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1 INTRODUCTION

Supervised learning has proven extremely effective for many problems where large amounts of labeled
training data are available. There is a common hope that unsupervised learning will prove similarly
powerful in situations where labels are expensive, impractical to collect, or where the prediction
target is unknown during training. Unsupervised learning however has yet to fulfill this promise. One
explanation for this failure is that unsupervised learning algorithms are typically mismatched to the
target task. Ideally, learned representations should linearly expose high level attributes of data (e.g.
object identity) and perform well in semi-supervised settings. Many current unsupervised objectives,
however, optimize for objectives such as log-likelihood of a generative model or reconstruction error
and produce useful representations only as a side effect.

Unsupervised representation learning seems uniquely suitable for meta-learning, or learning how
to learn (Hochreiter et al., 2001; Schmidhuber, 1995). Unlike most tasks where meta-learning is
applied, unsupervised representation learning does not define an explicit objective, which makes it
impossible to phrase the task as a standard optimization problem. It is possible, however, to directly
express a meta-objective that captures the quality of representations produced by an unsupervised
update rule by performing tasks with the representation, e.g. supervised classification. In this work,
we propose to meta-learn an unsupervised update rule by meta-training on a meta-objective that
directly optimizes the utility of the unsupervised representation. Unlike hand-designed unsupervised
learning algorithms, this meta-objective directly targets the usefulness of a representation generated
from unlabeled data for later supervised tasks.

By recasting unsupervised learning as meta-learning, we treat the creation of the unsupervised update
rule as a transfer learning problem. Instead of learning transferable features, such as done in (Vinyals
et al., 2016; Ravi & Larochelle, 2016; Snell et al., 2017), we learn a transferable learning rule
which does not require access to labels and generalizes across domains. Although we focus on the
meta-objective of semi-supervised classification here, in principle a learning rule could be optimized
to generate representations for any subsequent task.

2 METHOD

We consider a multilayer perceptron (MLP) f(·;φt), with parameters φt, as the base model. The
inner loop of our meta-learning process trains this base model via iterative application of our learned
optimizer.

In standard supervised learning, that ‘learned’ optimizer is stochastic gradient descent (SGD). A
supervised loss l (x, y) is associated with this model, where x is a minibatch of inputs, and y are the
corresponding labels. The parameters φt are then updated iteratively until convergence by performing
SGD using the gradient ∂l(x,y)∂φt

. This supervised update rule can be written as:

φt+1 = SupervisedUpdate(φt, xt, yt; θ), (1)

where θ are the fixed parameters of the optimizer (e.g. learning rate), which we will refer to as the
meta-parameters (also commonly called hyper-parameters).

In this work, our learned optimizer is a parametric update process, which does not depend on label
information,

φt+1 = UnsupervisedUpdate(φt, xt; θ). (2)
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In traditional unsupervised learning algorithms, expert knowledge or a simple hyper-parameter search
determines θ, which consists of a handful of meta-parameters such as learning rate, layer sizes, and
regularization constants. In contrast, our update rule has many orders of magnitude more meta-
parameters such as the weights of a neural network. We train these meta-parameters by performing
SGD on meta-objective in order to find optimal parameters θ∗,

θ∗ = argmin
θ

Etask

[∑
t

MetaObjective(φt (θ))

]
, (3)

that minimize the meta-objective over a set of training tasks.

In this work, our base model consists of fully connected multi-layer perceptron. Our meta objective
consists of fitting a linear regression in closed form to one batch of data, and then evaluating on a
separate batch. For the learned UnsupervisedUpdate we use a neuron local NN that proposes changes
of weights. By structuring our network as neuron local, we are able to apply this on networks of
different widths and depths.

Given the size of this extended abstract, we refer a reader to Appendix A for more information on
these pieces.

3 EXPERIMENTS

We rain an instance of this algorithm on 512 multi-core CPU workers over the course of 5 days
with the Adam (Kingma & Ba, 2014) optimizer for 150k steps of meta-training, updates to θ. We
approximate ∂[MetaObjective]

∂θ with truncated back-prop for stability as well as compute efficiency. While
training, we sample network architectures as well as datasets. As our goal for this work is to learn a
transferable algorithm, we shot performance on a variety of generalization tasks.

3.1 GENERALIZATION OVER DATASETS AND DOMAINS

The first quantity we wish to generalize over is data set. In Figure 1, we compare performance on few
shot classification with 10 examples per class, using embeddings generated by our learned model, by
a variational autoencoder with a normal posterior distribution over pixels, as well as by supervised
learning. Our model was meta-trained on a distribution of image datasets consisting of downsampled
Glyph, Imagenet Russakovsky et al. (2015), and CIFAR10 Krizhevsky & Hinton (2009). We evaluate
test performance on higher resolution versions of these datasets, as well as on holdout datasets of
MNIST and Fashion MNIST Xiao et al. (2017). Our learned model achieves performance well above
random initialization (with learned readout layer), better than supervised learning, and on par or
better than a variational autoencoder.

Additionally, we test our learned optimizer on data from a vastly different domain. We train on a
binary text classification dataset: IMDB movie reviews (Maas et al., 2011), encoded by computing
a bag of words with 1k words. We selected a checkpoint earlier in meta-training, as over-fitting to
the image domain occurs later in training. Despite being trained exclusively on image datasets, our
learned optimizer improves upon the random initialization by almost 10%. After more unrolling,
however, the performance decreases again suggesting that our optimizer has “over-fit” to the image
domain. This performance is quite low in an absolute sense. Nevertheless, we find this result very
exciting as we are unaware of any work showing this kind of transfer from images to text.

3.2 GENERALIZATION OVER NETWORK ARCHITECTURES

To test generalization over neural network architecture we train models of varying depths and unit
counts with our learned optimizer and compare results at different points in time. Results can be
found in Figure 2. We find that despite only training on networks with 2 to 5 layers and 64 to 512
units per layer, the learned rule generalizes to 11 layers and 10,000 units per layer.

3.3 HOW IT LEARNS AND HOW IT LEARNS TO LEARN

To analyze how our learned optimizer functions, we analyze the first layer filters over the course of
meta-training. Despite the permutation invariant nature of our data (enforced by shuffling input image
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Figure 1: Left: The learned optimizer generalizes to unseen datasets (left four bar groups). We
additionally show a training dataset, Mini CIFAR10, and a 32x32 sized version (CIFAR10) which has
not been seen during training. Our semi-supervised performance is better than both fully supervised
learning on the same labeled examples, and a base model representation. Our learned model achieves
performance well above random initialization, better than supervised learning, and on par or better
than a variational autoencoder. Error bars show standard error. Right: Our learned optimizer is able
to learn useful features on a 2 way text classification data set, IMDB, despite being trained only from
image datasets. Later in training performance drops due to the domain mismatch. Error bars show
standard error across 10 runs.
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Figure 2: Left:The learned optimizer is capable of optimizing base models with hidden sizes and
depths outside the meta-training regime. As we increase the number of units per layer, the learned
model can make use of this additional capacity despite never having experienced it during meta-
training. Right: From left to right we show first layer base-model φ produced by our learned
optimizer over the course of meta-training. Each pane consists of first layer filters extracted from
φ after 10k applications of the learned update rule on MNIST (top) and CIFAR10 (bottom). For
MNIST, the optimizer learns image template like features. For CIFAR, low frequency features evolve
into high frequencies and local edge detectors.

pixels before each unsupervised training run), the base model learns features such as those shown
in 2, which appear template-like for MNIST, and local-feature-like for CIFAR10. Early in training,
there are course features, and a lot of noise. As the meta-training progresses, more interesting and
local features emerge.
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A METHODS MORE DETAIL

A.1 BASE MODEL: f(·;φ)

Our base model consists of a standard fully connected multi-layer perceptron (MLP), with batch
normalization (Ioffe & Szegedy, 2015), and ReLU nonlinearities. We call the pre-nonlinearity
activations z1..zL, and post-nonlinearity activations x0..xL, where L is the total number of layers,
and x0 ≡ x is the network input (raw data). W l and bl are the weights and biases for layer l.

A.2 LEARNED UPDATE RULE: SUPERVISEDUPDATE(·; θ)

We wish for our update rule to generalize across architectures with different widths, depths, or even
network topologies. To achieve this, we design our update rule to be neuron-local, so that updates are
a function of pre- and post- synaptic neurons in the base model, and are defined for any base model
architecture. This has the added benefit that it makes the weight updates more similar to synaptic
updates in biological neurons, which depend almost exclusively on the pre- and post-synaptic neurons
for each synapse (Whittington & Bogacz, 2017).

To build these updates, each neuron i in every layer l in the base model has an MLP, referred to as an
update network, associated with it, with output hli (·; θ). All update networks share meta-parameters
θ, and hli (·; θ) is evaluated only during unsupervised training as the update networks are part of the
SupervisedUpdate, and not part of the base model. Evaluating the statistics of unit activation over
a batch of data has proven helpful in supervised learning (Ioffe & Szegedy, 2015). It has similarly
proven helpful in hand-designed unsupervised learning rules, such as sparse coding and clustering.
We therefore allow hli (·; θ) to accumulate statistics across examples in each training minibatch.

During an unsupervised training step, the base model is first run in a standard feed-forward fashion,
populating xlib, z

l
ib, where b is the training minibatch index. As in supervised learning, an error signal

δlib is then propagated backwards through the network. Unlike in supervised backprop however,
this error signal is generated by the corresponding update network for each unit, δlib ← hli (·; θ).
Again, as in supervised learning, the weight updates are a product of pre- and post-synaptic signals.
Unlike in supervised learning however, these signals are also generated from the update networks:
∆W l

ij =
∑
b c
l
ibd

l−1
jb , where {clib, dlib} ← hli (·; θ). The inputs to the update network consists of unit

pre- and post-activations, and backwards propagated error signal: hli
(
xli·, z

l
i·,
[(
W l+1

)T
δl+1

]
i·

; θ
)

.

In practice, we also include lateral interaction terms to aid units within the same layer in remaining
decorrelated from each other. These enter as additional contributions to ∆W l

ij , and as additional
inputs to hli (·; θ) not described in this short submission.

A.3 METAOBJECTIVE (φ)

The meta-objective determines the quality of the unsupervised representations. In order to meta-
optimize with SGD, the evaluation of this loss must be differentiable. The meta-objective we use in
this work is based on fitting a linear regression to labeled examples with a small number of data points.
In order to encourage the learning of features, which generalize well, we estimate the linear regression
weights on one minibatch {xa, ya} of K data points, and evaluate the classification performance on a
second minibatch {xb, yb} also with K datapoints,

v̂ = argmin
v

(∥∥ya − vTua∥∥2 + λ ‖v‖2
)

(4)

MetaObjective(·;φ) = CosDist
(
yb, v̂

Tub
)
, (5)

where ua, ub are features extracted from the base model on data xa, xb, respectively. The target
labels ya, yb consist of one hot encoded labels and potentially also regression targets from data
augmentation (e.g. rotation angle). We found that using CosDist rather than unnormalized squared
error dramatically improves stability.
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