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ABSTRACT

In this paper we show how recent advances in spectral clustering using Bethe Hes-
sian operator (Saade et al., 2014) can be used to learn dense word representations.
We propose an algorithm SpectralWords that achieves comparable to the state-of-
the-art performance on word similarity tasks for medium-size vocabularies and
can be superior for datasets with larger vocabularies.

1 INTRODUCTION

Learning dense vector representations have been successful in multiple domains including natural
language processing for tasks like semantic and syntactic similarities (Levy & Goldberg, 2014),
parsing (Chen & Manning, 2014) and translation (Zou et al., 2013).
The family of methods was proposed to build dense representations from naturally occurring texts,
most of them explicitly or implicitly learning from co-occurrence counts of pairs of words: Skip-
gram with Negative Sampling (SGNS) (Mikolov et al., 2013), Glove (Pennington et al., 2014), SVD
on positive PMI (PPMI) matrix (Levy & Goldberg, 2014), Swivel (Shazeer et al., 2016) and others.
Recent advances (Qiu et al., 2017) in understanding SGNS suggested a deep connection to spectral
methods that use eigenvectors of linear operators based on the adjacency matrix. The classical
spectral approaches are known to perform poorly on large, sparse, and high-degree random graphs
(Zhang et al., 2012). In our work we explore if approaches like SGNS and SVD on PPMI, similarly,
get worse results on larger vocabularies and propose a spectral embedding approach based on the
Bethe Hessian operator, which was shown to perform well on sparse graphs (Saade et al., 2014).
The main contribution of our work is a novel approach based on spectral methods leveraging the
Bethe Hessian operator. On medium-size vocabularies it achieves comparable results to SGNS and
SVD on PPMI on word similarity tasks, and we show that SpectralWords can outperform those
methods on larger vocabularies.

2 NON-BACKTRACKING OPERATOR

Classical spectral methods (Von Luxburg, 2007) are based on the properties of leading eigenvectors
of adjacency matrix A of an undirected weighted graph G = (V,E) where V is a set of vertices,
E is a set of edges and wij is the weight of the edge between nodes i and j. The first eigenvector
of A essentially sorts nodes by their degrees (sum of weights of edges incident on the node). The
second eigenvector can be used to determine minimum cut on the graph, that is split its nodes into
two clusters with the minimum weight of edges connecting two clusters. We call these eigenvectors
related to the global structure of the graph useful.
Although this approach can be efficient in some cases, it is known to fail for large sparse graphs with
high-degree nodes. The phenomena has been well understood for graphs generated by the stochastic
block model (SBM). This model assumes q clusters of nodes, the edges are generated randomly
from a q × q matrix of probabilities and it is often assumed to have more edges connecting nodes
within the same community than nodes from different communities.
In the case of dense and relatively small graphs generated from SBM, useful eigenvectors are well
separated in the spectrum: they are are larger than eigenvalues corresponding to the noise that stay
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within [−2
√
c, 2
√
c] range where c is the average degree of the graph. But with the growth of

the number of nodes while keeping c constant, it’s been shown (Krivelevich & Sudakov, 2003)
that useful eigenvalues can get mixed in the noisy part of the spectrum dominated by high-degree
nodes and hence cannot be efficiently recovered. Other classical operators used in spectral methods,
like normalized laplacian or random walk matrix, are prone to the same weakness as mentioned in
(Krzakala et al., 2013).
In recent work (Krzakala et al., 2013) it was proposed to use non-backtracking operator B due to
its useful properties: when the size of the graph increases its useful eigenvalues stay outside of
[−
√
ρ(B),

√
ρ(B)] circle, where ρ(B) is the largest eigenvalue of B:

Bi→j,k→l = δjk(1− δil)wij
Where δij = 1 if i = j and δij = 0 if i 6= j. This operator effectively transforms the initial graph
into one that doesn’t allow for a random walker to get back to the node that it just came from. Thus
this operator has different spectral properties compared to adjacency matrix. Unfortunately, B is of
size 2|E| × 2|E|, which makes it unfeasible to use even for medium size graphs. However (Saade
et al., 2014) proposed a Bethe Hessian operator which is still |V | × |V |, but has the same spectrum
and properties of the useful eigenvectors as B. It’s defined for weighted graphs as follows:

H̃(r)ij = δij

1 +
∑
k∈Γ(i)

A2
ik

r2 −A2
ik

− rAij
r2 −A2

ij

(1)

Where r =
√
ρ(B), Γ(i) is a set of neighbors of node i and Aij is a value ij in an adjacency matrix.

In our work we use this operator to retrieve useful eigenvectors from the word pair co-occurrence
matrix constructed from the training corpus.

3 APPROACH

Similar to other word embedding approaches, we consider counts of pairs of words that occurred
together within a given window in the sentence in order to define similarity between two words. We
found it useful to scale the counts by a factor α ≤ 1, so we define the adjacency matrix as follows:

Aij =

{
wαij if ij ∈ E
0 if ij /∈ E

Where wij is the count of co-occurrences of words i and j within a given window. We then estimate
the ρ(B) of the non-backtracking operator by the approximation proposed in (Saade et al., 2014):

ρ̂(B) =

n∑
i

d2
i /

n∑
i

di − 1

Where di is the sum of weights of edges incident on node i. Although this is not the theoretically
correct way to estimate largest eigenvalues of B for weighted graphs (see Saade (2016) for the full
description of the weighted case), we found that in practice it is a good approximation for graphs
based on word co-occurrences.
At the final stage we find the k smallest real eigenvalues and corresponding eigenvectors of Bethe
Hessian defined in (1). We use rows of the matrix of stacked eigenvectors as word representations.

4 EXPERIMENTS

We collected pair counts from the Wikipedia dump of August 2013 1. The corpus contains 77.5
million sentences with 1.5 billion tokens. The preprocessing is done in similar way as in (Levy &
Goldberg, 2014). The evaluation tasks are the following: WordSim353 (Finkelstein et al., 2001)
partitioned into WordSim Similarity and WordSim Relatedness (Zesch et al., 2008), (Agirre et al.,
2009); MEN dataset (Bruni et al., 2012); Mechanical Turk (Radinsky et al., 2011); Rare Words
(Luong et al., 2013); and SimLex-999 dataset (Hill et al., 2015).

1We kindly thank Omer Levy for providing us with the dataset, since it wasn’t available online anymore
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Table 1: Robustness of embedding quality with growing vocabulary size. The metric is median
relative performance decrease in the method performance on similarity tasks, less decrease is better.

Vocabulary size
Method 4.4× 105 9.5× 105 2.3× 106 7.7× 106

SGNS −1% −3% −33% −98%
SVD −4% −12% −38% −77%
SpectralWords 0% −3% −21% −72%

Table 2: Performance of Spectral Words vs other methods on similarity tasks. The metric reported is
Spearman’s correlation, larger scores are better. The confidence intervals reported for SpectralWords
are estimated using 100 bootstraps, the intervals are estimates of 95 and 5 percentiles.

Method WordSim
Similarity

WordSim
Relatedness

Bruni et al.
MEN

Radinsky et al.
M. Turk

Luong et al.
Rare Words

Hill et al.
SimLex

Glove 0.725 0.604 0.729 0.632 0.403 0.398
SGNS 0.793 0.685 0.774 0.693 0.470 0.438
SVD 0.793 0.691 0.778 0.666 0.514 0.432
SpectralWords 0.800 ± 0.05 0.678 ± 0.07 0.782 ± 0.01 0.599 ± 0.08 0.508 ± 0.05 0.471 ± 0.05

SpectralWords learning2 Our method has a single hyperparameter α, which was chosen based
on grid search with validation on the performance of similarity tasks. For all experiments referenced
here we used α = 0.3. The partial eigenvalue decomposition is done with Krylov-Schur method
(Stewart, 2002) and relative eigenvalue tolerance of 1e−2.

Robustness with large vocabularies Since approaches like SGNS and SVD on PPMI are based
on a form of factorization of a transformed adjacency matrix, we expect them to be prone to the
same weakness as other adjacency matrix based methods, namely, the quality of learned embeddings
should decrease for matrices of large and sparse graphs. On the other hand, our approach should
benefit from the fact that the non-backtracking operator provides better separation of the useful
eigenpairs for sparse graphs.
To test this hypothesis, we trained models with fixed hyperparameters (for SGNS and SVD we use
those recommended by Levy et al. (2015)), dimension of 100 (due to memory constraints) while
decreasing the minimum count threshold for words. With lower threshold the vocabulary is larger
and thus the task is harder because underlying graph is significantly more sparse.
We conduct experiments with the following count thresholds [100, 30, 10, 3, 1], report the decrease
in embeddings quality compared to the smallest vocabulary based on count threshold of 100 and
show results in Table 1. We observe that, as expected, as the vocabulary size grows, all methods
performance degrade, but our proposed method is more robust to the increase in the vocabulary size.

Embeddings quality comparison We compare our method to SGNS, SVD and Glove using the
results from (Levy & Goldberg, 2014). All experiments are done using the vocabulary of 189,533
words that occurred more than 100 times in the dataset. We train our method with the same window
size and number of dimensions as other methods, see the results in Table 2. SpectralWords performs
on par with SGNS and SVD on 5 out 6 datasets and outperforms Glove on 4 out of 6 tasks.

5 CONCLUSION

We presented a novel approach based on recent advances in spectral methods that is performing
better for large and sparse graphs than approaches based on PMI-matrix factorization. Regarding
the future work, it would be useful to scale the presented approach for larger datasets and vocabulary
sizes and test it for tasks like node classification (Perozzi et al., 2014) or product similarities (Grbovic
et al., 2015) that often deal with extremely large vocabularies.

2We plan on releasing the code to our approach and the Wikipedia dump used for our experiments
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