
Under review as a conference paper at ICLR 2018

MACHINE VS MACHINE: MINIMAX-OPTIMAL
DEFENSE AGAINST ADVERSARIAL EXAMPLES

Anonymous authors
Paper under double-blind review

ABSTRACT

Recently, researchers have discovered that the state-of-the-art object classifiers
can be fooled easily by small perturbations in the input unnoticeable to human
eyes. It is known that an attacker can generate strong adversarial examples if she
knows the classifier parameters. Conversely, a defender can robustify the classifier
by retraining if she has the adversarial examples. The cat-and-mouse game nature
of attacks and defenses raises the question of the presence of equilibria in the dy-
namics. In this paper, we present a neural-network based attack class to approxi-
mate a larger but intractable class of attacks, and formulate the attacker-defender
interaction as a zero-sum leader-follower game. We present sensitivity-penalized
optimization algorithms to find minimax solutions, which are the best worst-case
defenses against whitebox attacks. Advantages of the learning-based attacks and
defenses compared to gradient-based attacks and defenses are demonstrated with
MNIST and CIFAR-10.

1 INTRODUCTION

Recently, researchers have made an unsettling discovery that the state-of-the-art object classifiers
can be fooled easily by small perturbations in the input unnoticeable to human eyes (Szegedy et al.,
2013; Goodfellow et al., 2014b). Following studies tried to explain the cause of the seeming fail-
ure of deep learning toward such adversarial examples. The vulnerability was ascribed to linearity
(Szegedy et al., 2013), low flexibility (Fawzi et al., 2015), or the flatness/curvedness of decision
boundaries (Moosavi-Dezfooli et al., 2017), but a more complete picture is still under research.
This is troublesome since such a vulnerability can be exploited in critical situations such as an
autonomous car misreading traffic signs or a facial recognition system granting access to an imper-
sonator without being noticed. Several methods of generating adversarial examples were proposed
(Goodfellow et al., 2014b; Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017), most of which
use the knowledge of the classifier to craft examples. In response, a few defense methods were pro-
posed: retraining target classifiers with adversarial examples called adversarial training (Szegedy
et al., 2013; Goodfellow et al., 2014b); suppressing gradient by retraining with soft labels called de-
fensive distillation (Papernot et al., 2016); hardening target classifiers by training with an ensemble
of adversarial examples (Tramèr et al., 2017).

In this paper we focus on whitebox attacks, that is, the model and the parameters of the classifier
are known to the attacker. This requires a more robust classifier or defense method than simply
relying on the secrecy of the parameters as defense. When the classifier parameters are known to
an attacker, existing attack methods are very successful at fooling the classifiers. Conversely, when
the attack is known to the classifier, e.g., in the form of adversarial examples, one can weaken the
attack by retraining the classifier with adversarial examples, called adversarial training. However,
if we repeat adversarial sample generation and adversarial training back-to-back, it is observed that
the current adversarially-trained classifier is no longer robust to previous attacks (see Sec. 3.1.) To
find the classifier robust against the class of gradient-based attacks, we first propose a sensitivity-
penalized optimization procedure. Experiments show that the classifier from the procedure is more
robust than adversarially-trained classifiers against previous attacks, but it still remains vulnerable
to some degrees. This raises the main question of the paper: Can a classifier be robust to all
types of attacks? The answer seems to be negative in light of the strong adversarial examples that
can be crafted by direct optimization procedures from Huang et al. (2015) or Carlini & Wagner
(2017). Note that the class of optimization-based attack is very large, as there is no restriction on the

1



Under review as a conference paper at ICLR 2018

adversarial patterns that can be generated except for certain bounds such as lp-norm bounds. The
vastness of the optimization-based attack class is a hindrance to the study of the problem, as the
defender cannot learn efficiently about the attack class from a finite number of samples. To study
the problem analytically, we use a class of learning-based attack that can be generated by a class of
neural networks. This class of attack can be considered an approximation of the class of optimization
-based attacks, in that the search space of optimal perturbation is restricted to the parameter space
of a neural network architecture, e.g., all perturbations that can be generated by fully-connected 3-
layer ReLU networks. Similar to what we propose, others have recently considered training neural
networks to generate adversarial examples (Nguyen & Sinha, 2017; Baluja & Fischer, 2017). While
the proposed learning-based attack is weaker than the optimization-based attack, it can generate
adversarial examples in test time with only single feedforward passes, which makes real-time attacks
possible. We also show that the class of neural-network based attacks is quite different from the the
class of gradient-based attacks (see Sec. 4.1.)

Using the learning-based attack class, we introduce a continuous game formulation for analyzing the
dynamics of attack-defense. The game is played by an attacker and a defender/classifier 1, where
the attacker tries to maximize the risk of the classification task by perturbing input samples under
certain constraints such as lp-norm bounds, and the defender/classifier tries to adjust its parameters
to minimize the same risk given the perturbed inputs. It is important to note that for adversarial
attack problems, the performance of an attack or a defense cannot be measured in isolation, but
only in pairs of (attack, defense). This is because the effectiveness of an attack/defense depends
on the defense/attack it is against. As a two-player game, there may not be a dominant defense
that is no less robust than all other defenses against all attacks. However, there is a natural notion
of the best defense or attack in the worst case. Suppose one player moves first by choosing her
parameters and the other player responds with the knowledge of the first player’s move. This is an
example of a leader-follower game (Brückner & Scheffer, 2011) for which there are two well-known
states, the minimax and the maximin solutions if it is a constant-sum game. To find those solutions
empirically, we propose a new continuous optimization method using the sensitivity penalization
term. We show that the minimax solution from the proposed method is indeed different from the
solution from the conventional alternating descent/ascent and is also more robust. We also show that
the strength/weakness of the minimax-trained classifier is different from that of adversarially-trained
classifiers for gradient-based attacks. The contributions of this paper are summarized as follows.

• We provide a continuous game model to analyze adversarial example attacks and defenses,
using the neural network-based attack class as a feasible approximation to a larger but
intractable class of optimization-based attacks.

• We demonstrate the difficulty of defending against multiple attack types and present the
minimax defense as the best worst-case defense methods.

• We propose a sensitivity-penalized optimization method (Alg. 1) to numerically find con-
tinuous minimax solutions, which is better than alternating descent/ascent. The proposed
optimization method can also be used for other minimax problems beyond the adversarial
example problem.

The proposed methods are demonstrated with the MNIST and the CIFAR-10 datasets. For readabil-
ity, details about experimental settings and the results with CIFAR-10 are presented in the appendix.

2 RELATED WORK

Making a classifier robust to test-time adversarial attacks has been studied for linear (kernel) hyper-
planes (Lanckriet et al., 2002), naive Bayes (Dalvi et al., 2004) and SVM (Globerson & Roweis,
2006), which also showed the game-theoretic nature of the robust classification problems. Since the
recent discovery of adversarial examples for deep neural networks, several methods of generating
adversarial samples were proposed (Szegedy et al., 2013; Goodfellow et al., 2014b; Huang et al.,
2015; Moosavi-Dezfooli et al., 2016; Carlini & Wagner, 2017) as well as several methods of defense
(Szegedy et al., 2013; Goodfellow et al., 2014b; Papernot et al., 2016; Tramèr et al., 2017). These
papers considered static scenarios, where the attack/defense is constructed against a fixed opponent.

1The classifier and the defender are treated synonymous in this paper.
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A few researchers have also proposed using a detector to detect and reject adversarial examples
(Meng & Chen, 2017; Lu et al., 2017; Metzen et al., 2017). While we do not use detectors in this
work, the minimax approach we proposed in the paper can be applied to train the detectors.

The idea of using neural networks to generate adversarial samples has appeared concurrently (Baluja
& Fischer, 2017; Nguyen & Sinha, 2017). Similar to our paper, the two papers demonstrates that it
is possible to generate strong adversarial samples by a learning approach. Baluja & Fischer (2017)
explored different architectures for the “adversarial transformation networks” against several differ-
ent classifiers. Nguyen & Sinha (2017) proposed “attack learning neural networks” to map clean
samples to a region in the feature space where misclassification occurs and “defense learning neural
networks” to map them back to the safe region. Instead of prepending the defense layers before
the fixed classifier (Nguyen & Sinha, 2017), we retrain the whole classifier as a defense method.
However, the key difference of our work to the two papers is that we consider the dynamics of a
learning-based defense stacked with a learning-based attack, and the numerical computation of the
optimal defense/attack by continuous optimization.

The alternating gradient-descent method for finding an equilibrium of a game has gained renewed in-
terest since the introduction of Generative Adversarial Networks (GAN) (Goodfellow et al., 2014a).
However, the instability of the alternating gradient-descent method has been known, and the “un-
rolling” method (Metz et al., 2016) was proposed to speed up the GAN training. The optimization
algorithm proposed in the paper has a similarity with the unrolling method, but it is simpler (cor-
responding to a single-step unrolling) and involves a gradient-norm regularization which can be
interpreted intuitively as sensitivity penalization (Gu & Rigazio, 2014; Lyu et al., 2015). Lastly, the
framework of minimax risks was also studied in Hamm (2016) for the purpose of privacy preserva-
tion. We propose a different algorithm in this paper, but we also show that the attack on classification
and the attack on privacy are the two sides of the same optimization problem with the opposite goals.

3 CAT-AND-MOUSE GAME

A classifier whose parameters are known to an attacker is easy to attack. Conversely, an attacker
whose sample-generating method is known to a classifier is easy to defend from. In this section,
we demonstrate the cat-and-mouse nature of the interaction, using adversarial training (Adv Train)
as defense and the fast gradient sign method (FGSM) (Goodfellow et al., 2014b) and the iterative
version (IFGSM) (Kurakin et al., 2016a) as attacks. We then show that the equilibrium, if it exists,
can be found more efficiently by directly solving a sensitivity-penalized optimization problem.

3.1 A NAIVE APPROACH

Suppose g is a classifier g : X → Y and l(g(x), y) is a loss function. The FGSM attack generates a
perturbed example z(x) given the clean sample x as follows:

z(x) = x+ η sign (∇xl(g(x), y)). (1)

The clean input images we use here are l∞-normalized, that is, all pixel values are in the range
[−1, 1]. It was argued that the use of true label y results in “label leaking” (Kurakin et al., 2016b),
but we use will true labels in the paper for simplicity. For another attack example, the IFGSM attack
iteratively refines an adversarial example by the following update

zi+1 = clipx,η(zi + η sign(∇zl(g(zi), y))), (2)

where the clipping used in this paper is clipx,η(x
′) , min{1, x+ η, max{−1, x− η, x′}}.

Existing attack methods such as FGSM and IFGSM are very effective at fooling the classifier. Ta-
ble 1 shows that the two methods are able to perfectly fool a convolutional neural network trained
with clean images from MNIST. (Details of the classifier architecture and the settings are in the
appendix.)

On the other hand, these attacks, if known to the classifier, can be weakened by retraining the
classifier with the original dataset augmented by adversarial examples with ground-truth labels,
known as adversarial training. In this paper we use the 1:1 mixture of the clean and the adversarial
samples for adversarial training. Table 2 shows the result of adversarial training for different attacks.
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Defense\Attack No attack FGSM IFGSM
η=0.3 η=0.4 η=0.5 η=0.6 η=0.3 η=0.4 η=0.5 η=0.6

No defense 0.006 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 1: Test error rates of FGSM and IFGSM attacks on an undefended convolutional neural net-
work for MNIST. These attacks can cause perfect misclassification for the given range of η.

The test error rates for adversarial test examples after training become below 1% indicating near-
perfect avoidance. This is in stark contrast with the perfect misclassification of the undefended
classifier in Table 1.

Defense\Attack No attack FGSM IFGSM
η=0.3 η=0.4 η=0.5 η=0.6 η=0.3 η=0.4 η=0.5 η=0.6

Adv train n/a 0.004 0.003 0.003 0.005 0.003 0.003 0.004 0.010

Table 2: Error rates of FGSM and IFGSM attacks on adversarially-trained classifiers for MNIST.
This defense can avert the attacks and achieve the error rates of the no-attack case.

A question arises as to what would happen if the procedure of 1) adversarial sample generation
using the current classifier, and 2) retraining classifier using the current adversarial examples is
repeated for many rounds. The answer to this cat-and-mouse game is easy to experiment although
time-consuming. Let’s denote the attack on the original classifier as FGSM1, and the corresponding
retrained classifier as Adv FGSM1. Repeating the procedure above generates the sequence of models
FGSM1 → Adv FGSM1 → FGSM2 → Adv FGSM2, etc. Fig. 1 shows one such trial with 80 +
80 rounds of the procedure. Initially, the attacker achieves near-perfect attacks (i.e., error rate ' 1),
and the defender achieves near-perfect defense (i.e., error rate ' 0). As the iteration increases, the
attacker becomes weaker with error rate' 0.5, but the defense is still very successful, and the rate
seems to oscillate persistently. While we can run more iterations to see if it converges, this is not a
very principled nor efficient approach to find an equilibrium, if it exists.

0 20 40 60 80 100 120 140 160
0.0
0.2
0.4
0.6
0.8
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Figure 1: A cat-and-mouse game of FGSM attacks and adversarial training for MNIST. The upper
red points are the error rates after adversarial training, and the lower green points are the error rates
after FGSM attack (η = 0.3). After 160 iterations, the error rate is still oscillating between 0 and
0.5.

3.2 GRADIENT-BASED ATTACKS AND SENSITIVITY PENALTY

We can perform the cat-and-mouse simulation more efficiently by an optimization approach. Instead
of training the classifier fully with adversarial examples and then regenerating adversarial examples,
suppose we only update the classifier with a single gradient-descent step then regenerate adversar-
ial examples. To emphasize the parameters u of the classifier/defender g(x;u), let’s rewrite the
empirical risk of classifying the perturbed data as

f(u, Z) ,
1

N

N∑
i=1

l(g(z(xi);u), yi), (3)

where z(x) denote an FGSM-like attack based on the loss gradient

z(x)← x+ η ∇zl(g(z(x);u), y), (4)
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and Z = (z1, ..., zN ) , (z(x1), ..., z(xN )) is the sequence of perturbed examples. In expectation
of the attack, the defender should choose u to minimize f(u, Z(u)) where the dependence of the
attack on the classifier u is expressed explicitly. If we minimize f using gradient descent

u← u− λdf(u, Z)
du

, (5)

then from the chain rule, the total derivative df
du is

df

du
=
∂f

∂u
+
∂Z

∂u

∂f

∂Z
=
∂f

∂u
+
∑
i

∂zi
∂u

∂f

∂zi
=
∂f

∂u
+

η

N

∑
i

∂2l

∂zi∂u

∂l

∂zi
(6)

from (3) and (4).

Interestingly, this total derivative (6) at the current state coincides with the gradient ∇u of the fol-
lowing cost

fsens(u) , f(u, Z) +
γ

2

∥∥∥∥∂f(u, Z)∂Z

∥∥∥∥2 = f(u, Z) +
η

2N

N∑
i=1

∥∥∥∥∂l(g(zi;u), yi)∂zi

∥∥∥∥2 (7)

where γ = ηN . There are two implications. Interpretation-wise, this cost function is the sum of the
original risk f and the ‘sensitivity’ term ‖∂f/∂Z‖2 which penalizes abrupt changes of the risk w.r.t.
the input. Therefore, u is chosen at each iteration to not only decrease the risk but also to make the
classifier insensitive to input perturbation so that the attacker cannot take advantage of large gradi-
ents. The idea of minimizing the sensitivity to input is a familiar approach in robustifying classifiers
(Gu & Rigazio, 2014; Lyu et al., 2015). Secondly, the new formulation can be implemented easily.
The gradient descent update using the seemingly complicated gradient (6) can be replaced by the
gradient descent update of (7). The capability of automatic differentiation (Rall, 1981) in modern
machine learning libraries can be used to compute the gradient of (7) efficiently. Using this direct
approach, we can find the defense parameters uwhich will be robust to gradient-based attacks. Fig. 2
shows the decrease of test error during training using the this gradient descent approach for MNIST.
It only takes a very small fraction of time to reach the final states of the Fig. 2 compared to that of
Fig. 1.
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Figure 2: Convergence of test error rates for sensitivity-penalized optimization (7) with MNIST.

There is also an important difference between the solution of the cat-and-mouse game and the min-
imizer of (7). Table 3 shows that the adversarially trained classifier (Adv FGSM1) is robust to both
clean data and FGSM1 attack, but is susceptible to FGSM2 attack, displaying the cat-and-mouse
nature. The same holds for Adv FGSM2, Adv FGSM3, etc. After 80 rounds of the cat-and-mouse
procedure, the classifier Adv FGSM80 becomes robust to FGSM80 as well as moderately robust to
other attacks including FGSM81 (=FGSM-curr). However, the classifier Sens FGSM from direct
minimization of (7) is even more robust toward FGSM-curr than Adv FGSM80 and is overall the
best. To see the advantage of the sensitivity term in (7), we also performed the minimization of (7)
without the sensitivity term under the same conditions as Sens FGSM. This optimization method
is similar to the method proposed in Huang et al. (2015), referred to as Learning with Adversaries
(LWA FGSM). In the table, one can see that Sens FGSM is also better than LWA FGSM overall,
although the difference is small.

Note that Sens FGSM is better than other adversarially-trained classifiers, it too is still vulnerable to
attacks such as FGSM80. This vulnerability raises the question if it is possible to make a classifier
robust to any type of attacks, or more practically, robust to at least a large class of attacks. We
discuss this issue in the next section.
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Defense\Attack No attack FGSM FGSM-currFGSM1 FGSM2 · · · FGSM80

η=0.3

No defense 0.026 1.000 0.881 · · · 0.355 1.000
Adv FGSM1 0.012 0.004 0.995 · · · 0.499 0.995
Adv FGSM2 0.012 0.999 0.002 · · · 0.505 0.995

Adv FGSM80 0.009 0.335 0.273 · · · 0.009 0.442
LWA FGSM 0.008 0.121 0.188 · · · 0.210 0.048
Sens FGSM 0.009 0.104 0.176 · · · 0.194 0.048

η=0.4

No defense 0.026 1.000 0.944 · · · 0.528 1.000
Adv FGSM1 0.013 0.003 0.984 · · · 0.589 0.984
Adv FGSM2 0.017 0.999 0.005 · · · 0.549 0.999

Adv FGSM80 0.009 0.509 0.525 · · · 0.024 0.131
LWA FGSM 0.009 0.204 0.284 · · · 0.336 0.043
Sens FGSM 0.009 0.128 0.234 · · · 0.296 0.038

η=0.5

No defense 0.026 1.000 0.931 · · · 0.662 1.000
Adv FGSM1 0.010 0.002 0.970 · · · 0.724 0.970
Adv FGSM2 0.010 0.866 0.006 · · · 0.604 0.871

Adv FGSM80 0.008 0.653 0.559 · · · 0.023 0.089
LWA FGSM 0.009 0.248 0.260 · · · 0.432 0.035
Sens FGSM 0.009 0.266 0.285 · · · 0.365 0.039

η=0.6

No defense 0.026 1.000 0.963 · · · 0.803 1.000
Adv FGSM1 0.012 0.003 0.889 · · · 0.790 0.889
Adv FGSM2 0.008 0.649 0.007 · · · 0.687 0.767

Adv FGSM80 0.009 0.439 0.426 · · · 0.020 0.021
LWA FGSM 0.011 0.317 0.315 · · · 0.488 0.034
Sens FGSM 0.010 0.264 0.244 · · · 0.465 0.033

Table 3: Error rates of different attacks on various adversarially-trained classifiers for MNIST.
FGSM-curr means the FGSM attack on the specific classifier on the left. Adv FGSM is the classifier
adversarially trained with FGSM attacks. Sens FGSM is the result of minimizing (7) by gradient
descent (5). LWA FGSM is the result of minimizing (7) without the gradient-norm term.

4 GAME FORMULATION

In this section, we consider the class of optimization-based attack and the class of neural-network
based attacks as an approximation of the former. Using the neural-network based attack class,
we formulate the attacker-defender dynamics as a game and discuss two types of equilibria – the
minimax and the maximin solutions. We present algorithms that generalize the approach presented
in the previous section.

4.1 LEARNING-BASED ATTACK

An attacker z(x) : X → X can be more general than a specific class of attacks such as FGSM.
Again, let g : X → Y is a classifier parameterized by u and l(g(x;u), y) is a loss function. If time
complexity is not an issue, the following optimization-based attack (Huang et al., 2015)

max
Z=(z1,...,zN )

[
f(u, Z) ,

1

N

∑
i

l(g(zi;u), yi)

]
=

1

N

∑
i

max
zi

l(g(zi;u), yi), (8)

which is also related to the CW attack (Carlini & Wagner, 2017), can generate strong adversarial
examples, where adversarial patterns Z = (z1, ..., zN ) are unrestricted except for the bounds such
as ‖zi − xi‖p ≤ η. The corresponding class of adversarial patterns Z is very large, which results in
strong but non-generalizable adversarial examples. Non-generalizable means the perturbation z(x)
has to be recomputed for every new test sample x. While the class of optimization-based attacks is
powerful, its large size makes it difficult to analytically study the optimal defense methods. To make
the problem learnable, we restrict the class of patterns Z to that which can be generated by a flexible
but manageable class of perturbation {z(·; v) | ∀v ∈ V }, e.g., an autoencoder of a fixed architecture
where the parameter v is the network weights. This class is a clearly an approximation to the
class of full optimization-based attacks, but is generalizable, i.e., no time-consuming optimization
is required in the test phase but only single feedforward passes. The attack network (AttNet), as we
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call it, can be of any class of appropriate neural networks. Here we use a three-layer fully-connected
network with 300 hiddens units per layer in this paper. Different from Nguyen & Sinha (2017) or
Baluja & Fischer (2017), we feed the label y into the input of the network along with the features x.
This is analogous to using the true label y in the original FGSM. While this label input is optional
but it can make the training of the attacker network easier. As with other attacks, we impose the
l∞-norm constraint on z, i.e., ‖z(x)− x‖∞ ≤ η.

Suppose now f(u, v) is the empirical risk of a classifier-attacker pair where the input x is first
transformed by attack network z(x; v) and then fed to the classifier g(z(x; v);u). The attack network
can be trained by gradient descent as well. Given a classifier u, we can use gradient descent

v ← v + σ
∂f(u, v)

∂v
(9)

to find an optimal attacker v that maximizes the risk f assuming the classifier u is fixed. Table 4
compares the error rates of the FGSM attacks and the attack network (AttNet). The table shows that
AttNet is better than or comparable to FGSM in all cases. In particular, we already observed that the
FGSM attack is no more effective against the classifier hardened against gradient-based attacks (Adv
FGSM80 or Sens FGSM), but the AttNet can incur significant error (>∼ 0.9) for those hardened
defenders. This indicates that the class of learning-based attacks is indeed different from the class
of gradient-based attacks.

Defense\Attack FGSM-curr AttNet-curr FGSM-curr AttNet-curr
η=0.3 η=0.4

No defense 1.000 1.000 1.000 1.000
Adv FGSM1 0.996 1.000 0.984 1.000

Adv FGSM80 0.473 0.899 0.131 0.903
Sens FGSM 0.048 0.965 0.038 0.902

η=0.5 η=0.6
No defense 1.000 1.000 1.000 1.000

Adv FGSM1 0.985 1.000 0.966 1.000
Adv FGSM80 0.089 0.897 0.021 0.897
Sens FGSM 0.039 1.000 0.033 0.903

Table 4: Error rates of FGSM vs learning-based attack network (AttNet) on various adversarially-
trained classifiers for MNIST. FGSM-curr/AttNet-curr means they are computed/trained for the spe-
cific classifier on the leftmost column. Note that FGSM fails to attack hardened networks (Adv
FGSM80 and Sens FGSM), whereas AttNet can still attack them successfully.

4.2 MINIMAX GAME FOR LEARNING-BASED ATTACKS

Finally, we consider the dynamics of the pair of classifier-attacker when each player can change its
parameters. Given the current classifier u, an optimal whitebox attacker parameter v is the maxi-
mizer of the risk f(u, v)

v∗(u) , argmax
v

f(u, v). (10)

Consequently, the defender should choose the classifier parameters u such that the maximum risk is
minimized

u∗ , argmin
u

max
v

f(u, v) = argmin
u
f(u, v∗(u)). (11)

This solution to the continuous minimax problem has a natural interpretation as the best worst-case
solution. Assuming the attacker is optimal, i.e., it chooses the best attack from (10) given u, no
other defense can achieve a lower risk than the minimax defense u∗ in (11). The minimax defense
is also a conservative defense. If the attacker is not optimal, and/or if the attack does not know
the defense u exactly (as in blackbox attacks), the actual risk can be lower than what the minimax
solution f(u∗, v∗(u∗)) predicts. Before proceeding further, we point out that the claims above apply
to the global minimizer u∗ and the maximizer function v∗(·), but in practice we can only find local
solutions for complex risk functions of deep classifiers and attackers.

To solve (11), we analyze the problem similarly to (5)-(7) from the previous section. At each itera-
tion, the defender should choose u in expectation of the attack and minimize f(u, v∗(u)). We use
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gradient descent

u← u− λdf(u, v
∗(u))

du
, (12)

where the total derivative df
du is

df

du
=
∂f(u, v∗(u))

∂u
+
∂v∗(u)

∂u

∂f(u, v)

∂v
. (13)

Since the exact maximizer v∗(u) is difficult to find, we only update v incrementally by one (or more)
steps of gradient-ascent update

v ← v + σ
∂f(u, v)

∂v
. (14)

The resulting formulation is closely related to the unrolled optimization (Metz et al., 2016) proposed
for training GANs, although the latter has a very different cost function f . Using the single update
(14), the total derivative is

df

du
=
∂f(u, v∗(u))

∂u
+ σ

∂2f(u, v)

∂u∂v

∂f(u, v)

∂v
. (15)

Similar to hardening a classifier against gradient-based attacks by minimizing (7) at each iteration,
the gradient update of u for f(u, v) can be done using the gradient of the following sensitivity-
penalized function

fsens(u) , f(u, v) +
σ

2

∥∥∥∥∂f(u, v)∂v

∥∥∥∥2 . (16)

In other words, u is chosen not only to minimize the risk but also to prevent the attacker from
exploiting the sensitivity of f to v. The algorithm is summarized in Alg. 1.

Algorithm 1 Minimax Optimization by Sensitivity Penalization
Input: risk f(u, v), # of iterations T , learning rates (σi), (λi), (γi)
Output: (u∗, v∗(u∗))
Initialize u0, v0
Begin

for i = 1, ... , T do
Max step: vi = vi−1 + σi

∂f(ui−1,vi−1)
∂v

Min step: ui = ui−1 − λi ∂∂u

[
f(ui−1, vi−1) +

γi−1

2

∥∥∥∂f(ui−1,vi−1)
∂v

∥∥∥2].

end for
Return (uT , vT ).

Note that this algorithm is actually independent of the adversarial example problem, and can be used
for other minimax problems as well.

4.3 MINIMAX VS MAXIMIN PROBLEMS

In analogy with the minimax problem, we can also consider the maximin solution defined by

v∗ , argmax
v

min
u
f(u, v) = argmax

v
f(u∗(v), v). (17)

where
u∗(v) , argmin

u
f(u, v) (18)

is the minimizer function. Here we are abusing the notations for the minimax solution u∗, the
maximin solution v∗, the minimizer u∗(·), and the maximizer v∗(·). Similar to the minimax solution,
the maximin solution has an intuitive meaning – it is the best worst-case solution for the attacker.
Assuming the defender is optimal, i.e., it chooses the best defense from (18) that minimizes the risk
f(u, v) given the attack v, no other attack can inflict a higher risk than the maximin attack v∗. It is
also a conservative attack. If the defender is not optimal, and/or if the defender does not know the
attack v exactly, the actual risk can be higher than what the solution f(u∗(v∗), v∗) predicts. Note

8
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that the maximin scenario where the defender knows the attack method is not very realistic but is
the opposite of the minimax scenario and provides the lower bound.

To summarize, minimax and maximin defenses and attacks have the following inherent properties.

Lemma 1. Let u∗, v∗(u), v∗, u∗(v) be the solutions of (11),(10),(17),(18).

1. f(u, v∗(u)) ≥ f(u, v): For any given defense u, the max attack v∗(u) is the most effective
attack.

2. f(u∗, v∗(u∗)) ≤ f(u, v∗(u)): Against the optimal attack v∗(u), the minimax defense u∗ is
the most effective defense.

3. f(u∗(v), v) ≤ f(u, v): For any given attack v, the min defense u∗(v) is the most effective
defense.

4. f(u∗(v), v∗) ≥ f(u∗(v), v): Against the optimal defense u∗(v), the maximin attack v∗ is
the most effective attack.

5. maxvminu f(u, v) ≤ minumaxv f(u, v): The risk of the best worst-case attack is lower
than that of the best worst-case defense.

These properties follow directly from the definitions. The lemma helps us to better understand the
dependence of defense and attack, and gives us the range of the possible risk values which can be
measured empirically. To find maximin solutions, we use the same algorithm (Alg. 1) except that
the variables u and v are switched and the sign of f is flipped before the algorithm is called.

4.4 EXPERIMENTS

In addition to minimax and maximin optimization, we also consider as a reference algorithm the
alternating descent/ascent method used in GAN training Goodfellow et al. (2014a)

u← u− λ∂f
∂u
, v ← v + σ

∂f

∂v
. (19)

Note that alternating descent/ascent finds local saddle points which are not necessarily minimax or
maximin solutions, and therefore its solution will in general be different from the solution from
Alg. 1. The difference of the solutions from three optimizations – Minimax, Maximin, and Alternat-
ing descent/ascent (Alt) – applied to a common problem, is demonstrated in Fig. 3. The figure shows
the test error over the course of optimization starting from random initializations. One can see that
Minimax (top blue curves) and Alt (middle green curves) converge to different values suggesting
the learned classifiers will also be different.
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Figure 3: Convergence of the test error rates for Minimax optimization (blue), Alternating as-
cent/descent (green), and Maximin optimization (red) for MNIST.

Table 5 compares the robustness of the classifiers trained by Minimax and Alt against the AttNet
attack (1st/2nd rows and 2nd column for each η.) Minimax defense is more robust than Alt defense

9
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at η = 0.3 (0.020 vs 0.104) and at η = 0.4 (0.552 vs 0.873). For larger η’s, both are unusably
vulnerable. Different performance of the two classifiers implies that the minimax solution found
by Alg. 1 is different from the local saddle point found by alternating descent/ascent. In addition,
against FGSM attacks, Minimax is moderately robust (0.218 – 0.342) despite that the classifiers are
not specifically trained against gradient-based attacks. In contrast, Sens FGSM is very vulnerable
(0.902 – 1.000) against AttNet which we have already observed. This result suggests that the class
of AttNet attacks and the class of gradient-based attacks are indeed different, and the former class is
larger than the latter.

Defense\Attack FGSM-curr AttNet-curr FGSM-curr AttNet-curr
η=0.3 η=0.4

Minimax 0.218 0.020 0.238 0.552
Alt 0.244 0.104 0.503 0.873

Sens FGSM 0.048 0.965 0.038 0.902
η=0.5 η=0.6

Minimax 0.342 1.000 0.299 1.000
Alt 0.289 0.902 0.157 0.899

Sens FGSM 0.039 1.000 0.033 0.903

Table 5: Error rates of Minimax-, Alt-, and adversarially-trained (Sens FGSM) classifiers for
MNIST. Minimax is overall better than Alt against AttNet-curr, and is also moderately robust against
the out-of-class attack (FGSM-curr).

Lastly, the adversarial examples generated by various attacks in the paper have diverse patterns and
are shown in Fig. 4 of the appendix.

5 DISCUSSION

5.1 ROBUSTNESS AGAINST MULTIPLE ATTACK TYPES

We discuss some limitations of the framework and also propose an extension. Ideally, a defender
should find a robust classifier against the worst attack from a very large class of attacks such as
optimization-based attacks. However, it is difficult to train classifiers against attacks from a large
class. On the other hand, if the class is too small, then the worst attack from that class is not
representative of all possible worst attacks, and therefore the minimax defense found will not be
robust to out-of-class attacks. The trade-off seems inevitable.

It is, however, possible to build a defense against multiple specific types of attacks. Suppose
z1(u), ..., zm(u) are m different types of attacks, e.g., z1=FGSM, z2=IFGSM, etc. The minimax
defense for the combined attack is the solution to the mixed continuous-discrete problem

min
u

max{f(u, z1(u)), ..., f(u, zm(u))}. (20)

Additionally, suppose zm+1(u, v), ..., zm+n(u, v) are n different types of learning-based attacks,
e.g., zm+1=2-layer dense net, zm+2=5-layer convolutional nets, etc. The minimax defense against
the mixture of multiple fixed-type and learning-based attacks can be found by solving

min
u

max{f(u, z1(u)), ... , f(u, zm(u)), max
v

f(u, zm+1(u, v)), ... ,max
v

f(u, zm+n(u, v))}.
(21)

Due to the huge computational demand to solve (21), we leave it as a future work.

5.2 ADVERSARIAL EXAMPLES AND PRIVACY ATTACKS

Lastly, we discuss a bigger picture of the game between adversarial players. The minimax optimiza-
tion arises in the leader-follower game (Brückner & Scheffer, 2011) with the constant sum constraint.
The leader-follower setting makes sense because the defense (=classifier parameters) is often pub-
lic knowledge and the attacker exploits the knowledge. Interestingly, the problem of the attack on
privacy (Hamm, 2016) has a very similar formulation as the adversarial attack problem, different
only in that the classifier is an attacker and the data perturbator is a defender. In the problem of

10
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privacy preservation against inference, the defender is a data transformer z(x) (parameterized by u)
which perturbs the raw data, and the attacker is a classifier (parameterized by v) who tries to extract
sensitive information such as identity from the perturbed data such as online activity of a person.
The transformer is the leader, such as when the privacy mechanism is public knowledge, and the
classifier is the follower as it attacks the given perturbed data. The risk for the defender is therefore
the accuracy of the inference of sensitive information measured by−E[l(z(x;u), y; v)]. Solving the
minimax risk problem (minumaxv −E[l(z(x;u), y; v)]) gives us the best worst-case defense when
the classifier/attacker knows the transformer/defender parameters, which therefore gives us a robust
data transformer to preserve the privacy against the best inference attack (among the given class of
attacks.) On the other hand, solving the maximin risk problem (maxvminu−E[l(z(x;u), y; v)])
gives us the best worst-case classifier/attacker when its parameters are known to the transformer. As
one can see, the problems of adversarial attack and privacy attack are two sides of the same coin
which can be addressed by similar frameworks and optimization algorithms.

6 CONCLUSION

In this paper, we present a continuous game formulation of adversarial attacks and defenses using
a learning-based attack class implemented by neural networks. We show that this class of attacks
is quite different from the gradient-based attacks. While a classifier robust to all types of attack
may yet be an elusive goal, the minimax defense against the neural network-based attack class is
well-defined and practically achievable. We show that the proposed optimization method can find
minimax defenses which are more robust than adversarially-trained classifiers and the classifiers
from simple alternating descent/ascent. We demonstrate these with MNIST and CIFAR-10.
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A RESULTS WITH MNIST

The architecture of the MNIST classifier is similar to the Tensorflow model 2, and is trained with
the following hyperparameters:
{Batch size = 128, optimizer = AdamOptimizer with λ = 10−4, total # of iterations=50,000.}
The attack network has three hidden fully-connected layers of 300 units, trained with the following
hyperparameters:
{Batch size = 128, dropout rate = 0.5, optimizer = AdamOptimizer with 10−3, total # of
iterations=30,000.}
For minimax, alt, and maximin optimization, the total number of iteration was 100,000. The
sensitivity-penalty coefficient of γ = 1 was used in Alg. 1.

g.

f.

e.

d.

c.

b.

a.

Figure 4: Adversarial samples generated from different attacks at η = 0.2. (a) Original data (b)
FGSM1 (c) FGSM80 (d) IFGSM1 (e) Minimax (f) Alt (g) Maximin. Note the diversity of patterns.

B RESULTS WITH CIFAR-10

We preprocess the CIFAR-10 dataset by removing the mean and normalizing the pixel values with
the standard deviation of all pixels in the image. It is followed by clipping the values to±2 standard
deviations and rescaling to [−1, 1]. The architecture of the CIFAR classifier is similar to the Tensor-
flow model 3 but is simplified further by removing the local response normalization layers. With the
simple structure, we attained ∼ 78% accuracy with the test data. The classifier is trained with the
following hyperparameters:
{Batch size = 128, optimizer = AdamOptimizer with λ = 10−4, total # of iterations=100,000.}
The attack network has three hidden fully-connected layers of 300 units, trained with the following
hyperparameters:
{Batch size = 128, dropout rate = 0.5, optimizer = AdamOptimizer with σ = 10−3, total # of
iterations=30,000.}
For minimax, alt, and maximin optimization, the total number of iteration was 100,000. The
sensitivity-penalty coefficient of γ = 1 was used in Alg. 1.

In the rest of the appendix, we repeat all the experiments with the MNIST dataset using the CIFAR-
10 dataset.

2https://github.com/tensorflow/models/tree/master/tutorials/image/mnist
3https://github.com/tensorflow/models/tree/master/tutorials/image/

cifar10
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Defense\Attack No attack FGSM IFGSM
η=0.1 η=0.2 η=0.3 η=0.4 η=0.1 η=0.2 η=0.3 η=0.4

No defense 0.222 0.976 0.825 0.869 0.884 0.668 0.907 0.959 0.971

Table 6: Error rates of FGSM and IFGSM attacks on the original classifier for cifar10. These attacks
can cause large misclassification for the given range of η.

Defense\Attack No attack FGSM IFGSM
η=0.1 η=0.2 η=0.3 η=0.4 η=0.1 η=0.2 η=0.3 η=0.4

Adv train n/a 0.196 0.642 0.668 0.702 0.373 0.658 0.741 0.750

Table 7: Error rates of FGSM and IFGSM attacks on the adversarially-trained classifiers for CIFAR-
10. This defense can significantly lower the errors from the attacks, although not as low as the
MNIST problem.
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Figure 5: Cat and mouse game of FGSM attacks and adversarial training for CIFAR-10. The upper
green points are the error rates after adversarial training, and the lower orange points are the error
rates after FGSM attack. After 160 iterations (η = 0.3), the error rate is still oscillating.
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Figure 6: Convergence of test error rates for sensitivity-penalized optimization with MNIST.
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Figure 7: Convergence of the test error rates for Minimax optimization (blue), Alternating as-
cent/descent (green), and Maximin optimization (red) for CIFAR-10.

14



Under review as a conference paper at ICLR 2018

Defense\Attack No attack FGSM FGSM-currFGSM-1 FGSM-2 · · · FGSM-80

η=0.1

No defense 0.222 0.976 0.671 · · · 0.595 0.976
Adv FGSM1 0.220 0.196 0.680 · · · 0.616 0.245
Adv FGSM2 0.258 0.640 0.484 · · · 0.612 0.708
Adv FGSM80 0.228 0.644 0.529 · · · 0.087 0.086
LWA FGSM 0.223 0.283 0.692 · · · 0.652 0.125
Sens FGSM 0.223 0.342 0.701 · · · 0.663 0.106

η=0.2

No defense 0.222 0.825 0.692 · · · 0.819 0.969
Adv FGSM1 0.216 0.642 0.630 · · · 0.609 0.264
Adv FGSM2 0.305 0.579 0.290 · · · 0.599 0.556
Adv FGSM80 0.218 0.445 0.502 · · · 0.078 0.078
LWA FGSM 0.209 0.689 0.666 · · · 0.615 0.105
Sens FGSM 0.209 0.713 0.672 · · · 0.637 0.073

η=0.3

No defense 0.222 0.869 0.891 · · · 0.877 0.955
Adv FGSM1 0.214 0.668 0.628 · · · 0.642 0.424
Adv FGSM2 0.205 0.499 0.407 · · · 0.514 0.389
Adv FGSM80 0.223 0.471 0.324 · · · 0.081 0.084
LWA FGSM 0.215 0.686 0.634 · · · 0.640 0.215
Sens FGSM 0.213 0.715 0.628 · · · 0.652 0.089

η=0.4

No defense 0.222 0.884 0.899 · · · 0.892 0.941
Adv FGSM1 0.208 0.702 0.687 · · · 0.697 0.536
Adv FGSM2 0.206 0.592 0.546 · · · 0.618 0.545
Adv FGSM80 0.225 0.497 0.385 · · · 0.121 0.124
LWA FGSM 0.210 0.693 0.639 · · · 0.626 0.173
Sens FGSM 0.214 0.714 0.635 · · · 0.640 0.109

Table 8: Error rates of different attacks on various adversarially-trained classifiers for CIFAR-10.
FGSM-curr means the FGSM attack on the specific classifier on the leftmost column. Adv FGSM
is the classifier adversally trained with FGSM attacks. Sens FGSM is the result of minimizing the
sensitivity penalty (7). LWA FGSM is the result of minimizing (7) without the gradient-norm term.

Defense\Attack FGSM-curr AttNet-curr FGSM-curr AttNet-curr
η=0.1 η=0.2

No defense 0.976 0.740 0.969 0.905
Adv FGSM1 0.245 0.999 0.264 1.000

Adv FGSM80 0.086 1.000 0.078 1.000
Sens FGSM 0.106 0.898 0.073 0.979

η=0.3 η=0.4
No defense 0.955 0.888 0.941 0.999

Adv FGSM1 0.424 1.000 0.536 1.000
Adv FGSM80 0.084 1.000 0.124 0.900
Sens FGSM 0.089 1.000 0.109 1.000

Table 9: Error rates of FGSM vs learning-based attack network (AttNet) on various adversarially-
trained classifiers for CIFAR-10. FGSM-curr/AttNet-curr means they are computed/trained for the
specific classifier on the leftmost column. Note that FGSM fails to attack against the ‘hardened’
networks (Adv FGSM80 and Sens FGSM), but AttNet can still attack them successfully.

Defense\Attack FGSM-curr AttNet-curr FGSM-curr AttNet-curr
η=0.1 η=0.2

Minimax 0.967 0.276 0.980 0.418
Alt 0.994 0.264 0.996 0.857

Sens FGSM 0.106 0.898 0.073 0.979
η=0.3 η=0.4

Minimax 0.967 0.875 0.931 0.994
Alt 0.987 0.896 0.958 1.000

Sens FGSM 0.089 1.000 0.109 1.000

Table 10: Error rates of Minimax-, Alt-, and adversarially-trained (Sens FGSM) classifiers for
MNIST. While Minimax and Alt are both vulnerable to AttNet attacks, Minimax is much less vul-
nerable than Alt at η = 0.2.
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