATION) DATASETS

B.1 DETAILED EXPERIMENTAL SETTINGS OF TABLE 1

This subsection describes the experimental settings of detailed collaborative filtering tasks in Section 4.
As already mentioned, we follow the settings of AutoRec, CF-NADE, and CF-UIcA as much as
possible. We perform each experiments by 5 times, and report mean and 95% confidence intervals.
We randomly select 10% of the ratings of each datasets for the test set (Harper & Konstan, 2016). As
the dataset is too small for Movielens 100K and 1M datasets, the confidence interval tends to be large
by changing the dataset split. Hence, the same dataset split is used in each 5 experiments in Table 1.

AutoRec (Sedhain et al., 2015) We use two layer AutoRec model with 500 hidden units. For fair
comparisons, we tune the hyper-parameters for weight decay in all experiments to have only one
significant digit, and use a learning rate of 10−3 except on Movielens 10M where we use a learning
rate of 10−4. We use full batch on Movielens 100K and 1M, mini-batch (1000) on Movielens 10M.
Besides, we use Adam optimizer instead of Resilient Propagation (RProp) unlike the AutoRec paper.
The RProp optimizer shows fast convergence but can only be used in full batch scenario. It is not
possible for 12GB of GPU memory to use full batch in training a large dataset such as Movielens
10M. Thus, we decide to use Adam optimizer rather than RProp optimizer. Fortunately, although
the optimizer is changed to Adam, the prediction performance is not degraded in most cases. The
experimental results of comparing both optimizers are summarized in Table 4.

Table 4: Comparison of Test RMSE between Adam and Resilient Propagation optimizer on Movielens
100K, 1M, and 10M datasets.

Datasets Movielens 100K Movielens 1M Movielens 10M
input vector item vector user vector item vector user vector item vector user vector

RProp 0.8861 0.9437 0.8358 0.8804 0.782† 0.867†
Adam 0.8831 0.9343 0.8306 0.8832 0.7807 0.8859

† : Taken from Sedhain et al. (2015).

CF-NADE (Zheng et al., 2016) We use two layer CF-NADE model with 500 hidden units. For
fair comparisons, we tune the hyper-parameters for weight decay in all experiments to have only
one significant digit, and use a learning rate8 of 0.001. Also, we use mini-batch (512) just following
CF-NADE. Although the CF-NADE used weight sharing and averaging possible choices in addition
to weight decay, we report the results without weight sharing and averaging possible choices in Table 1
because it is not clear how to apply SN with weight sharing, and there is almost no performance
gain with averaging possible choices despite of its high computational costs. Furthermore, we do not
experiment on Movielens 10M with item vector encoding because the authors of CF-NADE did not
provide the results for it due to the complexity of the model.

CF-UIcA (Du et al., 2018) We use the authors’ official code and the train/test dataset splits9 for
these experiments. Since CF-UIcA is a model that accepts both user and item vector as input, it is
not necessary to consider two types of encoding as in AutoRec or CF-NADE. On the other hand, it
is reasonable to take different K values for user and item vector with SN. We treat K as 66 for the
user vector and 110 for the item vector. For models without SN, 0.0001 is used as the parameter λ
for weight decay as suggested by the CF-UIcA. It is natural to use different λ values for SN because
the optimal λ must be changed along with SN. Hence, we use λ = 0.0005 for Movielens 100K and
λ = 0.00006 for Movielens 1M in the case of SN. As in CF-NADE, we do not test Movielens 10M
because the authors of CF-UIcA also did not report for it owing to its high computational cost.

8The CF-NADE uses learning rate 5 × 10−4 for Movielens 10M, but we use 10−3 for fast convergence.
Therefore, the results can be somewhat different from original paper.

9https://github.com/thu-ml/CF-UIcA.

16

https://github.com/thu-ml/CF-UIcA

Published as a conference paper at ICLR 2020

B.2 DETAILED EXPERIMENTAL SETTINGS OF TABLE 2

In comparison with other state-of-the-art models, we used 1000 hidden units in AutoRec (Sedhain
et al., 2015) with SN. While Sedhain et al. (2015) claimed that they were able to achieve enough
performance only with 500 hidden units, 500 hidden units did not achieve sufficient performance
when applying SN. The Figure 6 plots the test RMSE, changing the number of hidden units for
Movielens 100K and 1M. We can see that 600 units for Movielens 100K and 900 units for Movielens
1M are necessary for getting better performance. Obviously, as datasets become more complex and
larger, we need more network capacity. Therefore, we decide to use two times larger network capacity
(1000 hidden units) to get better performance. The number of hidden units can also be viewed and
tuned as a hyper-parameter, and we have not tuned much for the number of hidden units. Note that,
unlike Table 1, we report the results with five random splits for all datasets in Table 2 to compare
fairly with other state-of-the-art methods.

400 500 600 700 800 900 1000
of hidden units

0.8800

0.8805

0.8810

0.8815

0.8820

Te
st

 R
M

SE

500 600 700 800 900 1000
of hidden units

0.82750

0.82775

0.82800

0.82825

0.82850

0.82875

0.82900

0.82925

Figure 6: Test RMSE of AutoRec with SN on Movielens 100K (left) and Movielens 1M (right) with
respect to the number of hidden units.

17

Published as a conference paper at ICLR 2020

C ELECTRONIC MEDICAL RECORDS (EMR) DATASETS

C.1 NHIS DATASET

Table 5: Debiasing variable sparsity in the case of applying dropout using SN on five disease
identification tasks of NHIS dataset. Test AUROC with 95% confidence interval of 5-runs is provided.

Dataset Cardiovascular Fatty Liver Hypertension Heart Failure Diabetes

Zero Imputation w/o SN 0.7084 ± 0.0005 0.6858 ± 0.0065 0.8023 ± 0.0054 0.7876 ± 0.0012 0.9263 ± 0.0026
Zero Imputation w/ SN (ours.) 0.7105 ± 0.0009 0.6941 ± 0.0011 0.8086 ± 0.0016 0.7922 ± 0.0015 0.9303 ± 0.0029

The NHIS dataset, which is from National Health Insurance Service (NHIS), consists of medical
diagnosis of around 300,000 people. The goal is to predict the occurrence of 5 diseases. Each patients
takes 34 examinations over 5 years. We split dataset into two set (train and test), where the ratio of
train and test split is 3:1. We pre-process input data with min-max normalization, which makes min
and max values of each features be zero and one following GAIN (Yoon et al., 2018). We train 2
layer neural networks which have 50 and 30 hidden units each, and evaluate the model with AUROC.
We use ReLU activation, and dropout rate as 0.8 (if applied). Since these dataset is too imbalance, we
apply class weight to the loss function for handling label imbalance. Besides, we use Adam optimizer
with learning rate 10−2 without weight decay, and full batch. We evaluate the model on 5 times
and report mean and 95% confidence interval. We also observe that Sparsity Normalization makes
performance gain even when the dropout is integrated in the networks (See Table 5).

Data source This study used the National Health Insurance System-National Health Screening
Cohort (NHIS-HEALS)* data derived from a national health screening program and the national
health insurance claim database in the National Health Insurance System (NHIS) of South Korea.
Data from the NHIS-HEALS10 was fully anonymized for all analyses and informed consent was
not specifically obtained from each participant. This study was approved and exempt from informed
consent by the Institutional Review Board of Yonsei University, Severance Hospital in Seoul, South
Korea (IRB no.4-2016-0383).

Data Availability Data cannot be shared publicly because of the provisions of the National Health
Insurance Service (NHIS). Korean legal restrictions prohibit authors from making the data publicly
available, and the authority implemented the restrictions is NHIS (National Health Insurance Service),
one of the government agency of Republic of Korea. NHIS provides limited portion of anonymized
data to the researchers for the purpose of the public interest. However, they exclusively provide data
to whom made direct contact of the NHIS and agreed to policies of NHIS. Redistribution of the data
is not permitted for the researchers. The contact name and the information to which the data request
can be sent: Haeryoung Park Information analysis department Big data operation room NHISS Tel:
+82-33-736-2430. E-mail: lumen77@nhis.or.kr.

10Seong SC, Kim YY, Park SK, et al. Cohort profile: the National Health Insurance Service-National Health
Screening Cohort (NHIS-HEALS) in Korea. BMJ Open 2017;7:e016640. pmid:28947447.

18

Published as a conference paper at ICLR 2020

C.2 PHYSIONET CHALLENGE 2012 DATASET

Table 6: Debiasing variable sparsity using SN on mortality prediction task of PhysioNet Challenge
2012. Test AUROC with 95% confidence interval of 5-runs is provided.

Model Test AUROC

Zero Imputation w/o SN 0.8177 ± 0.0071
Zero Imputation w/ SN (ours.) 0.8152 ± 0.0010

PhysioNet Challenge 2012 dataset (Silva et al., 2012) consists of 48 hours-long multivariate clinical
time series data from intensive care unit (ICU). Most of the experimental settings are followed by
BRITS (Cao et al., 2018). We divide 48 hours into 288 timesteps, which contain 35 examinations each.
The goal of this task is to predict in-hospital death. We use dataset split given by PhysioNet Challenge
2012 (Silva et al., 2012) where each of them contains 4000 data points. In the preprocessing phase,
we standardize (make mean as zero and standard deviation as one for each features) the input features
and fill zero for missing values (zero imputation). We train single layer LSTM network which has
108 hidden units, and evaluate the model with AUROC. We apply class weight to handle imbalance
problem in the dataset like in setting above. We use Adam optimizer with learning rate 2 × 10−4,
512 batch size, and early stopping method based on AUROC of validation set. We evaluate the model
on 5 times and report mean and 95% confidence interval. Note that input of LSTM model is the
results for 35 medical examinations at a specific timestamp. Hence, we apply SN separately for each
timestamp. As the aforementioned state of Section 4.2, SN could not make significant performance
gain in PhysioNet Challenge 2012 dataset (Silva et al., 2012) though Sparsity Normalization eases
the VSP (See Table 6). Nevertheless, SN is still valuable for its ability to prevent biased predictions
in this mission-critical area.

19

Published as a conference paper at ICLR 2020

D SINGLE-CELL RNA SEQUENCE DATASETS

In the AutoImpute experiments, we run the experiments using the author’s public code11.Talwar et al.
(2018) reported experimental results on eight datasets (Blakeley, Jurkat, Kolodziejczyk, Preimplan-
tation, Quake, Usoskin, Zeisel, and PBMC). Since we can obtain preprocessed datasets only for
seven datasets except PBMC, we run experiments on seven single cell RNA sequence datasets12. All
experimental settings without SN are exactly followed by the author’s code and the hyper-parameter
settings published in Table 2 of their paper. For the model integrated with SN, all the experimental
settings are followed by the original model except that the smaller threshold for early stopping is
taken because the models with SN tends to be underfitted by using the threshold as suggested by the
authors13. In addition, Talwar et al. (2018) conducted experiments only on cases with test set ratios of
{0.1, 0.2, 0.3, 0.4, 0.5}, but we explored more test set ratios {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
to show that the SN works well under more sparsity (extremely high test set ratio). Like the authors’
settings, we perform 10 experiments and report mean and 95% confidence intervals. We change the
test set split on every trials. It is remarkable that although hyper-parameters are not favorable for SN,
SN performs similarly or better on all seven datasets that we concerned (See Figure 3 and 7).

0.2 0.4 0.6 0.8
Test Set Size (Ratio)

5

0

5

10

15

RM
SE

preimplantation

w/o SN w/ SN

Figure 7: Debiasing variable sparsity using SN according to test set ratio on imputation task of
Preimplantation dataset. Test RMSE with 95% confidence interval of 10-runs is provided.

E DROPOUT ON UCI DATASETS

Most experimental settings are adopted from Klambauer et al. (2017); Littwin & Wolf (2018)’s UCI
experiments. We use ReLU (Glorot et al., 2011) networks of 4 hidden layers with 256 units. We use
Mean Square Error (MSE) for loss function and Adam optimizer without weight decay, ε = 10−8 and
learning rate 10−4. The batch size used for training is 128. We split 10% from the dataset for test and
use 20% of training set as the validation set. For all inputs, we applied min-max normalization, which
makes min and max values of each features be 0 and 1. Note that, we use dense datasets without
any missing attributes to focus on the effects of dropout. All the datasets are used as provided in the
package in sklearn.datasets.

11https://github.com/divyanshu-talwar/AutoImpute
12https://drive.google.com/drive/folders/1q2ho_cNfsQJNbdCt9j0nwlZv-Roj_

yK1
13We slightly tune the hyper-parameter λ of weight decay only for the Preimplantation dataset with SN

(λ = 20).

20

https://github.com/divyanshu-talwar/AutoImpute
https://drive.google.com/drive/folders/1q2ho_cNfsQJNbdCt9j0nwlZv-Roj_yK1
https://drive.google.com/drive/folders/1q2ho_cNfsQJNbdCt9j0nwlZv-Roj_yK1

Published as a conference paper at ICLR 2020

F DENSITY ESTIMATION

To reproduce binarized MNIST experiments of MADE (Germain et al., 2015), we adopt and slightly
modify a public implementation of MADE14. Figure 5 shows our reproduction results of Figure 2
in the original paper. We follow most settings of the MADE. We use a single hidden layer MADE
networks with 500 units, learning rate 0.005, and test on authors’ binarized MNIST dataset15. The
only difference from the original authors’ implementation is that we used Adam (ε = 10−8, and no
weight decay), rather using Adagrad. Because it is observed that the model is undefitted with Adagrad
while the learning rates of each element of weight matrix is dropped so rapidly.

Since there is no missingness in the Binarized MNIST dataset, it cannot be divided by ‖M‖1 as
suggested by Algorithm 1. In this experiment, we regard ‖M‖1 as ‖h0‖0 so as not to lose the
generality. That is, all pixels that are 0 in the binarized MNIST dataset are regarded as missing. We
label results of this with w/SN and plot them in Figure 5. As the aforementioned state in Section 4.5,
MADE can also cause variable sparsity by mask matrices of each weight. In MADE, the connection
between specific units is forcibly controlled through a mechanism of element-wise product of a
specific mask matrix M i in weight W i ∈ Rni×ni−1 . These mask matrices also cause variation in
sparsity. We plot the results of using the new mask matrix M i

SN in place of the mask matrix M i used
by MADE with w/SN(all) in Figure 5. The method of calculating the new mask matrix M i

SN using
the existing mask matrix M i is as follows:

M i
SN ← (1TM i1/ni) ·M i � (M i11T)

where � denotes element-wise division and 1 is a column vector where all elements are 1.
(1TM i1/ni) corresponds to K and (M i11T) does to ‖m‖1 in Algorithm 1.

We demonstrate the effectiveness of SN even in situations where the learning rate is smaller. Smaller
learning rate (0.001) shows the effect of SN more clearly despite of their longer training time as show
in Figure 8.

1 2 3 4 5 6 7 8
mask

78

80

82

84

86

88

90

NL
L

w/o SN
w/ SN

Figure 8: Negative log-likelihood of MADE on binarized MNIST with and without SN in the case of
small learning rate (0.001).

G MACHINE DESCRIPTION

We perform all the experiments on a Titan X with 12GB of VRAM. 12 GB of VRAM is not always
necessary, and most experiments require smaller VRAM.

14https://github.com/karpathy/pytorch-made
15https://github.com/mgermain/MADE/releases/download/ICML2015/binarized_

mnist.npz

21

https://github.com/karpathy/pytorch-made
https://github.com/mgermain/MADE/releases/download/ICML2015/binarized_mnist.npz
https://github.com/mgermain/MADE/releases/download/ICML2015/binarized_mnist.npz

Published as a conference paper at ICLR 2020

H COMPARISON TO OTHER MISSING HANDLING TECHNIQUES

In this section, we compare Sparsity Normalization with other missing handling techniques. Although
the main contribution of our paper is to provide a deeper understanding and the corresponding
solution about the issue that the zero imputation, the simplest and most intuitive way of handling
missing data, degrades the performance in training neural networks. Nonetheless, we show that
Sparsity Normalization is effective for high dimensional datasets (with a large number of features and
high missing rates) via a collaborative filtering dataset, while showing that Sparsity Normalization
has competitive results with other modern missing handling techniques for datasets with non-high
dimensional setting (electronic medical records datasets, UCI datasets w/ and w/o MCAR assumption).
For fair comparisons, we consider the tasks in Section 4, as well as the tasks used by modern missing
handling techniques such as GAIN (Yoon et al., 2018) and Śmieja et al. (2018).

As baselines, we consider modern missing handling techniques such as GAIN, Śmieja et al. (2018)
and their baselines as well.

• Zero Imputation w/o Sparsity Normalization: Missing values are replaced with zero.

• Zero Imputation w/ Sparsity Normalization (ours.): Based on zero imputation, apply Sparsity
Normalization (SN).

• Zero Imputation with Batch Normalization (Ioffe & Szegedy, 2015): Based on zero imputation,
apply Batch Normalization (BN) only on the first layer.

• Zero Imputation with Layer Normalization (Lei Ba et al., 2016): Based on zero imputation, apply
Layer Normalization (LN) only on the first layer.

• Dropout16: Missing values are replaced with zero and other values are divided by(
E(h0,m)∈D[‖m‖1]/n0

)
like standard dropout (Srivastava et al., 2014). Dropout uses a sin-

gle missing (drop) probability uniformly across all instances of the dataset while SN normalizes
each data instance with its own missing rate.

• Mean Imputation: Missing values are replaced with the mean of those features.

• Median Imputation: Missing values are replaced with the median of those features.

• k-Nearest Neighbors (k-NN): Missing values are replaced with the mean of those features from
k nearest neighbor samples. We use k = 5 following Śmieja et al. (2018)’s experimental setting.

• Multivariate Imputation by Chained Equations (MICE): Proposed by Buuren & Groothuis-
Oudshoorn (2010).

• SoftImpute (Mazumder et al., 2010)17

• Gaussian Mixture Model Compensator (GMMC): Proposed by Śmieja et al. (2018). In the case
of GMMC, any activation functions except ReLU and RBF (Radial Basis Function) is prohibitive
on the first hidden layer. Thus, the activation function of the first hidden layer is replaced by
ReLU in all base architectures without ReLU.

• GAIN (Yoon et al., 2018)

We implement Mean Imputation, Median Imputation, MICE, k-NN and SoftImpute by python package
fancyimpute. We use authors’ official codes for GMMC18 and GAIN19. Layer Normalization and
Batch Normalization are not commonly considered in studies of handling missing data. However, we
additionally take these as baselines because they have similarities to Sparsity Normalization in terms
of stabilizing the statistics of a hidden layer20 (See Appendix H.1.2 for deeper analysis).

16The GMMC (Śmieja et al., 2018) used this method as their baseline.
17In Yoon et al. (2018), this method was named Matrix.
18https://github.com/lstruski/Processing-of-missing-data-by-neural-networks
19https://github.com/jsyoon0823/GAIN
20We only consider LN and BN in the case of applying the first hidden layer. Because we find that the

prediction performance is more worse when LN or BN applied to all the hidden layers, and it is difficult to fairly
compare with the Sparsity Normalization.

22

https://github.com/lstruski/Processing-of-missing-data-by-neural-networks
https://github.com/jsyoon0823/GAIN

Published as a conference paper at ICLR 2020

H.1 COLLABORATIVE FILTERING (RECOMMENDATION) DATASET

In this section, we compare the SN with other missing handling techniques using the collaborative
filtering dataset. Appendix H.1.1 compares the prediction performance of the baseline methods and
the SN, while Appendix H.1.2 deeply analyzes the characteristics of the SN in comparison with Layer
Normalization (Lei Ba et al., 2016) and Batch Normalization (Ioffe & Szegedy, 2015).

H.1.1 COMPARISON OF PREDICTION PERFORMANCE

It is considered training an AutoRec (Sedhain et al., 2015) model on the Movielens 100K dataset. Most
experimental settings are adopted from Section 4.121. We evaluate each missing handling techniques
on both data encoding (user- or item-rating vector) as shown in Table 7. In both encoding, Sparsity
Normalization performs better or similar to other missing handling techniques. While some missing
handling techniques perform poorly rather than zero imputation depending on the encoding, Sparsity
Normalization improves performance consistently for both data encodings. It is worth mentioning
that Sparsity Normalization performs statistically significantly better than all other baselines with
item vector encoding, which is considered a better encoding scheme in most collaborative filtering
models (Salakhutdinov et al., 2007; Sedhain et al., 2015; Zheng et al., 2016).

Table 7: Comparison between Sparsity Normalization and other missing handling techniques using
AutoRec on Movielens 100K dataset. Test RMSE with 95% confidence interval of 5-runs is provided.

Models User vector Item vector

Zero Imputation w/o Sparsity Normalization 0.9346 ± 0.0007 0.8835 ± 0.0003
Zero Imputation w/ Sparsity Normalization (ours.) 0.9280 ± 0.0023 0.8809 ± 0.0011

Zero Imputation w/ Batch Normalization 0.9929 ± 0.0088 0.9205 ± 0.0081
Zero Imputation w/ Layer Normalization 0.9996 ± 0.0131 0.9396 ± 0.0141

Dropout 0.9252 ± 0.0019 0.9268 ± 0.0261
Mean Imputation 0.9310 ± 0.0017 0.9206 ± 0.0012

Median Imputation 0.9333 ± 0.0014 0.9196 ± 0.0017
k-NN 0.9346 ± 0.0007 0.9133 ± 0.0011

MICE (Buuren & Groothuis-Oudshoorn, 2010) 0.9318 ± 0.0015 0.9209 ± 0.0022
SoftImpute (Mazumder et al., 2010) 0.9262 ± 0.0003 0.8867 ± 0.0007

GMMC (Śmieja et al., 2018) 0.9331 ± 0.0067 0.9109 ± 0.0166
GAIN (Yoon et al., 2018) 1.0470 ± 0.0098 1.0354 ± 0.0101

H.1.2 IS BATCH NORMALIZATION OR LAYER NORMALIZATION ABLE TO SOLVE VSP?

Someone might wonder if Batch Normalization (Ioffe & Szegedy, 2015) or Layer Normaliza-
tion (Lei Ba et al., 2016) have a similar effect to Sparsity Normalization by alleviating VSP. However,
BN or LN can not solve VSP even though these three methods have something in common in terms
of stabilizing the statistics of the hidden layer. To validate this, we compare SN with LN and BN by
controlling the strength of weight decay regularization. We use the AutoRec model with Movielens
100K for these experiments as in Appendix H.1.1.

Figure 9 shows that VSP occurs in all cases except SN with weak regularization (left column). The
model’s prediction highly correlates the number of known entries in all methods except SN. On the
other hand, strong regularization might seem to solve the VSP while the model shows relatively
constant inference regardless of the number of known entries. However, the strong regularization is
not an acceptable solution because it gives the less freedom of the model’s inference making constant
prediction (right column). It must not be natural that the predicted values of the model are almost
constant regardless of input sample (we do not want a model that recommends the same movie no

21Only when applying Batch Normalization and Layer Normalization, we set the number of early stop iteration
as 10, 000 (10 times of the other models) in order to prevent underfitting.

23

Published as a conference paper at ICLR 2020

0 10 20 30

2.75

3.00

3.25

3.50

3.75
m

od
el

 p
re

di
ct

io
n

of
ze

ro
 im

pu
ta

tio
n

=50

0 10 20 30

=500

0 10 20 30

=5000

0 10 20 30

2.0

2.5

3.0

m
od

el
 p

re
di

ct
io

n
of

ze
ro

 im
pu

ta
tio

n
w/

 S
N

0 10 20 30 0 10 20 30

0 10 20 30

0.5

1.0

1.5

2.0

m
od

el
 p

re
di

ct
io

n
of

ze
ro

 im
pu

ta
tio

n
w/

 L
N

0 10 20 30 0 10 20 30

0 10 20 30

0.0

0.5

1.0

1.5

m
od

el
 p

re
di

ct
io

n
of

ze
ro

 im
pu

ta
tio

n
w/

 B
N

0 10 20 30
known entries

0 10 20 30

Figure 9: Predicted values of AutoRec (Sedhain et al., 2015) (user vector encoding) on Movielens
100K (collaborative filtering) dataset with zero imputation (w/ or w/o a normalization) according to
the number of known entries for a randomly selected test point. Input masks are randomly sampled
(to artificially control its sparsity level). For each target sparsity level through x-axis, 100 samples are
drawn, scattering the predicted values and plotting the average in solid line. Predicted values of the
model is also plotted according to the strength of the weight decay controlling λ of the hyper-parameter
for weight decay. First row: The vanilla zero imputation. Second row (ours.): Zero imputation with
Sparsity Normalization. Third row: Zero imputation with Layer Normalization (Lei Ba et al., 2016).
Fourth row: Zero imputation with Batch Normalization (Ioffe & Szegedy, 2015). First column:
Weak regularization (λ = 50). Second column: Moderate regularization (λ = 500). Third column:
Strong regularization (λ = 5000).

matter which movies a user like/dislike!). This trend can also be seen in the process of tuning the
hyper-parameter λ for each model through that the optimal λ value of each model except LN and BN
is determined at around 500, whereas that of BN and LN is determined above 500000 (inordinate
regularization). In other words, unlike SN, the VSP is not solved with LN or BN. Rather, strong
regularization is able to solve the VSP, but this is not a direct solution to VSP forcing the model to
choice constant predicted values irrespectively of the input. It is instructive note that the trend of
Figure 9 is extremely consistent with the test points as Figure 1.

24

Published as a conference paper at ICLR 2020

H.2 ELECTRONIC MEDICAL RECORDS (EMR) DATASETS

We also compare Sparsity Normalization and baselines for the five disease identification tasks in the
NHIS dataset used in Section 4.2. The results are described in Table 3. Sparsity Normalization shows
better or similar performance compared to other baseline methods as well.

H.3 UCI DATASETS

We further compare Sparsity Normalization with other missing handling techniques on UCI datasets
which have relatively low missing rates and small feature dimension (non-high dimensional datasets).
We consider the UCI datasets used in GAIN (Yoon et al., 2018) and GMMC (Śmieja et al., 2018). The
datasets used in the both papers can be divided into two categories: missing features are intentionally
injected (w/ MCAR assumption) or missing features exist inherently (w/o MCAR assumption).

We adopt the settings of Klambauer et al. (2017); Littwin & Wolf (2018)’s UCI exeperiments to
use the same Multi Layer Perceptron (MLP) architecture as in Section 4.4: ReLU (Glorot et al.,
2011) networks of 4 hidden layers with 256 units. The main purpose of imputation should be to
improve prediction performance rather than imputation performance. In this reason, we just focus on
the prediction performance of each missing handling techniques for UCI datasets. Because all UCI
datasets used in this section are for imbalanced binary classification tasks, prediction performance is
reported with AUROC rather than accuracy, and the class weight is considered in loss function. On
top of that, we use Adam Optimizer in all experiments for fair comparison with baselines.

Though we adopt datasets used in GAIN (Yoon et al., 2018) and GMMC (Śmieja et al., 2018), we
report quite different performance from that of the papers. Several possible reasons are as follows.
First, GAIN and GMMC did not publish the train/test dataset split, thus we use our own split which
is made under the similar settings of both papers. Second, MLP is used rather than logistic regression
or Radial Basis Function Network (RBFN) which are used in GAIN and GMMC respectively. It
is because we think that MLP is more reasonable and widely acceptable architecture nowadays22

than the others. Furthermore, we use AUROC and class weights, unlike the GAIN and GMMC. The
final possible reason is that we use Adam Optimizer for all models because SGD with learning rate
decay is difficult for fair comparison when hyper-parameters are set in favor to a particular model. In
these ways, we do our best to compare Sparsity Normalization and other missing handling techniques
including GMMC and GAIN in the most fair and reasonable setting.

Table 8: Summary of UCI datasets with and without MCAR assumption.

Dataset
w/ MCAR assumption w/o MCAR assumption

Breast Spam Credit Crashes Heart Bands Hepartitis Horse Mammographics Pima

Instances 569 4601 30000 540 270 539 155 368 961 768
Attributes 30 57 23 20 13 19 19 22 5 8

Missing Rate (%) 20.0 20.0 20.0 50.0 50.0 5.38 5.67 23.8 3.37 12.2

22Although there are MLP experiments on GMMC, they cover only one dataset and used too small capacity,
also it was hard to get results similar to what the author reported in spite of running the author’s public code.

25

Published as a conference paper at ICLR 2020

H.3.1 UCI DATASETS WITH MCAR ASSUMPTION

We deliberately inject missing values into the datasets which don’t have any missing attributes inter-
nally (w/ MCAR assumption) to perform binary classification tasks. We consider Breast, Spam, and
Credit datasets from GAIN (Yoon et al., 2018) and Crashes and Heart datasets from GMMC (Śmieja
et al., 2018). We make 20% of all features be missing for the Breast, Spam, and Credit datasets
following GAIN, and 50% for the Crashes and Heart datasets following GMMC. The summary of the
datasets are described in Table 8. For Breast, Spam, and Credit datasets taken by GAIN, we perform
min-max normalization which makes min and max values of each features be 0 and 1 following GAIN
paper, and for Crashes and Heart datasets taken by GMMC, we perform another kind of min-max
normalization which makes min and max values of each features be -1 and 1 following GMMC paper.

Table 9: Comparison between Sparsity Normalization and other missing handling techniques on five
imbalanced binary classification tasks in UCI datasets with MCAR assumption. Test AUROC with
95% confidence interval of 5-runs is provided.

Models Breast Spam Credit Crashes Heart

Zero Imputation w/o SN 0.9958 ± 0.0067 0.9699 ± 0.0040 0.7344 ± 0.0135 0.9070 ± 0.1050 0.8967 ± 0.0268
Zero Imputation w/ SN (ours.) 0.9992 ± 0.0023 0.9700 ± 0.0032 0.7292 ± 0.0098 0.8905 ± 0.0934 0.9055 ± 0.0327

Zero Imputation w/ BN 1.0000 ± 0.0000 0.9666 ± 0.0051 0.7178 ± 0.0143 0.9070 ± 0.0645 0.8857 ± 0.0268
Zero Imputation w/ LN 0.9979 ± 0.0059 0.9704 ± 0.0031 0.7353 ± 0.0051 0.9095 ± 0.0972 0.8863 ± 0.0177

Dropout 0.9897 ± 0.0209 0.9697 ± 0.0031 0.7313 ± 0.0066 0.9220 ± 0.0553 0.8857 ± 0.0335
Mean Imputation 0.9966 ± 0.0089 0.9690 ± 0.0028 0.7349 ± 0.0066 0.8990 ± 0.1081 0.9011 ± 0.0522

Median Imputation 0.9987 ± 0.0045 0.9695 ± 0.0024 0.7353 ± 0.0044 0.9080 ± 0.0892 0.9253 ± 0.0407
k-NN 1.0000 ± 0.0000 0.9613 ± 0.0035 0.5270 ± 0.0171 0.8940 ± 0.0356 0.8703 ± 0.0435
MICE 1.0000 ± 0.0000 0.9680 ± 0.0041 0.5315 ± 0.0187 0.9760 ± 0.0424 0.9066 ± 0.0410

SoftImpute 1.0000 ± 0.0000 0.9725 ± 0.0021 0.5375 ± 0.0184 0.9390 ± 0.0754 0.8846 ± 0.0437
GMMC 0.9987 ± 0.0026 0.9679 ± 0.0029 0.7355 ± 0.0053 0.9400 ± 0.0422 0.9264 ± 0.0223
GAIN 1.0000 ± 0.0000 0.9688 ± 0.0029 0.7356 ± 0.0045 0.9650 ± 0.0360 0.8879 ± 0.0196

The experimental results are summarized in Table 9. It is difficult to find a significant difference
in prediction performance among each missing handling techniques for datasets with small feature
dimensions. The results of these experiments are also consistent with experiments of GAIN (Yoon
et al., 2018). Though the GAIN showed significantly better imputation performance compared to their
baseline methods, prediction performances were not statistically significant (See Table 3 of the GAIN
paper, and note that they didn’t report 95% confidence interval but standard deviation). From these
overall results, we conclude that SN is quite comparable for the datasets of low dimension/missing
rate with MCAR assumption.

26

Published as a conference paper at ICLR 2020

H.3.2 UCI DATASETS WITHOUT MCAR ASSUMPTION

We compare SN and each missing handling techniques on the datasets that have internal missingness
(w/o MCAR assumption). We consider Bands, Hepartitis, Horse, Mammographics, and Pima datasets
experimented in the GMMC (Śmieja et al., 2018) paper (See Table 8 for statistics of the datasets).
Following the GMMC paper, the min-max normalization is performed, which makes min and max
values of each features be -1 and 1. As shown in Table 10, it is concluded that even without MCAR
assumption, SN shows comparable results for the datasets of low dimension/missing rate.

Table 10: Comparison between Sparsity Normalization and other missing handling techniques on
five imbalanced binary classification tasks in UCI datasets without MCAR assumption. Test AUROC
with 95% confidence interval of 5-runs is provided.

Models Bands Hepartitis Horse Mammographics Pima

Zero Imputation w/o SN 0.7851 ± 0.0962 0.8222 ± 0.0826 0.9090 ± 0.0331 0.8835 ± 0.0083 0.8466 ± 0.0180
Zero Imputation w/ SN (ours.) 0.7939 ± 0.1011 0.8556 ± 0.1300 0.9238 ± 0.0311 0.8787 ± 0.0063 0.8355 ± 0.0233

Zero Imputation w/ BN 0.7512 ± 0.0716 0.7889 ± 0.1061 0.8827 ± 0.0362 0.8933 ± 0.0055 0.8614 ± 0.0106
Zero Imputation w/ LN 0.8000 ± 0.0789 0.8222 ± 0.0911 0.9115 ± 0.0404 0.8854 ± 0.0097 0.7972 ± 0.0074

Dropout 0.7956 ± 0.1012 0.8194 ± 0.1089 0.9034 ± 0.0507 0.8816 ± 0.0059 0.8408 ± 0.0292
Mean Imputation 0.7765 ± 0.0504 0.8556 ± 0.0895 0.9009 ± 0.0271 0.8834 ± 0.0113 0.8382 ± 0.0142

Median Imputation 0.7997 ± 0.0682 0.8889 ± 0.0544 0.9133 ± 0.0379 0.8783 ± 0.0070 0.8334 ± 0.0099
k-NN 0.7571 ± 0.0430 0.8833 ± 0.1047 0.9300 ± 0.0363 0.8840 ± 0.0141 0.6237 ± 0.0399
MICE 0.7618 ± 0.0297 0.8333 ± 0.0667 0.9195 ± 0.0431 0.8814 ± 0.0087 0.6477 ± 0.0655

SoftImpute 0.7644 ± 0.0475 0.8139 ± 0.1047 0.9232 ± 0.0124 0.8848 ± 0.0089 0.5912 ± 0.0341
GMMC 0.7985 ± 0.0605 0.8500 ± 0.0621 0.9000 ± 0.0124 0.8844 ± 0.0090 0.8391 ± 0.0201
GAIN 0.7993 ± 0.0785 0.8222 ± 0.0826 0.8941 ± 0.0322 0.8859 ± 0.0091 0.8457 ± 0.0178

H.4 CONCLUSION

In conclusion, Sparsity Normalization is significantly superior to other missing handling techniques
for the high dimensional/missing rate datasets. Sparsity Normalization performs well compared
to other modern missing handling techniques even on non-high dimensional datasets. Sparsity
Normalization is valuable in that it performs better than other models and does not require additional
training or parameters. Moreover, Sparsity Normalization is computationally inexpensive compared
to Mean or Median Imputation because sparse tensors can be used to save computational costs to
calculate first hidden layer not with mean or median imputation but with zero imputation (w/ or w/o
SN). The reduced computational cost by using sparse tensors is relatively higher when we deal with
high-dimensional datasets.

27

	Introduction
	Variable Sparsity Problem
	Sparsity Normalization
	Experiments
	Collaborative Filtering (Recommendation) Datasets
	Electronic Medical Records (EMR) Datasets
	Single-cell RNA Sequence Datasets
	Dropout on UCI datasets
	Density Estimation

	Related Works
	Conclusion
	Proofs
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Theorem 3
	Proof of Theorem 4

	Collaborative Filtering (Recommendation) Datasets
	Detailed Experimental Settings of Table 1
	Detailed Experimental Settings of Table 2

	Electronic Medical Records (EMR) Datasets
	NHIS dataset
	PhysioNet Challenge 2012 dataset

	Single-cell RNA Sequence Datasets
	Dropout on UCI datasets
	Density Estimation
	Machine Description
	Comparison to Other Missing Handling Techniques
	Collaborative Filtering (Recommendation) Dataset
	Comparison of Prediction Performance
	Is Batch Normalization or Layer Normalization able to solve VSP?

	Electronic Medical Records (EMR) Datasets
	UCI Datasets
	UCI Datasets with MCAR Assumption
	UCI Datasets without MCAR Assumption

	Conclusion

