
Workshop track - ICLR 2017

NEURAL FUNCTIONAL PROGRAMMING

John K. Feser
Massachusetts Institute of Technology
feser@csail.mit.edu

Marc Brockschmidt, Alexander L. Gaunt, Daniel Tarlow
Microsoft Research
{mabrocks,t-algaun,dtarlow}@microsoft.com

ABSTRACT

We discuss a range of modeling choices that arise when constructing an end-to-end
differentiable programming language suitable for learning programs from input-
output examples. Taking cues from programming languages research, we study
the effect of memory allocation schemes, immutable data, type systems, and built-
in control-flow structures on the success rate of learning algorithms. We build
a range of models leading up to a simple differentiable functional programming
language. Our empirical evaluation shows that this language allows to learn far
more programs than existing baselines.

1 INTRODUCTION

Inductive Program Synthesis (IPS), i.e., the task of learning a program from input/output examples,
is a fundamental problem in computer science. It is at the core of empowering non-experts to use
computers for repeated tasks, and recent advances such as the FlashFill extension of Microsoft
Excel (Gulwani, 2011) have started to deliver on this promise.

A related line of research is the extension of neural network architectures with components that
correspond to hardware primitives (Giles et al., 1989; Graves et al., 2014; Weston et al., 2015; Joulin
& Mikolov, 2015; Grefenstette et al., 2015; Kurach et al., 2016; Kaiser & Sutskever, 2016; Reed
& de Freitas, 2016; Andrychowicz & Kurach, 2016; Zaremba et al., 2016; Graves et al., 2016), en-
abling them to learn program-like behavior. However, these models are usually tightly coupled to
the idea of a differentiable interpretation of computer hardware, as names such as Neural Turing
Machine (Graves et al., 2014), Neural Random-Access Machine (Kurach et al., 2016), and Neural
GPU (Kaiser & Sutskever, 2016) indicate. We observe that while such architectures form the basis
modern computing, they are usually not the models that are used to program computers. Instead,
decades of programming languages research have lead to ever higher programming languages that
aim to make programming simpler and less error-prone. Indeed, as recent comparisons show (Gaunt
et al., 2016b), program synthesis methods from the programming languages community that actively
exploit such constructs, e.g. by leveraging known semantics of loops, are currently achieving consid-
erably better results than comparable neural architectures. Still, neural IPS techniques are clearly at
an advantage when extending the problem setting from simple integer input/output examples to more
complex cases, such as IPS problems with perceptual data (Gaunt et al., 2016a), imprecise examples,
or leveraging additional cues such as a natural language description of the desired program.

Hence, we propose to adapt features of modern high-level programming languages to the differen-
tiable setting. In this paper, we develop an end-to-end differentiable programming language operating
on integers and lists, taking cues from functional programming. In our empirical evaluation, we show
the effects on learning performance of our four modeling recommendations, namely automatic mem-
ory management, the use of combinators and if-then-else constructs to structure program control
flow, immutability of data, and an application of a simple type system. Our experiments show that
each of these features crucially improves program learning over existing baselines.

2 BACKGROUND

The basic building block of functional programs is the function, and programs are built by composing
functions together. In the following, we highlight some common features in functional programs
before discussing how to integrate them into an end-to-end differentiable model in Sect. 3.

1

Workshop track - ICLR 2017

Memory Management Most modern programming languages eschew manual memory manage-
ment and pointer manipulation where possible. Instead, creation of heap objects automatically gener-
ates an appropriate pointer to fresh memory. Similarly, built-in constructs allow access to fields of
objects, instead of requiring pointer arithmetic. Both of these choices move program complexity into
the fixed implementation of a programming language, making it easier to write correct programs.

Immutable Data Functions are expected to behave like their mathematical counterparts, avoiding
mutable data and side effects. This helps programmers reason about their code, as it eliminates the
possibility that a variable might be left uninitialized or accessed in an inconsistent state. Moreover,
no data is ever “lost” by being overwritten or mutated.

Types Expressive type systems are used to protect programmers from writing programs that will
fail. Practically, a type checker is able to rule out many syntactically correct programs that are certain
to fail at runtime, and thus restricts the space of valid programs. Access to types helps programmers
to reason about the behavior of their code. In particular, the type system tells the programmer what
kinds of data they can expect each variable to contain.

Structured Control Flow A key difference between hardware-level assembly languages and
higher-level programming languages is that higher-level languages structure control flow using loops,
conditional statements, and procedures, as raw gotos are famously considered harmful (Dijkstra,
1968). Functional languages go a step further and leverage higher-order functions to abstract over
common control flow patterns such as iteration over a recursive data structure. In an imperative
language, such specialized control flow is often repeated and mixed with other code.

3 OUR MODELS

In the following, we will discuss a range of models, starting with a simple assembly-like language
and progressing to a differentiable version of a simple functional programming language. We make
four modeling recommendations whose effect we demonstrate in our experiments in Sect. 4.

We first discuss the general format of our programs and program states, which we will refine step
by step. Our programs operate on states consisting of an instruction pointer indicating the next
instruction to execute, a number of registers holding inputs and intermediate results of executed
instructions, and a heap containing memory allocated by the program. We focus on list-manipulating
programs, so we create a heap consisting of standard cons cells, which are data and pointer value
pairs where the pointer points to another cons cell or the special nil value. To represent a linked
list, each cell points to the next cell in the list, except for the last cell, which points to nil.

3.1 PROGRAM AND DATA REPRESENTATION

We define our models by lifting simple instructions to the differentiable setting. To do so, we bound
the domain of all values and parameters, following earlier work (e.g. (Graves et al., 2014; Kurach
et al., 2016; Gaunt et al., 2016b)). We represent a value v from a domain {d1 . . . dD} as a tuple RD,
interpreted as a discrete probability distribution. We pick a maximal integer value M that bounds all
values occurring in our programs, a number of instructions I , and a number of registers R. In this
setting, the size of the heap memory H has to be equal to the maximal integer value M , but we will
relax this later. We limit the length of programs to some value P , and can then encode programs as
a sequence of tuples (o(p), i (p), a

(p)
1 , a

(p)
2), where i (p) ∈ [1, I] identifies the p-th instruction and

o(p), a
(p)
1 , a

(p)
2 ∈ [1,R] its output and argument registers respectively. To “execute” such a program,

we unroll it for T timesteps and keep a program state s(t) = (p(t), r
(t)
1 . . . r

(t)
R , h

(t)
1 . . . h

(t)
H) for

each timestep t , where p(t) ∈ [1,P] is an instruction pointer indicating which instruction to execute
next, r (t)∗ are the values of registers, and h

(t)
∗ are the values of the cons cells in the heap.

All of our models share a basic instruction set, namely the cons cell constructor cons, the heap
accessors (car & cdr) which return the data (resp. pointer) element of a cons cell, integer addition,
increment and decrement (add, inc, dec), integer equality and greater-than comparison (eq & gt),
Boolean conjunction and disjunction (and & or), common constants (zero & one), and finally a

2

Workshop track - ICLR 2017

noop instruction. These all have the usual semantics as transformers on the program state, and we
will discuss the behavior of cons in detail later. For example, executing (o, add, a1, a2) on
a state at timestep t yields the following registers at the next timestep, where the addition operation
is lifted to operate on distributions over natural numbers.

r (t+1)
u =

{
r
(t)
a1 + r

(t)
a2 mod M if u = o

r
(t)
u otherwise.

∀u ∈ [1,R]

As we allow all involved quantities to be distributions over all possible choices, computing the next
state requires a case analysis for all allowed values. The new state is then obtained by averaging the
results of all possible execution steps, weighted by the probabilities assigned to each choice. Thus, if
η(s(t), (o, i , a1, a2)) computes the state obtained by executing the instruction (o, i , a1, a2), we can
compute the next state s(t+1) as follows, where Jx = nK denotes the probability that a variable x
encoding a discrete probability distribution assigns to the value n.

s(t+1) =
∑

p∈[1,P],i∈[1,I],
o,a1,a2∈[1,R]

Jp(t) =pK · Jo(p)=oK · Ji (p)= iK · Ja(p)
1 =a1K · Ja(p)

2 =a2K · η(s(t), (o, i , a1, a2)) (1)

In practice, we developed our models in TerpreT (Gaunt et al., 2016b), which hides these technicali-
ties.

Training Objective Our aim is to learn the program parameters (o(p), i (p), a
(p)
1 , a

(p)
2) such that

program “evaluation” according to (1) starting on a state s(0) initialized to an example input yields the
target output in s(T). For scalar outputs such as a sum of values, our objective is simply to minimize
the cross-entropy between the distribution in the output register r(T)

R and a point distribution with all
probability mass on the correct output value.

Handling list outputs is more complex, as many valid outputs exist (depending on how list elements
are placed in the heap memory). Intuitively, we traverse the heap from the returned heap address
until reaching the end of a linked list, recording the list elements as we go. To formalize this intuition,
let dh

(T)
k (resp. ph

(T)
k) denote the data (resp. pointer) information in the heap cell at address k at

the final state of the evaluation. We then compute the traversal sequences of list element values
v1, . . . , vH and addresses a1, . . . , aH as follows.

ai =

{
r
(T)
R if i = 1∑
a∈[1,H]Jai−1 = aK · ph(T)

a otherwise
vi =

∑
a∈[1,H]

Jai = aK · dh(T)
a

The probability that the computed output list is equal to an expected output list [v̄1, . . . , v̄k] is then
Jak+1 = 0K ·

∑k
i=1Jvi = v̄iK.

Memory Management As the programs we want to learn need to construct new lists, we need a
memory allocation mechanism that provides fresh cells. We explored two options for this allocator.

First, we attempt to follow stack-allocation models in which a stack of memory cells is used with
a stack pointer sp which always points to the next free memory cell. We fix a maximum stack size
H . Whenever a memory cell is allocated (i.e., a cons instruction is executed), the stack pointer is
incremented, guaranteeing that no cell is ever overwritten. However, uncertainty about whether an
instruction is cons translates into uncertainty about the precise value of the stack pointer, as each
call to cons changes sp. This uncertainty causes cells holding results from different instructions
in the stack to blur together, despite the fact that cells are immutable once created. As an example,
consider the execution of two instructions, where the first is cons 1 0 with probability 0.5 and
noop otherwise, and the second is cons 2 0 with probability 0.5 and noop otherwise. After
executing starting with sp = 1 and an empty stack, the value of sp will be blurred across three values
1, 2 and 3 with probabilities 0.25, 0.5 and 0.25. Similarly, the value of the first heap cell will be 0
(the default) with probability 0.25, 1 with probability 0.5 and 2 with probability 0.25. This blurring
effect becomes stronger with longer programs, and we found that it substantially impacted learning.

Both of these problems can be solved by transitioning to a fully immutable representation of the
heap. In this variant, we allocate and initialize one heap cell per timestep, i.e., we set H = T . If the

3

Workshop track - ICLR 2017

current instruction is a cons, the appropriate values are filled in, otherwise both data and pointer
value are set to a default value (in our case, 0). This eliminates the issue of blurring between outputs
of different instructions. The values of a cons cell may still be uncertain as they inherit uncertainty
about the executed instructions and the values of arguments, but depend only on the operations at one
timestep. While this modification requires a larger domain to store pointers, we found not copying
the stack significantly reduces memory usage during training of our models.

Recommendation (F): Use fixed heap memory allocation deterministically controlled by the model.

3.2 PROGRAM MODELS

1:
out

←
instr arg1 arg2 branch

2:
out

←
instr arg1 arg2 branch

. . .

Our baseline program model corresponds closely to an assem-
bly language as used in earlier work (Bunel et al., 2016), re-
sulting in a program model as shown on the right, where boxes
correspond to learnable parameters. We extend our instruction
set with jump-if-zero (jz), jump-if-not-zero (jnz) and return instructions. Our assembly pro-
gram representation also includes a “branch” parameter b specifying the new value of the instruction
pointer for a successful conditional branch. To learn programs in this language, the model must
learn how to create the control flow that it needs using these simple conditional jumps. Note that the
instruction pointer suffers from the same problems as the stack pointer above, i.e., uncertainty about
its value blurs together the effects of many possible program executions.

pre1:
out

←
instr arg1 arg2 cond

pre2: . . .

foreach ele in
reg

loop1:
out

←
instr arg1 arg2 cond

loop2: . . .

suf 1:
out

←
instr arg1 arg2 cond

suf 2: . . .

Structured Control Flow We see structured con-
trol flow as a way to reduce the “bleeding” of uncer-
tainty about the value of the instruction pointer into
the values of registers and cells on the heap. To in-
troduce structured control flow, we replace raw jumps
with an if-then-else instruction and an explicit
foreach loop that is suited for processing lists. We
restrict our model to a prefix of instructions, a loop
which iterates over a list, and a suffix of instructions.
The parameters for instructions in the loop can access
an additional register that contains the value of the current list element. To implement this behavior in
practice, we unroll the loop for a fixed number of iterations derived from the bound on the size of the
input, which ensures that every input list can be processed. After unrolling, the instruction executed at
each timestep becomes deterministic, removing uncertainty about the value of the instruction pointer.

For the if-then-else instruction, we extend the instruction representation with a “condition”
parameter c ∈ [1,R] and let the evaluation of if-then-else yield its first argument when the
register c is non-zero and the second argument otherwise. An overview of the structure of such
programs is displayed above.
foldli:

acc ←
reg

idx ← 0

foreach ele in
reg

out
←

instr arg1 arg2 cond

. . .

acc ←
reg

idx ← idx + 1
out

← acc

We note that while fixing the iteration over the list elements is
already helpful, learning most list-processing programs requires
the model to repeatedly infer the concepts of creating a new list,
aggregating results and keeping track of the current list index.
In functional programming languages, such regular patterns are
encapsulated in combinators. Thus, in a second model, we re-
place the simple foreach loop with three combinators: mapi
creates a new list by applying a function to each element of the
input list, zipWithi creates a new list by iterating over two
lists in parallel and applying a function to both elements, and
foldli computes a value by iterating over all list elements

and applying a function to the current list element and the value computed so far. A program model
using the foldli combinator is shown on the left. The i suffix indicates that these combinators
additionally provide the index of the current list element (the precise semantics of the combinators
are presented in Sect. A.1).

Recommendation (L): Instead of raw jumps, use loop and if-then-else templates.

4

Workshop track - ICLR 2017

Immutable Data In training our models, we observed that many random initializations of the
program parameters would overwrite input data or important intermediate results, and later steps
would not be able to recover this data. In models with combinators that provide a way to accumulate
result values, we can sidestep this issue by making registers immutable. To do so, we create one
register per timestep, and fix the output of each instruction to the register for its timestep. Parameters
for arguments then range over all registers initialized in prior timesteps, with an exception for the
closures executed by a combinator. Here, each instruction only gets access to the inputs to the closure,
values computed in the prefix, and registers initialized by preceding instructions in the same loop
iteration. As in the heap allocation case, we can avoid keeping a copy of all registers for every
timestep, and instead share these values over all steps, reducing memory usage.

Recommendation (I): Use immutable registers by deterministically choosing where to store outputs.

Types When training our models, we found that for many initializations, training would fall into
local minima corresponding to ill-typed programs, e.g., where references to the heap would be used
in integer additions. We expect the learned program to be well-typed, so we introduce a simple type
system. We explored two approaches to adding a type system.

A first attempt integrated the well-typedness of the program into our objective function. In our
programs, we use three simple types of data—integers, pointers and booleans—as well as a special
type,⊥, which represents type errors. We extended the program state to contain an additional element
tr for each register, encoding its type. Each instruction then not only computes a value that is assigned
to the target register, but also a type for the target register. Most significantly, if one of the arguments
has an unsuitable type (e.g., an integer in place of a pointer), the resulting type is⊥. We then extended
our objective function to add a penalty for values with type ⊥. Unfortunately, this changed objective
function had neither a positive nor negative effect on our experiments, so it seems that optimizing for
the correct type is redundant when we are already optimizing for the correct return value.

In our second attempt, rather than penalizing ill-typed programs, we prevent programs from accessing
ill-typed data by construction. We augment our register representation by adding an integer, pointer,
and Boolean slot to each register, so each register can hold a separate value of each type. Instructions
which read from registers now read from the slot corresponding to the type of the argument. When
writing to a register, we write to the slot corresponding to the instruction’s return type, and set the
other slots to a default value 0. This prevents any ill-typed sequence of instructions, i.e., it is now
impossible to, for example, increment a pointer value or to construct a cons cell with a non-pointer
value. Furthermore, this modification allows us to set the heap size H to a value different from
the maximal integer M . Our experiments in Sect. 4.3 show that separating differently-typed values
simplifies the learning of programs that operate on lists and integers at the same time.

Recommendation (T): Use different storage for data of different types.

4 EXPERIMENTS

We have empirically evaluated our modeling recommendations on a selection of program induction
tasks of increasing complexity, ranging from straight-line programs to problems with loops and
conditional expressions. All of our models are implemented in TerpreT (Gaunt et al., 2016b) and
we learn using TerpreT’s TENSORFLOW (Abadi et al., 2015) backend. We aim to release TerpreT,
together with these models, under an open source license in the near future.

For all tasks, three groups of five input/output example pairs were sampled as training data and
another 25 input/output pairs as test data. For each group of five examples, training was started
from 100 random initializations of the model parameters. After training for 3500 epochs (tests with
longer training runs showed no significant changes in the outcomes), the learned programs were
tested by discretizing all parameters and comparing program outputs on test inputs with the expected
values. We perform 300 runs per model and task, and report only the ratio of successful runs. A
run is successful if the discretized program returns the correct result on all five training and 25 test
examples.1 The ratio of runs converging to zero loss on the training examples was within 1% of the
number of successful runs, i.e., very few found solutions failed to generalize.

1We inspected samples of the obtained programs as well and verified that they were indeed correct solutions.
See Sect. A.2 for some of the learned programs.

5

Workshop track - ICLR 2017

1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

k

Su
cc

es
s

ra
te

dupK

1 2 3 4 5 6 7 8 9
0.0

0.2

0.4

0.6

0.8

1.0

k

Su
cc

es
s

ra
te

getK

C+T+I

C+I

C+T

C

A

A+F

A+L

λ2

Figure 1: Success rate of our models on straight-line programs of increasing length

We performed a cursory exploration of hyperparameter choices. We varied the choice of optimization
algorithm (Momentum, Adam, RMSProp), the learning rate (from 0.001 to 5), gradient noise (testing
the recommended choices from Neelakantan et al. (2016b)), a decaying entropy bonus (starting from
0.001 to 20), and gradient clipping (to values between 0.1 and 10). We sampled 100 hyperparameter
settings from this space and tested their effect on two simple tasks. We ran the remaining experiments
with the best configuration obtained by this process: the RMSProp optimization algorithm, a learning
rate of 0.1, clipped gradients at 1, and no gradient noise.

We consider the ratio of successful runs as earlier work has identified this as a significant problem.
For example, Neelakantan et al. (2016b) reports that even after a (task-specific) “large grid search”
of hyperparameters, the Neural Random Access Machine converged only in 5%, 7% and 22% of
random restarts. Similar observations were made in Kaiser & Sutskever (2016); Bunel et al. (2016);
Gaunt et al. (2016b) for related program learning models.

In our experiments we evaluate the effect of the choices discussed in Sect. 3, comparing seven model
variants in total. We call our initial assembly model A and its variation with a fixed memory allocation
scheme A+F. All other models use the same fixed memory allocation scheme. The extension of
the assembly model with a built-in foreach loop is called A+L. The A+L model also allows a
foreachZip loop structure that allows parallel iteration over two lists, similar to the zipWith
combinator. The model including predefined combinators is called C, where C+I (resp. C+T) are
its extensions with immutable registers (resp. typed registers). Finally, C+T+I combines all of these
and is, in effect, a simple end-to-end differentiable functional programming language.

Additionally, we show results for λ2 (Feser et al., 2015), a strong program synthesis baseline from
programming languages research, because of its built-in support for list-processing programs. As λ2
is deterministic, we only report a success rate of either 1 or 0.

4.1 STRAIGHT-LINE PROGRAMS

In our first experiment, we consider two families of simple problems—solvable with straight-line
programs—to study the interaction of our modeling choices with program length. Our first benchmark
task is to duplicate a scalar input a fixed number k times to create a list of length k. Our second
benchmark is to retrieve the k-th element of a list, again fixing k beforehand (we will consider a
generalization of this task where k is a program input later). We set the hyperparameters for all
models to allow 11 statements, i.e., for A and A+F we have set the program length to 11, and for
the A+L and C * models we have set the prefix and loop length to 0 and the suffix length to 11.
For models where the number of registers does not depend on the number of timesteps, we set the
number of registers to 3, with one initialized to the input. This allows for ∼ 1039 programs in the A,
A+F, C+I, and C+T+I models and for ∼ 1028 programs in the remaining models. These parameters
were chosen to be slightly larger than required by the largest program to be learned. For all of our
experiments, the maximal integer M was set to 20 for models where possible (i.e., for A, C+T+I,
C+T), and to H (derived from T , coming to 22) for the others.2

2We also experimented with varying the value of M . Choices over 20 showed no significant differences to
smaller values.

6

Workshop track - ICLR 2017

We evaluated all of our models following the regime discussed above and present the results in Fig. 1
for k values from 1 to 9. The difference between A and A+F on the dupK task illustrates the signifi-
cance of Recommendation (F) to fix the memory allocation scheme. Following Recommendation
(T) to separate values of different types improves the results on both tasks, as the differences between
C+T+I (resp. C+T) and C+I (resp. C) illustrate.

4.2 SIMPLE LOOP PROGRAMS

In our second experiment, we compare our models on three simple list algorithms: computing the
length of a list, reversing a list and summing a list. Model parameters have been set to allow 6
statements for the A and A+F models, and empty prefixes, empty suffixes, and 2 instructions in the
loop for the other models. For models where the number of registers does not depend on the number
of timesteps, we set the number of registers to 4, with one initialized to the input.

Program C+T+I C+T C+I C A A+F A+L λ2

len 100.00 75.00 100.00 43.67 0.00 0.00 15.67 100.00
rev 48.33 32.67 46.33 41.33 0.00 0.00 86.33 100.00
sum 91.67 41.00 88.33 30.67 0.00 0.00 32.67 100.00

Table 1: Success ratios for experiments on simple loop-requiring tasks.

The results of our evaluation are displayed in Tab. 1, starkly illustrating Recommendation (L) to use
predefined loop structures. We speculate that learning explicit jump targets is extremely challenging
because changes to the parameters controlling jump target instructions have outsized effects on all
computed (intermediate and output) values. On the other hand, models that could choose between
different list iteration primitives were able to find programs for all tasks. We again note the effect of
Recommendation (T) to separate values of different types on the success rates for the len and sum
examples, and the effect of Recommendation (I) to avoid mutable data on results for len and rev.

4.3 LOOP PROGRAMS

In our main experiment, we consider a larger set of common list-manipulating tasks (such as checking
if all/one element of a list is greater than a bound, retrieving a list element by index, finding the index
of a value, and computing the maximum value). Descriptions of all tasks are shown in Fig. 2 in
the appendix. We do not show results for the A and A+F models, which always fail. We set the
parameters for the remaining models to M = 32 where possible (M = H = 34 for the others), the
length of the prefix to 1, the length of the closure / loop body to 3 and the length of the suffix to 2.
Again, these parameters are slightly larger than required by the largest program to be learned.

Program C+T+I C+T C+I C A+L λ2

len 98.67 96.33 0.67 0.33 0.00 100.00
rev 18.00 10.33 2.67 8.33 9.67 100.00
sum 38.00 38.33 1.00 0.00 10.00 100.00

allGtK 0.00 0.00 0.00 0.33 0.00 100.00
exGtK 3.00 1.00 0.67 0.00 0.67 100.00
findLastIdx 0.33 0.00 0.00 0.00 0.00 0.00
getIdx 1.00 0.00 0.00 0.00 0.00 0.00
last2 0.00 8.00 0.00 2.00 23.00 0.00
mapAddK 100.00 98.00 100.00 95.67 0.00 100.00
mapInc 99.67 98.00 99.33 97.00 0.00 100.00
max 2.33 5.67 0.00 0.00 0.33 100.00
pairwiseSum 43.33 32.33 43.67 33.67 0.00 100.00
revMapInc 0.00 0.67 0.00 0.00 6.33 100.00

Table 2: Success ratios for full set of tasks.

The results for our experiments on these tasks are shown in Tab. 2. Note the changed results of the
examples from Sect. 4.2, as the change in model parameters has increased the size of the program
space from ∼ 107 to ∼ 1020. The relative results for the A+L model show the value of built-in
iteration and aggregation patterns. The choice between immutable and mutable registers is less clear
here, seemingly dampened by other influences. An inspection of the generated programs (eg. Fig. 8 in

7

Workshop track - ICLR 2017

the appendix) reveals that mutability of registers can sometimes be exploited to find elegant solutions.
Overall, it may be effective to combine both approaches, using a small number of (mutable) “scratch
value” registers and immutable default output registers for each statement.

5 RELATED WORK

Inductive Program Synthesis There has been significant recent interest in synthesizing functional
programs from input-output examples in the programming languages community. Synthesis systems
generally operate by searching for a program which is correct on the examples, using types or custom
deduction rules to eliminate parts of the search space. Among the notable systems: MYTH (Osera
& Zdancewic, 2015; Frankle et al., 2016) synthesizes recursive functional programs from examples
using types to guide the search for a correct program, λ2 (Feser et al., 2015) synthesizes data structure
manipulating programs structured using combinators using types and deduction rules in its search,
ESCHER (Albarghouthi et al., 2013) synthesizes recursive programs using search and a specialized
method for learning conditional expressions, and FlashFill (Gulwani, 2011) structures programs
as compositions of functions and uses custom deduction rules to prune candidate programs. Our
decision to learn functional programs was strongly inspired by this previous work. In particular,
the use of combinators to structure control flow was drawn from Feser et al. (2015). However, our
end-to-end differentiable setting is fundamentally different from discrete search employed in the
programming languages community, and thus concrete techniques are largely incomparable.

Neural Networks Learning Algorithms A number of recent models aim to learn algorithms
from input/output data. Many of these augment standard recurrent neural network architectures with
differentiable memory and simple computation components (e.g. Graves et al. (2014); Kurach et al.
(2016); Joulin & Mikolov (2015); Neelakantan et al. (2016a); Reed & de Freitas (2016); Zaremba
et al. (2016); Graves et al. (2016)). The use of an RNN can be seen as fixed looping structure, and
the use of fixed output registers for the modules in Neural Random Access Machines (Kurach et al.,
2016) is similar to our modeling of immutable registers.

However, none of these works focus on producing source code. Gaunt et al. (2016b) show that this is
an extremely challenging task for assembly-like program models. More recently, Bunel et al. (2016)
and Riedel et al. (2016) have used program models similar to assembly (resp. Forth) source code to
initialize solutions, and either optimize or complete them.

6 DISCUSSION AND FUTURE WORK

We have discussed a range of modeling choices for end-to-end differentiable programming languages
and made four design recommendations. Empirically, we have shown these recommendations to
significantly improve the success ratio of learning programs from input/output examples, and we
expect these results to generalize to similar models attempting to learn programs.

In this paper, we only consider list manipulating programs, but are interested in supporting more
data structures, such as arrays (which should be a straightforward extension) and associative maps.
We also only support loops over lists at this time, but are interested in extending our models to also
have built-in support for loops counting up to (and down from) integer values. A generalization of
this concept would be an extension allowing the learning and use of recursive functions. Recursion
is still more structured than raw goto calls, but more flexible than the combinators that we currently
employ. An efficient implementation of recursion is a challenging research problem, but it could
allow significantly more complex programs to be learned. Modeling recursion in an end-to-end
differentiable language could allow us to build libraries of (learned) differentiable functions that can
be used in later synthesis problems.

However, we note that with few exceptions on long straight-line code, λ2 performs better than all
of our considered models, and is able to synthesize programs in milliseconds. We see the future of
differentiable programming languages in areas in which deterministic tools are known to perform
poorly, such as the integration of perceptual data, priors and “soft” side information such as natural
language hints about the desired functionality. Gaunt et al. (2016a) was developed in parallel to this
work and builds on many of our results to learn programs that can process perceptual data (in the
current example, images).

8

Workshop track - ICLR 2017

REFERENCES

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Aws Albarghouthi, Sumit Gulwani, and Zachary Kincaid. Recursive Program Synthesis. In Computer
Aided Verification - 25th International Conference, CAV 2013, Saint Petersburg, Russia, July 13-19,
2013. Proceedings, pp. 934–950, 2013.

Marcin Andrychowicz and Karol Kurach. Learning efficient algorithms with hierarchical attentive
memory. arXiv preprint arXiv:1602.03218, 2016.

Rudy Bunel, Alban Desmaison, Pushmeet Kohli, Philip H. S. Torr, and M. Pawan Kumar. Adaptive
neural compilation. In Proceedings of the 29th Conference on Advances in Neural Information
Processing Systems (NIPS), 2016. To appear.

Edsger W. Dijkstra. Letters to the Editor: Go to Statement Considered Harmful. 11(3):147–148,
1968. ISSN 0001-0782. doi: 10.1145/362929.362947.

John K. Feser, Swarat Chaudhuri, and Isil Dillig. Synthesizing data structure transformations from
input-output examples. In Proceedings of the 36th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pp. 229–239, 2015.

Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve Zdancewic. Example-directed
Synthesis: A Type-theoretic Interpretation. In Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’16, pp. 802–815. ACM,
2016. ISBN 978-1-4503-3549-2. doi: 10.1145/2837614.2837629.

Alexander L. Gaunt, Marc Brockschmidt, Nate Kushman, and Daniel Tarlow. Lifelong perceptual
programming by example. 2016a. Under submission to ICLR 2017.

Alexander L. Gaunt, Marc Brockschmidt, Rishabh Singh, Nate Kushman, Pushmeet Kohli, Jonathan
Taylor, and Daniel Tarlow. Terpret: A probabilistic programming language for program induction.
CoRR, abs/1608.04428, 2016b. URL http://arxiv.org/abs/1608.04428.

C. Lee Giles, Guo-Zheng Sun, Hsing-Hen Chen, Yee-Chun Lee, and Dong Chen. Higher order
recurrent networks and grammatical inference. In Proceedings of the 2nd Conference on Advances
in Neural Information Processing Systems (NIPS), pp. 380–387, 1989.

Alex Graves, Greg Wayne, and Ivo Danihelka. Neural turing machines. CoRR, abs/1410.5401, 2014.
URL http://arxiv.org/abs/1410.5401.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou,
et al. Hybrid computing using a neural network with dynamic external memory. Nature, 2016.

Edward Grefenstette, Karl Moritz Hermann, Mustafa Suleyman, and Phil Blunsom. Learning to
transduce with unbounded memory. In Proceedings of the 28th Conference on Advances in Neural
Information Processing Systems (NIPS), pp. 1828–1836, 2015.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In ACM
SIGPLAN Notices, volume 46, pp. 317–330. ACM, 2011.

Armand Joulin and Tomas Mikolov. Inferring algorithmic patterns with stack-augmented recurrent
nets. In Proceedings of the 28th Conference on Advances in Neural Information Processing
Systems (NIPS), pp. 190–198, 2015.

9

http://tensorflow.org/
http://arxiv.org/abs/1608.04428
http://arxiv.org/abs/1410.5401

Workshop track - ICLR 2017

Łukasz Kaiser and Ilya Sutskever. Neural GPUs learn algorithms. In Proceedings of the 4th Inter-
national Conference on Learning Representations (ICLR), 2016. URL http://arxiv.org/
abs/1511.08228.

Karol Kurach, Marcin Andrychowicz, and Ilya Sutskever. Neural random-access machines. In
Proceedings of the 4th International Conference on Learning Representations (ICLR), 2016. URL
http://arxiv.org/abs/1511.06392.

Arvind Neelakantan, Quoc V. Le, and Ilya Sutskever. Neural programmer: Inducing latent pro-
grams with gradient descent. In Proceedings of the 4th International Conference on Learning
Representations (ICLR), 2016a.

Arvind Neelakantan, Luke Vilnis, Quoc V. Le, Ilya Sutskever, Lukasz Kaiser, Karol Kurach, and
James Martens. Adding gradient noise improves learning for very deep networks. In Proceedings
of the 4th International Conference on Learning Representations (ICLR), 2016b. URL http:
//arxiv.org/abs/1511.06807.

Peter-Michael Osera and Steve Zdancewic. Type-and-example-directed Program Synthesis. In
Proceedings of the 36th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2015, pp. 619–630. ACM, 2015. ISBN 978-1-4503-3468-6. doi: 10.1145/
2737924.2738007.

Scott E. Reed and Nando de Freitas. Neural programmer-interpreters. In Proceedings of the 4th
International Conference on Learning Representations (ICLR), 2016. URL http://arxiv.
org/abs/1511.06279.

Sebastian Riedel, Matko Bosnjak, and Tim Rocktäschel. Programming with a differentiable forth
interpreter. CoRR, abs/1605.06640, 2016. URL http://arxiv.org/abs/1605.06640.

Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. In Proceedings of the 3rd
International Conference on Learning Representations (ICLR), 2015. URL http://arxiv.
org/abs/1410.3916.

Wojciech Zaremba, Tomas Mikolov, Armand Joulin, and Rob Fergus. Learning simple algorithms
from examples. In Proceedings of the 33nd International Conference on Machine Learning
(ICML), pp. 421–429, 2016.

10

http://arxiv.org/abs/1511.08228
http://arxiv.org/abs/1511.08228
http://arxiv.org/abs/1511.06392
http://arxiv.org/abs/1511.06807
http://arxiv.org/abs/1511.06807
http://arxiv.org/abs/1511.06279
http://arxiv.org/abs/1511.06279
http://arxiv.org/abs/1605.06640
http://arxiv.org/abs/1410.3916
http://arxiv.org/abs/1410.3916

Workshop track - ICLR 2017

A APPENDIX

Name Description

len Return the length of a list.
rev Reverse a list.
sum Sum all elements of a list.

allGtK Check if all elements of a list are greater than k.
exGtK Check if at least one element of a list is greater k.
findLastIdx Find the index of the last list element which is equal to v.
getIdx Return the kth element of a list.
last2 Return the 2nd to last element of a list.
mapAddK Compute list in which k has been added to each element of the input list.
mapInc Compute list in which each element of the input list has been incremented.
max Return the maximum element of a list.
pairwiseSum Compute list where each element is the sum of the corresponding elements of

two input lists.
revMapInc Reverse a list and increment each element.

Figure 2: Our example tasks for loop based programs. “Simple” tasks are above the line.

A.1 COMBINATORS

function FOLDLI(list, acc, func)
idx← 0
for ele in list do

acc← func(acc, ele, idx)
idx← idx+ 1

return acc

function MAPI(list, func)
idx← 0
ret← []
for ele in list do

ret← append(ret, func(ele, idx))
idx← idx+ 1

return ret
function ZIPWITHI(list1, list2, func)

idx← 0
ret← []
for ele1, ele2 in list1, list2 do

ret← append(ret, func(ele1, ele2, idx))
idx← idx+ 1

return ret

Figure 3: Semantics of foldli, mapi, zipwithi in a Python-like language.

A.2 SELECTED SOLUTIONS

We show example results of our training in Figs. 4-16. Note that these are the actual results produced
by our system, and have only been slightly edited for typesetting. Finally, we have colored statements
that a simple program analysis can identify as not contributing to the result in gray.

11

Workshop track - ICLR 2017

let r0 = l in
let r1 = k in
let r2 = (r0 = r1) in
let r3 = foldli r0 r0 (λ ele acc idx→

let c0 = acc ∨ acc in
let c1 = ele > r1 in
let c2 = c0 ∨ c1 in
c2) in

let r4 = r3 ∨ r3 in
let r5 = r3 ∧ r2 in
return r4

r0 ← l
r1 ← k
r2 ← r2 = r1
for ele in r0 do

r0 ← if r2 then ele else r1
r0 ← ele > r1
r2 ← r2 ∨ r0

r2 ← r2 ∨ r0
r1 ← r2 ∨ r2
return r2

Figure 5: Solutions to exGtK in the C+T+I and A+L models.

let r0 = l in
let r1 = e in
let r2 = r0 + 1 in
let r3 = foldli r0 r2 (λ ele acc idx→

let c0 = if r2 then idx else r1 in
let c1 = (r1 = ele) in
let c2 = if c1 then idx else acc in
c2) in

let r4 = r3 + 1 in
let r5 = r2 in
return r3

Figure 6: A solution to findLastIdx in the C+T+I model.

r0 ← l
r1 ← k
r2 ← r0 ∨ r0
r1 ← foldli r0 r0 (λ ele acc idx→

r0 ← ele > r1
r2 ← car acc
r2 ← r0 ∧ acc
r2)

r2 ← r1 ∧ r0
r1 ← r1
return r2

Figure 4: A solution to allGtK in the C model. Code in gray is dead.

let r0 = l in
let r1 = k in
let r2 = car r0 in
let r3 = foldli r0 r2 (λ ele acc idx→

let c0 = (r1 = idx) in
let c1 = if c0 then ele else acc in
let c2 = if idx then idx else c0 in
c1) in

let r4 = car r0 in
let r5 = cdr r0 in
return r3

Figure 7: A solution to getIdx in the C+T+I model.

12

Workshop track - ICLR 2017

r0 ← l
r1 ← 0
r2 ← nil
r2 ← foldli r0 r1 (λ ele acc idx→

r0 ← acc
r2 ← r1
r1 ← ele
r2) in

r0 ← r2 + r2
r0 ← r0 + 1
return r2

r0 ← l
r1 ← 0
r2 ← cons r0 r0
for (ele1, ele2) in (r0, r2) do

r2 ← if r2 then ele2 else ele2
r1 ← r2 − 1
r1 ← car r0

r1 ← if r1 then r2 else r0
r0 ← if r2 then r0 else r1
return r2

Figure 8: Solutions to last2 in the C+T and A+L models.

let r0 = l in
let r1 = 0 in
let r2 = cdr r0 in
let r3 = foldli r0 r0 (λ ele acc idx→

let c0 = idx+ 1 in
let c1 = if r1 then r2 else c0 in
let c2 = c0 = ele in
c0) in

let r4 = if r2 then r3 else r3 in
let r5 = r3 + r2 in
return r3

Figure 9: A solution to len in the C+T+I model.

let r0 = l in
let r1 = k in
let r2 = if r1 then r0 else r0 in
let r3 = mapi r0 (λ ele idx→

let c0 = ele− 1 in
let c1 = c0 − 1 in
let c2 = r1 + ele in
c2) in

let r4 = r3 in
let r5 = r3 in
return r3

Figure 10: A solution to mapAddK in the C+T+I model.

let r0 = l in
let r1 = 0 in
let r2 = r0 in
let r3 = mapi r0 (λ ele idx→

let c0 = if r1 then ele else acc in
let c1 = ele+ 1 in
let c2 = r1 in
c1) in

let r4 = cons r3 r0 in
let r5 = r4 in
return r3

Figure 11: A solution to mapInc in the C+T+I model.

13

Workshop track - ICLR 2017

let r0 = l in
let r1 = 0 in
let r2 = cdr r0 in
let r3 = foldli r0 r0 (λ ele acc idx→

let c0 = acc > ele in
let c1 = acc in
let c2 = if c0 then acc else ele in
c2) in

let r4 = r2 − 1 in
let r5 = car r2 in
return r3

r0 ← l
r1 ← 0
r2 ← r0 − 1
for (ele1, ele2) in (r0, r0) do

r0 ← ele1
r1 ← ele1 > r2
r2 ← if r1 then ele1 else r2

r0 ← r0 + r0
r0 ← cons r2 r2
return r2

Figure 12: Solutions to max in the C+T+I and A+L models.

let r0 = l1 in
let r1 = l2 in
let r2 = if r1 then r0 else r1 in
let r3 = zipWithi r1 r0 (λ ele1 ele2 idx→

let c0 = ele1 + ele2 in
let c1 = ele2− 1 in
let c2 = idx− 1 in
c0) in

let r4 = if r0 then r3 else r1 in
let r5 = if r4 then r2 else r1 in
return r3

Figure 13: A solution to pairwiseSum in the C+T+I model.

let r0 = l in
let r1 = 0 in
let r2 = cons r0 r0 in
let r3 = foldli r0 r1 (λ ele acc idx→

let c0 = cons ele acc in
let c1 = cons acc acc in
let c2 = cons ele acc in
c2) in

let r4 = if r2 then r3 else r2 in
let r5 = cons r4 r3 in
return r3

r0 ← l
r1 ← 0
r2 ← cdr r1
for ele1 in r0 do

r1 ← cons ele2 r0
r2 ← cons ele1 r2
r1 ← cdr r0

r0 ← cdr r0
r0 ← cons r2 r1
return r2

Figure 14: Solutions to rev in the C+T+I and A+L models.

r0 ← l
r1 ← 0
r1 ← cdr r0
r2 ← foldli r0 r2 (λ ele acc idx→

r2 ← ele+ 1
r0 ← cons r2 acc
r2 ← cons r2 acc
r2)

r1 ← cons r2 r1
r0 ← cons r2 r0
return r2

r0 ← l
r1 ← 0
r1 ← 1
for ele1 in r0 do

r0 ← ele1 + 1
r1 ← 1
r2 ← cons r0 r2

r1 ← cons r0 r2
r1 ← cons r0 r2
return r2

Figure 15: Solutions to revMapInc in the C+T and A+L models.

14

Workshop track - ICLR 2017

let r0 = l in
let r1 = 0 in
let r2 = r0 in
let r3 = foldli r0 r0 (λ ele acc idx→

let c0 = acc+ r0 in
let c1 = acc+ ele in
let c2 = if r0 then idx else r1 in
c1) in

let r4 = r2 + 1 in
let r5 = r3 − 1 in
return r3

r0 ← l
r1 ← 0
r1 ← if r2 then r1 else r0
for ele1 in r0 do

r2 ← ele1 + r2
r1 ← cons r2 r0
r1 ← ele1 + ele2

r0 ← r1 + r1
r0 ← r2 + 1
return r2

Figure 16: Solutions to sum in the C+T+I and A+L models.

15

	Introduction
	Background
	Our Models
	Program and Data Representation
	Program Models

	Experiments
	Straight-line programs
	Simple loop programs
	Loop Programs

	Related Work
	Discussion and Future Work
	Appendix
	Combinators
	Selected Solutions

