
Published as a conference paper at ICLR 2018

MINIMAX CURRICULUM LEARNING:
MACHINE TEACHING WITH DESIRABLE DIFFICULTIES
AND SCHEDULED DIVERSITY

Tianyi Zhou & Jeff Bilmes
University of Washington, Seattle
{tianyizh,bilmes}@uw.edu

ABSTRACT

We introduce and study minimax curriculum learning (MCL), a new method for
adaptively selecting a sequence of training subsets for a succession of stages in
machine learning. The subsets are encouraged to be small and diverse early on,
and then larger, harder, and allowably more homogeneous in later stages. At each
stage, model weights and training sets are chosen by solving a joint continuous-
discrete minimax optimization, whose objective is composed of a continuous loss
(reflecting training set hardness) and a discrete submodular promoter of diversity
for the chosen subset. MCL repeatedly solves a sequence of such optimizations
with a schedule of increasing training set size and decreasing pressure on diversity
encouragement. We reduce MCL to the minimization of a surrogate function han-
dled by submodular maximization and continuous gradient methods. We show that
MCL achieves better performance and, with a clustering trick, uses fewer labeled
samples for both shallow and deep models. Our method involves repeatedly solving
constrained submodular maximization of an only slowly varying function on the
same ground set. Therefore, we develop a heuristic method that utilizes the previ-
ous submodular maximization solution as a warm start for the current submodular
maximization process to reduce computation while still yielding a guarantee.

1 INTRODUCTION

Inspired by the human interaction between teacher and student, recent studies (Khan et al., 2011;
Basu & Christensen, 2013; Spitkovsky et al., 2009) support that learning algorithms can be improved
by updating a model on a designed sequence of training sets, i.e., a curriculum. This problem
is addressed in curriculum learning (CL) (Bengio et al., 2009), where the sequence is designed
by a human expert or heuristic before training begins. Instead of relying on a teacher to provide
the curriculum, self-paced learning (SPL) (Kumar et al., 2010; Tang et al., 2012a; Supancic III &
Ramanan, 2013; Tang et al., 2012b) chooses the curriculum during the training process. It does so by
letting the student (i.e., the algorithm) determine which samples to learn from based on their hardness.
Given a training set D = {(x1, y1), . . . , (xn, yn)} of n samples and loss function L(yi, f(xi, w)),
where xi ∈ Rm represents the feature vector for the ith sample, yi is its label, and f(xi, w) is the
predicted label provided by a model with weight w, SPL performs the following:

min
w∈Rm

min
ν∈[0,1]n

[
n∑
i=1

νiL (yi, f(xi, w))− λ
n∑
i=1

νi

]
. (1)

SPL jointly learns the model weights w and sample weights ν, which end up being 0-1 indicators
of selected samples, and it does so via alternating minimization. Fixing w, minimization w.r.t. ν
selects samples with loss L(yi, f(xi, w)) < λ, where λ is a “hardness parameter” as it corresponds
to the hardness as measure by the current loss (since with large λ, samples with greater loss are
allowed in). Self-paced curriculum learning (Jiang et al., 2015) introduces a blending of “teacher
mode” in CL and “student mode” in SPL, where the teacher can define a region of ν by attaching a
linear constraint aT ν ≤ c to Eq. (1). SPL with diversity (SPLD) (Jiang et al., 2014), adds to Eq. (1)
a negative group sparse regularization term −γ‖ν‖2,1 , −γ

∑b
j=1 ‖ν(j)‖2, where the samples are

1

Published as a conference paper at ICLR 2018

divided into b groups beforehand and ν(j) is the weight vector for the jth group. Samples coming
from different groups are thus preferred, to the extent that γ > 0 is large.

CL, SPL, and SPLD can be seen as a form of continuation scheme (Allgower & Georg, 2003) that
handles a hard task by solving a sequence of tasks moving from easy to hard; the solution to each task
is the warm start for the next slightly harder task. That is, each task, in the present case, is determined
by the training data subset and other training hyperparameters, and the resulting parameters at the end
of a training round are used as the initial parameters for the next training round. Such continuation
schemes can reduce the impact of local minima within neural networks (Bengio et al., 2013; Bengio,
2014). With SPL, after each round of alternating minimization to optimize Eq. (1), λ is increased so
that the next round selects samples that have a larger loss, a process (Khan et al., 2011; Tang et al.,
2012b; Basu & Christensen, 2013) that can both help avoid local minima and reduce generalization
error. In SPLD, γ is also increased between training rounds, increasingly preferring diversity. In each
case, each round results in a fully trained model for the currently selected training samples.

Selection of training samples has been studied in other settings as well, often with a different
motivation. In active learning (AL) (Settles, 2010) and experimental design (Montgomery, 2006), the
learner can actively query labels of samples from an unlabeled pool during the training process, and
the goal is to reduce annotation costs. The aim is to achieve the same or better performance using
fewer labeled samples by ruling out uninformative ones. Diversity modeling was introduced to AL
in (Wei et al., 2015). It uses submodular maximization to select diverse training batches from the
most uncertain samples. However, changing the diversity during the learning process has not been
investigated as far as we know. In boosting (Schapire, 1990; Freund & Schapire, 1997), the goal is to
learn an ensemble of weak classifiers sequentially; it does this by assigning weights to all samples,
with larger weights given to samples having larger loss measured by an aggregation of previously
trained models. Both active learning and boosting favor samples that are difficult to predict, since
they are the most informative to learn. For example, uncertainty sampling (Culotta & McCallum,
2005; Scheffer et al., 2001; Dagan & Engelson, 1995; Dasgupta & Hsu, 2008) selects samples that
are most uncertain, while query by committee (Seung et al., 1992; Dagan & Engelson, 1995; Abe &
Mamitsuka, 1998) selects the ones that multiple models most disagree on. With machine teaching
(Khan et al., 2011; Zhu, 2015; Patil et al., 2014; Zhu et al., 2018), a separate teacher helps the training
procedure find a good model.

The SPL approach starts with a smaller set of easy samples and gradually increases the difficulty
of the chosen samples as measured by the sample loss of the model produced by previous round’s
training. One of the difficulties of this approach is the following: since for any given value of λ the
relatively easiest samples are chosen, there is a good chance that the process can repeatedly select a
similar training set over multiple rounds and therefore can learn slowly. This is precisely the problem
that SPLD address — by concomitantly increasing the desired diversity over rounds, the sample
selection procedure chooses from an increasingly diverse set of different groups, as measured by
‖ν‖2,1. Therefore, in SPLD, early stages train on easier not necessarily diverse samples and later
stages train on harder more diverse samples.

There are several challenges remaining with SPLD, however. One is that in early stages, it is still
possible to repeatedly select a similar training set over multiple rounds since diversity might not
increase dramatically between successive rounds. Potentially more problematically, it is not clear that
having a large diversity selection weight in late stages is desirable. For example, with a reasonably
trained model, it might be best to select primarily the hardest samples in the part of the space near the
difficult regions of the decision boundaries. With a high diversity weight, samples in these difficult
decision boundary regions might be avoided in favor of other samples perhaps already well learnt and
having a large margin only because they are diverse, thereby leading to wasted effort. At such point,
it would be beneficial to choose points having small margin from the same region but that might not
have the greatest diversity, especially when using only a simple notion of diversity such as the group
sparse norm ‖v‖2,1. Also, it is possible that late stages of learning can select outliers only because
they are both hard and diverse. Lastly, the SPL/SPLD min-min optimization involves minimizing a
lower bound of the loss, while normally one would, if anything, wish to minimize the loss directly or
at least an upper bound.

Motivated by these issues, we introduce a new form of CL that chooses the hardest diverse samples in
early rounds of training and then actually decreases, rather than increases, diversity as training rounds
proceed. Our contention is that diversity is more important during the early phases of training when

2

Published as a conference paper at ICLR 2018

only relatively few samples are selected. Later rounds of training will naturally have more diversity
opportunity simply because the size of the selected samples is much larger. Also, to avoid successive
rounds selecting similar sets of samples, our approach selects the hardest, rather than the easiest,
samples at each round. Hence, if a set of samples is learnt well during one training round, those
samples will tend to be ill-favored in the next round because they become easier. We also measure
hardness via the loss function, but the selection is always based on the hardest and most diverse
samples of a given size k, where the degree of diversity is controlled by a parameter λ, and where
diversity is measured by an arbitrary non-monotone submodular function. In fact, for binary variables
the group sparse norm is also submodular where ‖ν‖2,1 =

∑b
j=1

√
|Cj ∩A| = F (A) where A is

the set for which ν is the characteristic vector, and Cj is the set of samples in the jth group. Our
approach allows the full expressive class of submodular functions to be used to measure diversity
since the selection phases is based on submodular optimization.

Evidence for the naturalness of such hardness and diversity adjustment in a curriculum can also be
found in human education. For example, courses in primary school usually cover a broad, small, and
relatively easy range of topics, in order to expose the young learner to a diversity of knowledge early
on. In college and graduate school, by contrast, students focus on advanced deeper knowledge within
their majors. As another example, studies of bilingualism (Bialystok et al., 2012; Li et al., 2014;
Mechelli et al., 2004; Kovács & Mehler, 2009) show that learning multiple languages in childhood is
beneficial for future brain development, but early-age multi-lingual learning is usually not advanced
or concentrated linguistically for any of the languages involved. Still other studies argue that difficulty
can be desired at early human learning stages (Bjork & Bjork, 1992; McDaniel & Butler, 2011).

1.1 OUR APPROACH: MINIMAX CURRICULUM LEARNING

We introduce a new form of curriculum learning called minimax curriculum learning (MCL). MCL
increases desired hardness and reduces diversity encouragement over rounds of training. This is
accomplished by solving a sequence of minimax optimizations, each of which having the form:

min
w∈Rm

max
A⊆V,|A|≤k

∑
i∈A

L (yi, f(xi, w)) + λF (A). (2)

The objective is composed of the loss on a subset A of samples evaluating their hardness and a
normalized monotone non-decreasing submodular function F : 2V → R+ measuring A’s diversity,
where V is the ground set of all available samples. A larger loss implies that the subset A has been
found harder to learn, while a larger F (A) indicates greater diversity. The weight λ controls the
trade-off between hardness and diversity, while k, the size of the resulting A, determines the number
of samples to simultaneously learn and hence is a hardness parameter.

It is important to realize that F (A) is not a parameter regularizer (e.g., `1 or `2 regularization on
the parameters w) but rather an expression of preference for a diversity of training samples. In
practice, one would add to Eq. (2) an appropriate parameter regularizer as we do in our experiments
(Section 3).

Like SPL/SPLD, learning rounds are scheduled, here each round with increasing k and decreasing λ.
Unlike SPL/SPLD, we explicitly schedule the number of selected samples via k rather than indirectly
via a hardness parameter. This makes sense since we are always choosing the hardest k samples at a
given λ diversity preference, so there is no need for an explicit real-valued hardness parameter as in
SPL/SPLD. Also, the MCL optimization minimizes an upper bound of the loss on any size k subset
of training samples.

The function F (·) may be chosen from the large expressive family of submodular functions, all of
which are natural for measuring diversity, and all having the following diminishing returns property:
given a finite ground set V , and any A ⊆ B ⊆ V and a v /∈ B,

F (v ∪A)− F (A) ≥ F (v ∪B)− F (B). (3)
This implies v is no less valuable to the smaller set A than to the larger set B. The marginal gain
of v conditioned on A is denoted f(v|A) , f(v ∪ A) − f(A) and reflects the importance of v to
A. Submodular functions (Fujishige, 2005) have been widely used for diversity models (Lin et al.,
2009; Lin & Bilmes, 2011; Batra et al., 2012; Prasad et al., 2014; Gillenwater et al., 2012; Iyer &
Bilmes, 2015; Bilmes & Bai, 2017).

3

Published as a conference paper at ICLR 2018

Although Eq. (2) is a hybrid optimization involving both continuous variables w and discrete variables
A, it can be reduced to the minimization of a piecewise function, where each piece is defined by a
subset A achieving the maximum in a region around w. Each piece is convex when the loss is convex,
so various off-the-shelf algorithms can be applied once A has been computed. However, the number
of possible sets A is

(
n
k

)
, and enumerating them all to find the maximum is intractable. Thanks to

submodularity, fast approximate algorithms (Nemhauser et al., 1978; Minoux, 1978; Mirzasoleiman
et al., 2015) exist to find an approximately optimal A. Therefore, the outer optimization over w will
need to minimize an approximation of the piecewise function defined by an approximate A computed
via submodular maximization.

2 MINIMAX CURRICULUM LEARNING AND MACHINE TEACHING

The minimax problem in Eq. (2) can be seen as a two-person zero-sum game between a teacher (the
maximizer) and a student (the minimizer): the teacher chooses training set A based on the student’s
feedback about the hardness (i.e., the loss achieved by current model w) and how diverse according
to the teacher (λF (A)), while the student updates w to reduce the loss on training set A (i.e., learn
A) given by the teacher. Similar teacher-student interaction also exist in real life. In addition, the
teacher usually introduces concepts at the beginning and asks a small number of easy questions from
a diverse range of topics and receives feedback from the student, and then further trains the student
on the topics the student finds difficult while eschewing topics the student has mastered.

MCL’s minimax formulation is different from the min-min formulation used in SPL/SPLD. For
certain losses and models, L(yi, f(xi, w)) is convex in w. The min-min formulation, however, is
only bi-convex and requires procedures such as alternative convex search (ACS) as in (Bazaraa et al.,
1993). Furthermore, diversity regularization of ν in SPLD leads to the loss of bi-convexity altogether.

Minimizing the worst case loss, as in MCL, is a widely used strategy in machine learning (Lanckriet
et al., 2003; Farnia & Tse, 2016; Shalev-Shwartz & Wexler, 2016) to achieve better generalization
performance and model robustness, especially when strong assumptions cannot be made about the
data distribution. Compared to SPL/SPLD, MCL is also better in that the outer minimization over
w in Eq. (2) is a convex program, and corresponds to minimizing the objective g(w) in Eq. (4).
On the other hand, querying g(w) requires submodular maximization which can only be solved
approximately.

The goal of this section, therefore, is to address the minimax problem in Eq. (2), i.e., the minimization
minw∈Rm g(w) of the following objective g(w).

g(w) , max
A⊆V,|A|≤k

∑
i∈A

L (yi, f(xi, w)) + λF (A) (4)

If the loss function L(yi, f(xi, w)) is convex w.r.t. w, then g(w) is convex but, as mentioned above,
enumerating all subsets is intractable. Defining the discrete objective Gw : 2V → R+ where

Gw(A) ,
∑
i∈A

L (yi, f(xi, w)) + λF (A). (5)

shows that computing g(w) in involves a discrete optimization over Gw(A), a problem that is
submodular since Gw(A) is weighted sum of a non-negative (since loss is non-negative) modular and
a submodular function, and thus Gw is monotone non-decreasing submodular. Thus, the fast greedy
procedure mentioned earlier can be used to approximately optimizes Gw(A) for any w.

Let Âw ⊆ V be the k-constrained greedy approximation to maximizing Gw(A). We define the
following approximate objective:

ĝ(w) ,
∑
i∈Âw

L (yi, f(xi, w)) + λF (Â), (6)

and note that it satisfies αg(w) ≤ ĝ(w) ≤ g(w) where α is the approximation factor of submodular
optimization. For w̃ within a region around w, ĝ(w̃) will utilize the same set Âw. Therefore, ĝ(w)
is piecewise convex, if the loss function L(yi, f(xi, w)) is convex w.r.t. w, and different regions of
within Rm are associated with different Â although not necessarily the same regions or sets that
define g(w). We show in Section 2.2 that minimizing ĝ(w) offers an approximate solution to Eq. (2).

4

Published as a conference paper at ICLR 2018

With ĝ(w) given, our algorithm is simply gradient descent for minimizing ĝ(w), where many
off-the-shelf methods can be invoked, e.g., SGD, momentum methods, Nesterov’s accelerated
gradient (Nesterov, 2005), Adagrad (Duchi et al., 2011), etc. The key problem is how to obtain ĝ(w),
which depends on suboptimal solutions in different regions of w. It is not necessary, however, to
run submodular maximization for every region of w. Since we use gradient descent, we only need
to know ĝ(w) for w on the optimization path. At the beginning of each iteration, we fix w and use
submodular maximization to achieve the Âw that defines ĝ(w). Then a gradient update step is applied
to ĝ(w). Let A∗w represent the optimal solution to Eq. (5), then Âw satisfies G(Â) ≥ αG(A∗).

Algorithm 1 Minimax Curriculum Learning (MCL)
1: input: π(·, η), γ, p, ∆,α̃
2: output: w0

T
3: initialize: τ ← 1, w0

τ , λ, k,
4: while not “converged” do
5: for t ∈ {0, · · · , p} do
6: G(A)←

∑
i∈A L (yi, f(xi, w

t
τ)) + λF (A);

7: Â← WS-SUBMODULARMAX(G, k, Â, α̃);
8: ∇ĝ(wtτ) = ∂

∂w

∑
i∈Â L (yi, f(xi, w

t
τ));

9: wt+1
τ ← wtτ + π

(
{w1:t

τ }, {∇ĝ(w1:t
τ)}, η

)
;

10: end for
11: w0

τ+1 ← wpτ , λ← (1−γ) ·λ, k ← k+∆, τ ← τ+1;
12: end while

Algorithm 1 details MCL. Lines 5-10
solve the optimization in Eq. (2) with
λ and k scheduled in line 11. Lines
6-7 finds an approximate Â via sub-
modular maximization, discussed fur-
ther in Section 2.1. Lines 8-9 update
w for the current Â by gradient de-
scent π(·, η) with learning rate η. The
inner optimization stops after p steps
and then λ is reduced by factor 1− γ
where γ ∈ [0, 1] and k is increased
by ∆. The outer optimization stops
after T steps when a form of “conver-
gence”, described below, is achieved.
Given Âw, ĝ(w) has gradient

∇ĝ(w) =
∂

∂w

∑
i∈Âw

L (yi, f(xi, w)) , (7)

and thus gradient descent method can update w. For example, we can treat Â as a batch if k is small,
and update w by w ← w− η∇ĝ(w) with learning rate η. For large Âw, we can use SGD that applies
an update rule to mini-batches within Âw. More complex gradient descent rules π(·, η) can take
historical gradients and wtτ ’s into account leading to wt+1 ← wt + π

(
{w1:t}, {∇ĝ(w1:t)}, η

)
.

Considering the outer loop as well, the algorithm approximately solves a sequence of Eq. (2)s with
decreasing λ and increasing k, where the previous solutions act as a warm start for the next iterations.
This corresponds to repeatedly updating the model w on a sequence of training sets Â that changes
from small, diverse, and hard to large.

2.1 SUBMODULAR MAXIMIZATION

Although solving Eq. (5) exactly is NP-hard, a near-optimal solution can be achieved by the greedy
algorithm, which offers a worst-case approximation factor of α = 1− e−1 (Nemhauser et al., 1978).
The algorithm starts with A← ∅, and selects next the element with the largest marginal gain f(v|A)
from V \A, i.e., A ← A ∪ {v∗} where v∗ ∈ argmaxv∈V \A f(v|A), and this repeats until |A| = k.
It is simple to implement, fast, and usually outperforms other methods, e.g., those based on integer
linear programming. It requires O(nk) function evaluations for ground set size |V | = n. Since
Algorithm 1 runs greedy Tp times, it is useful for the greedy procedure to be as fast as possible.
The accelerated, or lazy, greedy algorithm (Minoux, 1978) reduces the number of evaluations per
step by updating a priority queue of marginal gains, while having the same output and guarantee as
the original (thanks to submodularity) and offers significant speedups. Still faster variants are also
available Mirzasoleiman et al. (2015; 2016). Our own implementation takes advantage of the fact that
line 7 of Algorithm 1 repeatedly solves submodular maximization over a sequence of submodular
functions that are changing only slowly, and hence the previous set solution can be used as a warm
start for the current algorithm, a process we call WS-SUBMODULARMAX outlined in Algorithm 2.

The greedy procedure offers much better approximation factors than 1 − e−1 when the objective
G(A) is close to modular. Specifically, the approximation factor becomes α = (1 − e−κG)/κG
(Conforti & Cornuejols, 1984), which depends on the curvature κG ∈ [0, 1] of G(A) defined as

κG , 1−min
j∈V

G(j|V \j)
G(j)

. (8)

5

Published as a conference paper at ICLR 2018

When κG = 0, G is modular, and when κG = 1, G is fully curved and the above bound recovers
1− e−1. G(A) becomes more modular as the outer loop proceeds since λ decreases. Therefore, the
approximation improves with the number of outer loops. In fact, we have:

Lemma 1. LetG(A) = L(A)+λF (A) where F is a monotone non-decreasing submodular function
with curvature κF , L is a non-negative modular function, and λ ≥ 0. Then κG ≤ κF /(c1/λ + 1)
where c1 = minj∈V L(j)/F (j).

The proof is given in Appendix 4.1. In MCL, therefore, the submodular approximation improves
(α→ 1) as λ grows, and the surrogate function ĝ(w) correspondingly approaches the true convex
objective g(w).

2.2 CONDITIONS AT CONVERGENCE

In this section, we study how close the solution ŵ is of applying gradient descent to ĝ(w), where
we assume p is large enough so that a form of convergence occurs. Specifically, in Theorem 1,
we analyze the upper bound on ‖ŵ − w∗‖22 based on two assumptions: 1) the loss L (yi, f(xi, w))
being β-strongly convex w.r.t. w; and 2) ŵ is achieved by running gradient descent in lines 6-9 of
Algorithm 1 until convergence, defined as the gradient reaching zero. In case the loss L (yi, f(xi, w))
is convex but not β-strongly convex, a commonly used trick to modify it to β-strongly convex is to
add an `2 regularization (β/2)‖w‖22. In addition, for non-convex L (yi, f(xi, w)), it is possible to
prove that with high probability, a noise perturbed SGD on ĝ(w) can hit an ε-optimal local solution
of g(w) in polynomial time — we leave this for future work. In our empirical study (Section 3),
MCL achieves good performance even when applied to non-convex deep neural networks. The
following theorem relies on the fact that the maximum of multiple β-strongly convex functions is
also β-strongly convex, shown in Appendix 4.2.

Theorem 1 (Inner-loop convergence). For the minimax problem in Eq. (2) with ground set of samples
V and λ ≥ 0, if the loss function L (yi, f(xi, w)) is β-strongly convex and |V | ≥ k, running lines
6-9 of Algorithm 1 until convergence (defined as the gradient reaching zero) yields a solution ŵ
satisfying

‖ŵ − w∗‖22 ≤
2

kβ

(
1

α
− 1

)
· g(w∗), (9)

ŵ is the solution achieved at convergence, w∗ is the optimal solution of the minimax problem in Eq.(2),
g(w∗) is the objective value achieved on w∗, and α is the approximation factor that submodular
maximization can guarantee for G(A).

The proof is given in Appendix 4.3.

It is interesting to note that the bound depends both on the strong convexity parameter β and on
the submodular maximization approximation α. As mentioned in Lemma 1, as λ gets smaller, the
approximation factor α approaches 1 meaning that the bound in Equation (9) improves.

We mention the convergence criteria where the gradient reaches zero. While it is possible, in theory,
for lines 6-9 of Algorithm 1 to oscillate amongst the non-differentiable boundaries between the
convex pieces, with most damped learning rates, this will eventually subside and the algorithm will
remain within one convex piece. The reason for this is line 7 of the algorithm always chooses one
Â thereby selecting one convex piece associated with the region around wtτ , and with only small
subsequent adjustments to wtτ , the same Â will continue to be selected. Hence, the algorithm will, in
such case, reach the minimum of that convex piece where the gradient is zero.

We can restate and then simplify the above bound in terms of the resulting parameters, and corre-
sponding λ, k values, used at a particular iteration τ of the outer loop. In the following, ŵτ is the
solution achieved by Algorithm 1 at the iteration τ of the outer loop, and the optimal solution of the
minimax problem in Eq.(2) with λ, k set as in iteration τ is denoted w∗T .

Corollary 1. If the loss function L (yi, f(xi, w)) is β-strongly convex, the submodular function F (·)
has curvature κF , and if each inner-loop in Algorithm 1 runs until convergence, then the solution ŵτ
at the end of the τ th iteration of the outer-loop fulfills:

‖ŵτ − w∗τ‖22 ≤
2κF

kβ(c1/λ+ 1)
g(w∗τ) ≤ 2κF

βc1
× λ

k
× g(w∗τ), (10)

6

Published as a conference paper at ICLR 2018

where w∗τ is the optimal solution of the minimax problem in Eq. (2) with λ set as in the τ th outer loop
iteration.

Thus, if k starts from k0 and linearly increases via k ← k + ∆ (as in line 11 of Algorithm alg:mcl),

‖ŵτ − w∗τ‖22 ≤
2κFλ0
βc1

× (1− γ)τ

(k0 + τ∆)
× [g(w∗∞) + λ0c2(1− γ)τ] , (11)

Otherwise, if k increases exponentially, i.e., k ← (1 + ∆) · k,

‖ŵτ − w∗τ‖22 ≤
2κFλ0
βc1k0

×
(

1− γ
1 + ∆

)τ
× [g(w∗∞) + λ0c2(1− γ)τ] . (12)

In the above, λ0 and k0 are the initial values for λ and k, c1 =
minj∈V,t∈[1,τ][L (yi, f(xi, ŵ

t
τ)) /F (j)], c2 = maxA⊆V,|A|≤k F (A), and g(w∗∞) =

minw∈Rm maxA⊆V,|A|≤k
∑
i∈A L (yi, f(xi, w)).

The proof can be found in Appendix 4.5. On the one hand, the upper bound above is in terms of the
ratio λ/k which improves with larger subset sizes. On the other hand, submodular maximization
becomes more expensive with k. Hence, Algorithm 1 chooses a schedule to decrease λ exponentially
and increase k only linearly. Also, we see that the bound is dependent on the submodular curvature
κF , the strongly-convex constant β, and c1 which relates the submodular and modular terms (similar
to as in Lemma 1). These quantities (κF /β and c1) might be relevant for other convex-submodular
optimization schemes.

2.3 HEURISTIC IMPROVEMENTS

There are several heuristic improvements we employ that are described next.

Algorithm 1 stops gradient descent after p steps. A reason for doing this is that ŵp can be sufficient
as a warm-start for the next iteration if p is large enough. We also have not observed any benefit for
larger p, although we do eventually observe convergence empirically when the average loss no longer
change appreciably between stages.

Also, lines 6-7 of Algorithm 1 require computing the loss on all the samples, and each step of the
greedy algorithm needs to, in the worst case, evaluate the marginal gains of all of the unselected
samples. Moreover, this is done repeatedly in the inner-most block of two nested loops. Therefore,
we use two heuristic tricks to improve efficiency.

Fist, rather than selecting individual samples, we first cluster the data and then select clusters, thereby
reducing the ground set size from the number of samples to the number of clusters. We replace the
per-sample loss L (yi, f(xi, w)) with a per-cluster loss L

(
Y (i), f(X(i), w)

)
that we approximate by

the loss of the sample closest to the centroid within each cluster:

L
(
Y (i), f(X(i), w)

)
,
∑

j∈C(i)
L (yj , f(xj , w)) ≈ |C(i)|L

(
y(i), f(x(i), w)

)
, (13)

where C(i) is the set of indices of the samples in the ith cluster, and x(i) with label y(i) is the
sample closest to the cluster centroid. We find that the loss on x(i) is sufficiently representative to
approximately indicate the hardness of the cluster. The set V becomes the set of clusters and A ⊆ V
is a set of clusters, and hence the ground set size is reduced speeding up the greedy algorithm. When
computing F (A), the diversity of selected clusters, cluster centroids again represent the cluster. In
line 8, the gradient is computed on all the samples in the selected clusters rather than on only x(i) at
which point the labels of all the samples in the selected clusters are used. Otherwise, when selecting
clusters via submodular maximization, the labels of only the centroid samples are needed. Thus, we
need only annotate and compute the loss for samples in the selected clusters and the representative
centroid samples x(i) of other clusters. This also reduces the need to label all samples up front as only
the labels of the selected clusters, and centroid samples of each cluster, are used (i.e., the clustering
process itself does not use the labels).

We can further reduce the ground set to save computation during submodular maximization via pre-
filtering methods that lead either to no (Wei et al., 2014a) or little (Zhou et al., 2017; Mirzasoleiman
et al., 2015) reduction in approximation quality. Moreover, as λ decreases in the MCL objective and
G(A) becomes more modular, pruning method become more effective. More details are given in
Section 4.6.

7

Published as a conference paper at ICLR 2018

3 EXPERIMENTS

Method
Dataset News20 MNIST CIFAR10 STL10 SVHN Fashion

SGD(random) 14.27 0.88 18.52 21.76 5.20 7.79
SPL 15.43 1.25 21.14 20.63 5.67 7.46
SPLD 16.23 1.18 20.79 21.25 5.40 7.80
MCL(∆ = 0, λ = 0, γ = 0) 15.99 1.23 18.04 20.50 5.37 7.95
MCL(∆ = 0, λ > 0, γ > 0) 16.54 0.95 17.33 19.70 4.95 7.29
MCL(∆ > 0, λ > 0, γ = 0) 15.45 0.82 16.93 20.40 5.29 7.07
MCL-RAND 16.23 0.80 17.12 20.42 5.18 6.92
MCL(∆ > 0, λ > 0, γ > 0) 14.12 0.75 12.87 17.83 4.19 6.36

Table 1: Test error (%) for different methods (SGD shows the lowest error out of 10 random trials).
In this section, we apply different curriculum learning methods to train logistic regression models on
20newsgroups (Lang, 1995), LeNet5 models on MNIST (Lecun et al., 1998), convolutional neural
nets (CNNs) with three convolutional layers1 on CIFAR10 (Krizhevsky & Hinton, 2009), CNNs with
two convolutional layers 2 on Fashion-MNIST (“Fashion” in all tables) (Xiao et al., 2017), CNNs
with six convolutional layers on STL10 (Coates et al., 2011), and CNNs with seven convolutional
layers on SVHN (Netzer et al., 2011)3. Details on the datasets can be found in Table 3 of the appendix.
In all cases, we also use `2 parameter regularization on w with weight 1e− 4 (i.e., the weight decay
factor of the optimizer).

We compare MCL and its variants to SPL (Kumar et al., 2010), SPLD (Jiang et al., 2014) and SGD
with a random curriculum (i.e., with random batches). Each method uses mini-batch SGD for π(·, η)
with the same learning rate strategy to update w. The methods, therefore, differ only in the curriculum
(i.e., the sequence of training sets).

For SGD, in each iteration, we randomly select 4000 samples (20newsgroups) or 5000 samples (other
datasets) and apply mini-batch SGD to the selected samples. In SPL and SPLD, the training set starts
from a fixed size k (4000 samples for 20newsgroups, 5000 samples for other datasets), and increases
by a factor of 1 + µ (where µ = 0.1) per round of alternating minimization (i.e., per iteration of
the outer loop) 4. We use ρ to denote the number of iterations of the inner loop, which aims to
minimize the loss w.r.t. the model w on the selected training set. In SPLD, we also have a weight
for the negative group sparsity: it starts from ξ and increases by a factor of 1.1 at each round of
alternating minimization (i.e., per iteration of the outer loop). We test five different combinations
of {ρ, µ} and {ρ, ξ} for SPL and SPLD respectively. The best combination with the smallest test
error rate is what we report. Neither SPL nor SPLD uses the clustering trick we applied to MCL:
they compute the exact loss on each sample in each iteration. Hence, they have more accurate
estimation of the hardness on each sample, and require knowing the labels of all samples (selected
and unselected) and cannot reduce annotation costs. Note SPLD still needs to run clustering and use
the resulted clusters as groups in the group sparsity (which measures diversity in SPLD). We did not
select samples with SPL/SPLD as we do with MCL since we wanted to test SPL/SPLD as originally
presented — intuitively, SPL/SPLD should if anything only do better without such clustering due
to the more accurate sample-specific hardness estimation. The actual clustering, however, used for
SPLD’s diversity term is the same as that used for MCL’s cluster samples. We apply the mini-batch
k-means algorithm to the features detailed in the next paragraph to get the clusters used in MCL and
SPLD. Although both SPL and SPLD can be reduced to SGD when λ→∞ (i.e., all samples always
selected), we do not include this special case because SGD is already a baseline. For SGD with a
random curriculum, results of 10 independent trials are reported.

In our MCL experiments, we use a simple “feature based” submodular function (Wei et al., 2014b)
where F (A) =

∑
u∈U ωu

√
cu(A) and where U is a set of features. For a subset A of clusters,

1The “v3” network from https://github.com/jseppanen/cifar_lasagne.
2A variant of LeNet5 with 64 kernels for each convolutional layer.
3The network structures for STL10 and SVHN can be found at https://github.com/

aaron-xichen/pytorch-playground
4Similar to (Jiang et al., 2014), instead of specifying the absolute value of λ in each iteration, we find that

specifying the number of selected samples k is more robust empirically. Because directly setting λ can result in
selecting too many or too few samples, but SPL/SPLD needs to increase training samples gradually.

8

https://github.com/jseppanen/cifar_lasagne
https://github.com/aaron-xichen/pytorch-playground
https://github.com/aaron-xichen/pytorch-playground

Published as a conference paper at ICLR 2018

Dataset News20 MNIST CIFAR10 STL10 SVHN Fashion
Total time 2649.19s 3418.97s 3677.73s 2953.47s 34153.81s 2927.18s
WS-SUBMODULARMAX 62.44s 35.33s 127.36s 206.70s 1892.62s 167.55s

Table 2: Total time (secs.) of MCL(∆ > 0, λ > 0, γ > 0) and time only on WS-SUBMODULARMAX.

cu(A) =
∑
i∈A cu(i), where cu(i) is the nonnegative feature u of the centroid for cluster i, and can

be interpreted as a nonnegative score for cluster i. We use TF-IDF features for 20newsgroup. For the
other datasets, we train a corresponding neural networks on a small random subset of training data
(e.g., hundreds of samples) for one epoch, and use the inputs to the last fully connected layer (whose
outputs are processed by softmax to generate class probabilities) as features. Because we always use
ReLU activations between layers, the features are all nonnegative and the submodularity of F (A)
follows as a consequence. These features are also used by mini-batch k-means to generate clusters
for MCL and SPLD.

For MCL, we set the number of inner loop iterations to p ≤ 50. For each dataset, we choose p as the
number among {10, 20, 50} that reduces the training loss the most in the first few iterations of the
outer loop, and then use that p for the remaining iterations. As shown in Table 4, we use p = 50 for
20newsgroups, MNIST and Fashion-MNIST, and p = 20 for the other three datasets.

We consider five variants of MCL: 1) MCL(∆ = 0, λ = 0, γ = 0) having neither submodular
regularization that promotes diversity nor scheduling of k that increases hardness; 2) MCL(∆ = 0,
λ > 0, γ > 0), which decreases diversity by exponentially reducing the weight λ of the submodular
regularization, but does not have any scheduling of k, i.e., k is fixed during the algorithm; 3)
MCL(∆ > 0, λ > 0, γ = 0), which only uses the scheduling of k shown in Algorithm 1, but the
diversity weight λ is positive and fixed during the algorithm, i.e., with γ = 0; 4) MCL-RAND(r,q),
which randomly samples r clusters as a training set Â after every q rounds of the outer loop in
Algorithm 1, and thus combines both MCL and SGD; 5) MCL(∆ > 0, λ > 0, γ > 0), which uses
the scheduling of both λ and k shown in Algorithm 1. We tried five different combinations of {q, r}
for MCL-RAND(r,q) and five different ∆ values for MCL(∆ > 0, λ > 0, γ > 0), and report the one
with the smallest test error. Other parameters, such as the initial values for λ and k, the values for γ
and p, and the total number of clusters are the same for different variants (the exact values of these
quantities are given in Table 4 of the Appendix).

5000 6000 7000 8000 9000 10000 11000
number of distinct labeled samples ever needing loss gradient calculation

20

30

40

50

60

70

80

90

te
st
 e
rro

r r
at
e
(%

)

SPL(ρ=25, μ=0.1)
SPLD(ρ=25, ξ=0.4)
MCL(.>0, λ>0, γ=0)
MCL(.=0, λ>0, γ>0)
MCLΔRAND(μ=3, r=12)
MCL(.=0, λ=0, γ=0)
MCL(.>0, λ>0, γ>0)

0 20000 40000 60000 80000
number of training batches (batch size = 64)

0

10

20

30

40

50

te
st
 e
rro

r r
at
e
(%

)

SPL(ρ=25, μ=0.1)
SPLD(ρ=25, ξ=0.4)
MCL(Δ>0, λ>0, γ=0)
MCL(Δ=0, λ>0, γ>0)
MCLΔRAND(μ=3, r=12)
MCL(Δ=0, λ=0, γ=0)
MCL(Δ>0, λ>0, γ>0)

Figure 1: Test error rate (%) vs. number of distinct labeled samples ever needing loss gradient
calculation (left) and number of training batches (right) on 20newsgroups (grey curves represents 10
random trials of SGD).

In MCL, running greedy is the only extra computation comparing to normal SGD. To show that
in our implementation (see Section 4.6) its additional time cost is negligible, we report in Table 2
the total time cost for MCL(∆ > 0, λ > 0, γ > 0) and the time spent on our implementation
WS-SUBMODULARMAX.

We summarize the main results in Figure 1-8. More results are given at the end of the appendix
(Section 4.7). In all figures, grey curves correspond to the ten trials of SGD under a random curriculum.
The legend in all figures gives the parameters used for the different methods using the following
labels: 1) SPL (ρ, µ); 2) SPLD(ρ, ξ); and 3) MCL-RAND(q, r).

Figures 1-6 show how the test error changes with (on the left) the number of distinct labeled
samples ever needing a loss gradient calculation, and (on the right) the number of training batches,

9

Published as a conference paper at ICLR 2018

10000 15000 20000 25000 30000 35000 40000 45000 50000
number of distinct labeled samples ever needing loss gradient calculation

10

20

30

40

50

60

70

80

90

te
st
 e
rro

r r
at
e
(%

)

SPL(ρ=15, μ=0.2)
SPLD(ρ=15, ξ=0.1)
MCL(.=0, λ=0, γ=0)
MCL(.>0, λ>0, γ=0)
MCL(.=0, λ>0, γ>0)
MCLΔRAND(μ=4, r=8)
MCL(.>0, λ>0, γ>0)

0 10000 20000 30000 40000
number of training batches (batch size = 128)

10

20

30

40

50

60

70

80

90

te
st
 e
rro

r r
at
e
(%

)

SPL(ρ=15, μ=0.2)
SPLD(ρ=15, ξ=0.1)
MCL(,=0, λ=0, γ=0)
MCL(,>0, λ>0, γ=0)
MCL(,=0, λ>0, γ>0)
MCLΔRAND(μ=4, r=8)
MCL(,>0, λ>0, γ>0)

Figure 2: Test error rate (%) vs. number of distinct labeled samples ever needing loss gradient
calculation (left) and number of training batches (right) on CIFAR10 (grey curves represents 10
random trials of SGD).

corresponding to training time. Note only MCL and its variants use the clustering trick, while
SPL/SPLD need to compute loss on every sample and thus require knowledge of the labels of all
samples. The left plot shows only the number of loss gradient calculations needed — 1) in MCL, for
those clusters never selected in the curriculum, the loss (and hence the label) of only the centroid
sample is needed; 2) in SPL/SPLD, for those samples never selected in the curriculum, their labels
are needed only to compute the loss but not the gradient, so they are not reflected in the left plots of
all figures because their labels are not used to compute a gradient. Therefore, thanks to the clustering
trick, MCL and its variants can train without needing all labels, similar to semi-supervised learning
methods. This can help to reduce the annotation costs, if an MCL process is done in tandem with a
labeling procedure analogous to active learning. The right plots very roughly indicate convergence
rate, namely how the test error decreases as a function of the amount of training.

0 10000 20000 30000 40000 50000 60000
number of distinct labeled samples ever needing loss gradient calculation

20

40

60

80

te
st
 e
rro

r r
at
e
(%

)

SPL(ρ=10, μ=0.1)
SPLD(ρ=10, ξ=0.2)
MCL(,=0, λ=0, γ=0)
MCL(,=0, λ>0, γ>0)
MCLΔRAND(μ=5, r=10)
MCL(,>0, λ>0, γ=0)
MCL(,>0, λ>0, γ>0)

0 20000 40000 60000 80000 100000 120000
number of training batches (batch size = 128)

101

102

te
st

 e
rro

r r
at

e
(%

)

SPL(ρ=10, μ=0.1)
SPLD(ρ=10, ξ=0.2)
MCL()=0, λ=0, γ=0)
MCL()=0, λ>0, γ>0)
MCLΔRAND(μ=5, r=10)
MCL()>0, λ>0, γ=0)
MCL()>0, λ>0, γ>0)

Figure 3: Test error rate (%) vs. number of distinct labeled samples ever needing loss gradient
calculation (left) and number of training batches (right) on Fashion-MNIST (grey curves represents
10 random trials of SGD).

1500 2000 2500 3000 3500 4000 4500 5000
number of distinct labeled samples ever needing loss gradient calculation

20

30

40

50

60

70

80

te
st

 e
rro

r r
at

e
(%

)

SPL(ρ=10, μ=0.1)
SPLD(ρ=10, ξ=0.2)
MCL(Δ=0, λ=0, γ=0)
MCL(Δ=0, λ>0, γ>0)
MCL-RAND(μ=5, r=10)
MCL(->0, λ>0, γ=0)
MCL(->0, λ>0, γ>0)

0 5000 10000 15000 20000 25000 30000
number of training batches (batch size = 128)

0

10

20

30

40

50

60

70

80

te
st
 e
rro

r r
at
e
(%

)

SPL(ρ=10, μ=0.1)
SPLD(ρ=10, ξ=0.2)
MCL(Δ=0, λ=0, γ=0)
MCL(Δ=0, λ>0, γ>0)
MCLΔRAND(μ=5, r=10)
MCL(Δ>0, λ>0, γ=0)
MCL(Δ>0, λ>0, γ>0)

Figure 4: Test error rate (%) vs. number of distinct labeled samples ever needing loss gradient
calculation (left) and number of training batches (right) on STL10 (grey curves represents 10 random
trials of SGD).

10

Published as a conference paper at ICLR 2018

10000 20000 30000 40000 50000 60000 70000
number of distinct labeled samples ever needing loss gradient calculation

10

20

30

40

50

60

70

80

te
st

 e
rro

r r
at

e
(%

)

SPL(ρ=10, μ=0.1)
SPLD(ρ=10, ξ=0.2)
MCL(Δ=0, λ=0, γ=0)
MCL(Δ>0, λ>0, γ=0)
MCL(Δ=0, λ>0, γ>0)
MCL-RAND(μ=5, r=10)
MCL(->0, λ>0, γ>0)

0 10000 20000 30000 40000 50000 60000
number of training batches (batch size = 128)

10

20

30

40

50

60

70

80

te
st
 e
rro

r r
at
e
(%

)

SPL(ρ=10, μ=0.1)
SPLD(ρ=10, ξ=0.2)
MCL(Δ=0, λ=0, γ=0)
MCL(Δ>0, λ>0, γ=0)
MCL(Δ=0, λ>0, γ>0)
MCLΔRAND(μ=5, r=10)
MCL(Δ>0, λ>0, γ>0)

Figure 5: Test error rate (%) vs. number of distinct labeled samples ever needing loss gradient
calculation (left) and number of training batches (right) on SVHN (grey curves represents 10 random
trials of SGD).

On all datasets, MCL and most of its variants outperform SPL and SPLD in terms of final test
accuracy (shown in Table 1) with comparable efficiency (shown in the right plots of all figures). MCL
is slightly slower than SGD to converge in early stages but it can achieve a much smaller error when
using the same number of labeled samples for loss gradients. Moreover, when using the same learning
rate strategy, they can be more robust to overfitting, as shown in Figure 2. Comparing Figure 1 with
Figure 2-6, MCL has the advantage when applied to deep models.

10000 15000 20000 25000 30000 35000 40000 45000 50000
number of distinct labeled samples ever needing loss gradient calculation

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

te
st
 e
rro

r r
at
e
(%

)

SPL(ρ=15, μ=0.1)
SPLD(ρ=25, ξ=0.01)
MCL-RAND(μ=3, r=16)
MCL(,>0, λ>0, γ=0)
MCL(,=0, λ>0, γ>0)
MCL(,=0, λ=0, γ=0)
MCL(,>0, λ>0, γ>0)

0 100000 200000 300000 400000 500000
number of training batches (batch size = 50)

100

101

te
st

 e
rro

r r
at

e
(%

)

SPL(ρ=15, μ=0.1)
SPLD(ρ=25, ξ=0.01)
MCL-RAND(μ=3, r=16)
MCL()>0, λ>0, γ=0)
MCL()=0, λ>0, γ>0)
MCL()=0, λ=0, γ=0)
MCL()>0, λ>0, γ>0)

Figure 6: Test error rate (%) vs. number of distinct labeled samples ever needing loss gradient
calculation (left) and number of training batches (right) on MNIST (grey curves represents 10 random
trials of SGD).

0 20000 40000 60000 80000
number of training batches (batch size = 64)

5000

6000

7000

8000

9000

10000

11000

nu
m

be
r o

f d
ist

in
ct

 la
be

le
d

sa
m

pl
es

 e
ve

r n
ee

di
ng

 lo
ss

 g
ra

di
en

t c
al

cu
la

tio
n

SPL(ρ=25, μ=0.1)
SPLD(ρ=25, ξ=0.4)
MCL(Δ>0, λ>0, γ=0)
MCL(Δ=0, λ>0, γ>0)
MCLΔRAND(μ=3, r=12)
MCL(Δ=0, λ=0, γ=0)
MCL(Δ>0, λ>0, γ>0)

102 103 104 105

number of training batches (ba(ch s ze = 128)

10000

15000

20000

25000

30000

35000

40000

45000

50000

n)
m

be
r o

f d
 s(

 n
c(

 la
be

le
d

sa
m

pl
es

 e
ve

r n
ee

d
ng

 lo
ss

 g
ra

d
en

(c
al

c)
la

(o
n

SPL(ρ= 15, μ= 0.2)
SPLD(ρ= 15, ξ= 0.1)
MCL(, = 0, λ= 0, γ= 0)
MCL(, > 0, λ> 0, γ= 0)
MCL(, = 0, λ> 0, γ> 0)
MCLΔRAND(μ= 4, r= 8)
MCL(, > 0, λ> 0, γ> 0)

0 50000 100000 150000 200000 250000 300000
number of training batches (ba(ch s ze = 50)

0

10000

20000

30000

40000

50000

n)
m

be
r o

f d
 s(

 n
c(

 la
be

le
d

sa
m

pl
es

 e
ve

r n
ee

d
ng

 lo
ss

 g
ra

d
en

(c
al

c)
la

(o
n

SPL(ρ= 15, μ= 0.1)
SPLD(ρ= 25, ξ= 0.01)
MCL-RAND(μ= 3, r= 16)
MCL(, Δ 0, λΔ 0, γ= 0)
MCL(, = 0, λΔ 0, γΔ 0)
MCL(, = 0, λ= 0, γ= 0)
MCL(, Δ 0, λΔ 0, γΔ 0)

Figure 7: Number of distinct labeled samples ever needing loss gradient calculation vs. number of
training batches for News20 (left), CIFAR10 (middle) and MNIST(right) (grey curves represents 10
random trials of SGD).

Among the five variants of MCL, MCL(λ > 0, γ > 0, ∆ > 0) achieves the fastest convergence speed
in later stages and the smallest final test error, while MCL(∆ = 0, λ = 0,∆ = 0) usually achieves
the worst performance (the only exception is on News20). Comparison between MCL(∆ = 0, λ > 0,
γ > 0) and MCL(λ = 0, γ = 0, ∆ = 0) shows that decreasing diversity improves the performance.
MCL(λ > 0, γ > 0, ∆ > 0) always outperforms MCL(∆ = 0, λ > 0, γ > 0). This indicates that
increasing k can bring advantages, e.g., more improvements in later stages.

11

Published as a conference paper at ICLR 2018

0 20000 40000 60000 80000 100000 120000
number of training batches (batch size = 128)

0

10000

20000

30000

40000

50000

60000

nu
m
be

r o
f d

ist
in
ct
 la

be
le
d
sa
m
pl
es
 e
ve

r n
ee

di
ng

 lo
ss
 g
ra
di
en

t c
al
cu

la
tio

n

SPL(ρ=10, μ=0.1)
SPLD(ρ=10, ξ=0.2)
MCL(Δ=0, λ=0, γ=0)
MCL(Δ=0, λ>0, γ>0)
MCL-RAND(μ=5, r=10)
MCL(->0, λ>0, γ=0)
MCL(->0, λ>0, γ>0)

0 1000 2000 3000 4000 5000 6000 7000
number of training batches (batch size = 128)

1500

2000

2500

3000

3500

4000

4500

5000

nu
m
be
r o

f d
ist
in
ct
 la
be
le
d
sa
m
pl
es
 e
ve
r n

ee
di
ng
 lo
ss
 g
ra
di
en
t c
al
cu
la
tio

n

SPL(ρ=10, μ=0.1)
SPLD(ρ=10, ξ=0.2)
MCL(.=0, λ=0, γ=0)
MCL(.=0, λ>0, γ>0)
MCLΔRAND(μ=5, r=10)
MCL(.>0, λ>0, γ=0)
MCL(.>0, λ>0, γ>0)

0 10000 20000 30000 40000
number of training batches (batch size = 128)

10000

20000

30000

40000

50000

60000

70000

nu
m
be
r o

f d
ist
in
ct
 la
be
le
d
sa
m
pl
es
 e
ve
r n

ee
di
ng
 lo
ss
 g
ra
di
en
t c
al
cu
la
tio

n

SPL(ρ=10, μ=0.1)
SPLD(ρ=10, ξ=0.2)
MCL(.=0, λ=0, γ=0)
MCL(.>0, λ>0, γ=0)
MCL(.=0, λ>0, γ>0)
MCLΔRAND(μ=5, r=10)
MCL(.>0, λ>0, γ>0)

Figure 8: Number of distinct labeled samples ever needing loss gradient calculation vs. number of
training batches for Fashion-MNIST (left), STL10 (middle) and SVHN (right) (grey curves represents
10 random trials of SGD).

MCL(λ > 0, γ > 0, ∆ > 0) always outperforms MCL(∆ > 0, λ > 0, γ = 0), which supports
our claim that it is better to decrease the diversity as training proceeds rather than keeping it fixed.
In particular, MCL(∆ > 0, λ > 0, γ = 0) shows slower convergence than other MCL variants in
later stages. In our experiments in the MCL(∆ > 0, λ > 0,γ = 0) case, we needed to carefully
choose λ and use a relatively large ∆ for it to work at all, as otherwise it would repeatedly choose the
same subset (with small ∆, the loss term decreases as training proceeds, so with fixed λ the diversity
term comes to dominate the objective). This suggests that a large diversity encouragement is neither
necessary nor beneficial when the model matures, possibly since k is large at that point and there
is ample opportunity for a diversity of samples to be selected just because k is large, and also since
encouraging too much loss-unspecific diversity at that point might only select outliers.

The combination of MCL and random curriculum (MCL-RAND) speeds up convergence, and
sometimes (e.g., on MNIST, SVHN and Fashion-MNIST) leads to a good final test accuracy, but
requires more labeled samples for gradient computation and still cannot outperform MCL(λ > 0,
γ > 0, ∆ > 0). These results indicate that the diversity introduced by submodular regularization
does yield improvements, and changing both hardness and diversity improves performance.

Figure 7 and Figure 8 shows how the “number of distinct labeled samples ever needing loss gradient
calculation” changes as training proceeds. It shows how the different methods trade-off between
“training on more new samples” vs. “training on fewer distinct samples more often.” Thanks to the
clustering trick, MCL and its variants usually require fewer labeled samples for model training than
SGD but more than SPL and SPLD.

Acknowledgments This work was done in part while author Bilmes was visiting the Simons
Institute for the Theory of Computing in Berkeley, CA. This material is based upon work supported
by the National Science Foundation under Grant No. IIS-1162606, the National Institutes of Health
under award R01GM103544, and by a Google, a Microsoft, a Facebook, and an Intel research award.
This work was supported in part by TerraSwarm, one of six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and DARPA.

REFERENCES

Naoki Abe and Hiroshi Mamitsuka. Query learning strategies using boosting and bagging. In ICML,
pp. 1–9, 1998.

Eugene L. Allgower and Kurt Georg. Introduction to Numerical Continuation Methods. Society for
Industrial and Applied Mathematics, 2003.

Sumit Basu and Janara Christensen. Teaching classification boundaries to humans. In AAAI, pp.
109–115, 2013.

Dhruv Batra, Payman Yadollahpour, Abner Guzman-Rivera, and Gregory Shakhnarovich. Diverse
m-best solutions in markov random fields. In ECCV, pp. 1–16, 2012.

12

Published as a conference paper at ICLR 2018

Mokhtar S. Bazaraa, Hanif D. Sherali, and C. M. Shetty. Nonlinear programming - theory and
algorithms (2. ed.). Wiley, 1993.

Yoshua Bengio. Evolving Culture Versus Local Minima, pp. 109–138. Springer Berlin Heidelberg,
2014.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
ICML, pp. 41–48, 2009.

Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review and new
perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8):1798–1828,
2013.

Ellen Bialystok, Fergus I. M. Craik, and Gigi Luk. Bilingualism: consequences for mind and brain.
Trends in Cognitive Sciences, 16(4):240–250, 2012.

Jeffrey A. Bilmes and Wenruo Bai. Deep submodular functions. CoRR, abs/1701.08939, 2017. URL
http://arxiv.org/abs/1701.08939.

Robert A Bjork and Elizabeth Ligon Bjork. A new theory of disuse and an old theory of stimulus
fluctuation. From learning processes to cognitive processes: Essays in honor of William K. Estes,
2:35–67, 1992.

Adam Coates, Honglak Lee, and Andrew Y. Ng. An analysis of single-layer networks in unsupervised
feature learning. In AISTATS, pp. 215–223, 2011.

Michele Conforti and Gerard Cornuejols. Submodular set functions, matroids and the greedy
algorithm: Tight worst-case bounds and some generalizations of the rado-edmonds theorem.
Discrete Applied Mathematics, 7(3):251–274, 1984.

Aron Culotta and Andrew McCallum. Reducing labeling effort for structured prediction tasks. In
AAAI, pp. 746–751, 2005.

Ido Dagan and Sean P. Engelson. Committee-based sampling for training probabilistic classifiers. In
ICML, pp. 150–157, 1995.

Sanjoy Dasgupta and Daniel Hsu. Hierarchical sampling for active learning. In ICML, pp. 208–215,
2008.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning and
stochastic optimization. Journal of Machine Learning Research, 12:2121–2159, 2011.

Farzan Farnia and David Tse. A minimax approach to supervised learning. In NIPS, pp. 4240–4248,
2016.

U. Feige. A threshold of ln n for approximating set cover. Journal of the ACM (JACM), 1998.

Yoav Freund and Robert E Schapire. A decision-theoretic generalization of on-line learning and an
application to boosting. Journal of Computer and System Sciences, 55(1):119–139, 1997.

Satoru Fujishige. Submodular functions and optimization. Annals of discrete mathematics. Elsevier,
2005.

Jennifer Gillenwater, Alex Kulesza, and Ben Taskar. Near-optimal map inference for determinantal
point processes. In NIPS, pp. 2735–2743, 2012.

R. Iyer and J. Bilmes. Algorithms for approximate minimization of the difference between submodular
functions, with applications. In UAI, 2012.

Rishabh Iyer and Jeff A. Bilmes. Submodular point processes with applications in machine learning.
In AISTATS, May 2015.

Rishabh Iyer, Stefanie Jegelka, and Jeff A. Bilmes. Fast semidifferential-based submodular function
optimization. In ICML, 2013.

13

http://arxiv.org/abs/1701.08939

Published as a conference paper at ICLR 2018

S. Jegelka and J. Bilmes. Submodularity beyond submodular energies: coupling edges in graph cuts.
In Computer Vision and Pattern Recognition (CVPR), 2011.

Lu Jiang, Deyu Meng, Shoou-I Yu, Zhenzhong Lan, Shiguang Shan, and Alexander G. Hauptmann.
Self-paced learning with diversity. In NIPS, pp. 2078–2086, 2014.

Lu Jiang, Deyu Meng, Qian Zhao, Shiguang Shan, and Alexander G. Hauptmann. Self-paced
curriculum learning. In AAAI, pp. 2694–2700, 2015.

Faisal Khan, Xiaojin (Jerry) Zhu, and Bilge Mutlu. How do humans teach: On curriculum learning
and teaching dimension. In NIPS, pp. 1449–1457, 2011.

Ágnes Melinda Kovács and Jacques Mehler. Flexible learning of multiple speech structures in
bilingual infants. Science, 325(5940):611–612, 2009.

Alex Krizhevsky and Geoffrey Hinton. Learning multiple layers of features from tiny images.
Technical report, University of Toronto, 2009.

M. Pawan Kumar, Benjamin Packer, and Daphne Koller. Self-paced learning for latent variable
models. In NIPS, pp. 1189–1197, 2010.

Gert R.G. Lanckriet, Laurent El Ghaoui, Chiranjib Bhattacharyya, and Michael I. Jordan. A robust
minimax approach to classification. Journal of Machine Learning Research, 3:555–582, 2003.

Ken Lang. Newsweeder: Learning to filter netnews. In ICML, pp. 331–339, 1995.

Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Ping Li, Jennifer Legault, and Kaitlyn A. Litcofsky. Neuroplasticity as a function of second language
learning: Anatomical changes in the human brain. Cortex, 58:301–324, 2014.

Hui Lin and Jeff A. Bilmes. A class of submodular functions for document summarization. In ACL,
pp. 510–520, 2011.

Hui Lin, Jeff A. Bilmes, and Shasha Xie. Graph-based submodular selection for extractive summa-
rization. In Proc. IEEE Automatic Speech Recognition and Understanding (ASRU), Merano, Italy,
December 2009.

Mark A McDaniel and Andrew C Butler. A contextual framework for understanding when difficulties
are desirable. Successful remembering and successful forgetting: A festschrift in honor of Robert
A. Bjork, pp. 175–198, 2011.

Andrea Mechelli, Jenny T. Crinion, Uta Noppeney, John O’Doherty, John Ashburner, Richard S.
Frackowiak, and Cathy J. Price. Neurolinguistics: Structural plasticity in the bilingual brain.
Nature, 431(7010):757–757, 2004.

Michel Minoux. Accelerated greedy algorithms for maximizing submodular set functions. In Opti-
mization Techniques, volume 7 of Lecture Notes in Control and Information Sciences, chapter 27,
pp. 234–243. Springer Berlin Heidelberg, 1978.

Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas
Krause. Lazier than lazy greedy. In AAAI, pp. 1812–1818, 2015.

Baharan Mirzasoleiman, Amin Karbasi, Rik Sarkar, and Andreas Krause. Distributed submodular
maximization. Journal of Machine Learning Research, 17(238):1–44, 2016.

Douglas C. Montgomery. Design and Analysis of Experiments. John Wiley & Sons, 2006.

M. Narasimhan and J. Bilmes. A submodular-supermodular procedure with applications to discrimi-
native structure learning. In UAI, 2005.

G. L. Nemhauser, L. A. Wolsey, and M. L. Fisher. An analysis of approximations for maximizing
submodular set functions-I. Mathematical Programming, 14(1):265–294, 1978.

14

Published as a conference paper at ICLR 2018

Yurii Nesterov. Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic
Publishers, 2004.

Yurii Nesterov. Smooth minimization of non-smooth functions. Mathematical Programming, 103(1):
127–152, 2005.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y. Ng. Reading
digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep Learning
and Unsupervised Feature Learning, 2011.

Kaustubh R Patil, Xiaojin (Jerry) Zhu, Ł ukasz Kopeć, and Bradley C Love. Optimal teaching for
limited-capacity human learners. In NIPS, pp. 2465–2473, 2014.

Adarsh Prasad, Stefanie Jegelka, and Dhruv Batra. Submodular meets structured: Finding diverse
subsets in exponentially-large structured item sets. In NIPS, pp. 2645–2653, 2014.

Robert E. Schapire. The strength of weak learnability. Machine Learning, 5(2):197–227, 1990.

Tobias Scheffer, Christian Decomain, and Stefan Wrobel. Active hidden markov models for informa-
tion extraction. In CAIDA, pp. 309–318, 2001.

Burr Settles. Active learning literature survey. Technical report, University of Wisconsin, Madison,
2010.

H. S. Seung, M. Opper, and H. Sompolinsky. Query by committee. In COLT, pp. 287–294, 1992.

Shai Shalev-Shwartz and Yonatan Wexler. Minimizing the maximal loss: How and why. In
International Conference on Machine Learning (ICML), pp. 793–801, 2016.

Valentin I. Spitkovsky, Hiyan Alshawi, and Daniel Jurafsky. Baby Steps: How “Less is More” in
unsupervised dependency parsing. In NIPS 2009 Workshop on Grammar Induction, Representation
of Language and Language Learning, 2009.

James Steven Supancic III and Deva Ramanan. Self-paced learning for long-term tracking. In CVPR,
pp. 2379–2386, 2013.

Kevin Tang, Vignesh Ramanathan, Li Fei-fei, and Daphne Koller. Shifting weights: Adapting object
detectors from image to video. In NIPS, pp. 638–646, 2012a.

Ye Tang, Yu-Bin Yang, and Yang Gao. Self-paced dictionary learning for image classification. In
MM, pp. 833–836, 2012b.

Kai Wei, Rishabh Iyer, and Jeff A. Bilmes. Fast multi-stage submodular maximization. In ICML,
2014a.

Kai Wei, Yuzong Liu, Katrin Kirchhoff, Chris D. Bartels, and Jeff A. Bilmes. Submodular subset
selection for large-scale speech training data. In ICASSP, pp. 3311–3315, 2014b.

Kai Wei, Rishabh Iyer, and Jeff A. Bilmes. Submodularity in data subset selection and active learning.
In ICML, 2015.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017.

Tianyi Zhou, Hua Ouyang, Jeff A. Bilmes, Yi Chang, and Carlos Guestrin. Scaling submodular
maximization via pruned submodularity graphs. In AISTATS, 2017.

X. Zhu, A. Singla, S. Zilles, and A. N. Rafferty. An Overview of Machine Teaching. ArXiv e-prints,
January 2018.

Xiaojin (Jerry) Zhu. Machine teaching: An inverse problem to machine learning and an approach
toward optimal education. In AAAI, pp. 4083–4087, 2015.

15

Published as a conference paper at ICLR 2018

4 APPENDIX

4.1 PROOF OF LEMMA 1

Proof. We have

κG = 1−min
j∈V

L(j) + λF (j|V \j)
L(j) + λF (j)

= λ ·max
j∈V

F (j)− F (j|V \j)
L(j) + λF (j)

= λ ·max
j∈V

1− F (j|V \j)
F (j)

L(j)
F (j) + λ

≤ λ · κF
minj∈V

L(j)
F (j) + λ

=
κF

c1/λ+ 1

Where c1 , minj∈V
L(j)
F (j) .

4.2 PROOF OF PROPOSITION 1

Proposition 1. The maximum of multiple β-strongly convex functions is β-strongly convex as well.

Proof. Let g(x) = maxi gi(x), where gi(x) is β-strongly convex for any i. According to a definition
of strongly convex function given in Theorem 2.1.9 (page 64) of (Nesterov, 2004), ∀λ ∈ [0, 1], we
have

gi(λx+ (1− λ)y) ≤ λgi(x) + (1− λ)gi(y)− β

2
λ(1− λ)‖x− y‖22,∀i.

The following proves that g(x) is also β-strongly convex:
g(λx+ (1− λ)y) = max

i
gi(λx+ (1− λ)y)

≤max
i

[λgi(x) + (1− λ)gi(y)]− β

2
λ(1− λ)‖x− y‖22

≤max
i
λgi(x) + max

i
(1− λ)gi(y)− β

2
λ(1− λ)‖x− y‖22

=λg(x) + (1− λ)g(y)− β

2
λ(1− λ)‖x− y‖22.

4.3 PROOF OF THEOREM 1

Proof. The objective g(w) of the minimax problem in Eq. (2) after eliminating A is given in Eq. (4).
Since G(A) in Eq. (5) is monotone non-decreasing submodular, the optimal subset A when defining
g(w) in Eq. (4) always has size k if |V | ≥ k. In addition, because the loss function L (yi, f(xi, w))
is β-strongly convex, g(w) in Eq. (4) is the maximum over multiple kβ-strongly convex functions
with different A. According to Proposition 1, g(w) is also kβ-strongly convex, i.e.,

g(ŵ) ≥ g(w∗) +∇g(w∗)T (ŵ − w∗) +
kβ

2
‖ŵ − w∗‖22, ∀∇g(w∗) ∈ ∂g(w∗). (14)

Since the convex function g(w) achieves minimum on w∗, it is valid to substitute ∇g(w∗) = 0 ∈
∂g(w∗) into Eq. (14). After rearrangement, we have

‖ŵ − w∗‖22 ≤
2

kβ
[g(ŵ)− g(w∗)] . (15)

In the following, we will prove g(w∗) ≥ α · g(ŵ), which together with Eq. (15) will lead to the final
bound showing how close ŵ is to w∗.

Note ĝ(w) (Eq. (6)) is a piecewise function, each piece of which is convex and associated with
different Â achieved by a submodular maximization algorithm of approximation factor α. Since
Â is not guaranteed to be a global maxima, unlike g(w), the whole ĝ(w) cannot be written as the
maximum of multiple convex functions and thus can be non-convex. Therefore, gradient descent
in lines 6-9 of Algorithm 1 can lead to either: 1) ŵ is a global minima of ĝ(w); or 2) ŵ is a local
minima of ĝ(w). Saddle points do not exist on ĝ(w) because each piece of it is convex. We are also
assuming other issues associated with the boundaries between convex pieces do not repeatedly occur.

16

Published as a conference paper at ICLR 2018

1) When ŵ is a global minima of ĝ(w), we have
g(w∗) ≥ ĝ(w∗) ≥ ĝ(ŵ) ≥ α · g(ŵ). (16)

The first inequality is due to g(·) ≥ ĝ(·). The second inequality is due to the global optimality of ŵ.
The third inequality is due to the approximation bound ĝ(·) ≥ α · g(·) guaranteed by the submodular
maximization in Step 7 of Algorithm 1.

2) When ŵ is a local minima of ĝ(w), we have ∇ĝ(ŵ) = 0. Let h(w) be the piece of ĝ(w) where ŵ
is located, then ŵ has to be a global minima of h(w) due to the convexity of h(w). Let A denote the
ground set of Â on all pieces of ĝ(w), we define an auxiliary convex function g̃(w) as

g̃(w) , max
A∈A

∑
i∈A

L (yi, f(xi, w)) + λF (A). (17)

It is convex because it is defined as the maximum of multiple convex function. So we have
ĝ(w) ≤ g̃(w) ≤ g(w),∀w ∈ Rm. (18)

The first inequality is due to the definition of A, and the second inequality is a result of A ⊆ 2V by
comparing g(w) in Eq. (4) with g̃(w) in Eq. (17). Let w̃ denote a global minima of g̃(w), we have

g(w∗) ≥ g̃(w∗) ≥ g̃(w̃) ≥ h(w̃) ≥ h(ŵ) = ĝ(ŵ) ≥ α · g(ŵ). (19)
The first inequality is due to Eq. (18), the second inequality is due to the global optimality of w̃ on
g̃(w), the third inequality is due to the definition of g̃(w) in Eq. (17) (g̃(w) is the maximum of all
pieces of ĝ(w) and h(w) is one piece of them), the fourth inequality is due to the global optimality of
ŵ on h(w), the last inequality is due to the approximation bound ĝ(·) ≥ α · g(·) guaranteed by the
submodular maximization in Step 7 of Algorithm 1.

Therefore, in both cases we have g(w∗) ≥ α · g(ŵ). Applying it to Eq. (15) results in

‖ŵ − w∗‖22 ≤
2

kβ

(
1

α
− 1

)
· g(w∗). (20)

4.4 PROPOSITION 2

Proposition 2. If x ∈ [0, 1], the following inequality holds true.
x

1− e−x
− 1 ≤ x. (21)

Proof. Due to two inequalities ex ≤ 1 + x+ x2/2 for x ≤ 0 and 1− e−x ≥ x/2 for x ∈ [0, 1],
x

1− e−x
− 1 =

x− 1 + e−x

1− e−x
≤ x− 1 + (1− x+ x2/2)

x/2
= x. (22)

4.5 PROOF OF COROLLARY 1

Proof. Applying the inequality in Proposition 2 and the approximation factor of lazy greedy α =
(1− e−κG)/κG to the right hand side of Eq. (9) from Theorem 1 yields

‖ŵ − w∗‖22 ≤
2

kβ

(
1

α
− 1

)
· g(w∗)

=
2

kβ

(
κG

1− e−κG
− 1

)
· g(w∗) ≤ 2κG

kβ
· g(w∗), (23)

where κG is the curvature of submodular function G(·) defined in Eq. (5). Substituting the inequality
about κG from Lemma 1 into Eq. (23) results in

‖ŵ − w∗‖22 ≤
2κF

kβ(c1/λ+ 1)
≤ 2κF
βc1
× λ

k
× g(w∗). (24)

We use subscript as the index for iterations in the outer-loop, e.g., ŵT is the model weights w after
the T th iteration of outer-loop. If we decrease λ exponentially from λ = λ0 and increase k linearly
from k = k0, as Step 11 in Algorithm 1, we have

‖ŵT − w∗T ‖22 ≤
2κFλ0
βc1

× (1− γ)T

(k0 + T∆)
× g(w∗T), (25)

17

Published as a conference paper at ICLR 2018

According to the definition of g(·) in Eq. (4), for g(w∗T) we have

g(w∗T) = min
w∈Rm

max
A⊆V,|A|≤k

∑
i∈A

L (yi, f(xi, w)) + λF (A)

≤ min
w∈Rm

max
A⊆V,|A|≤k

∑
i∈A

L (yi, f(xi, w)) + λ0(1− γ)T max
A⊆V,|A|≤k

F (A)

= g(w∗∞) + λ0(1− γ)T c2, (26)
where

g(w∗∞) , min
w∈Rm

max
A⊆V,|A|≤k

∑
i∈A

L (yi, f(xi, w)) , c2 , max
A⊆V,|A|≤k

F (A). (27)

Substituting Eq. (26) to Eq. (25) yields

‖ŵT − w∗T ‖22 ≤
2κFλ0
βc1

× (1− γ)T

(k0 + T∆)
×
[
g(w∗∞) + λ0c2(1− γ)T

]
, (28)

If we can tolerate more expensive computational cost for running submodular maximization with
larger budget k, and increase k exponentially, i.e., k ← (1 + ∆) · k, we have

‖ŵT − w∗T ‖22 ≤
2κFλ0
βc1k0

×
(

1− γ
1 + ∆

)T
×
[
g(w∗∞) + λ0c2(1− γ)T

]
. (29)

This completes the proof.

4.6 SUBMODULAR MAXIMIZATION STARTING FROM A PREVIOUS “WARM” SOLUTION

Algorithm 1 repeatedly runs a greedy procedure to solve submodular maximization, and this occurs
two nested loops deep. In this section we describe how we speed this process up.

Our first strategy reduces the size of the ground set before starting a more expensive submodular
maximization procedure. We use a method described in (Wei et al., 2014a) where we sort the
elements of V non-increasingly by G(i|V \ i) and then remove any element i from V having
G(i) < G(δ(k)|V \δ(k)) where δ(k) is kth element in the sorted permutation. Any such element will
never be chosen by the k-cardinality constrained greedy procedure because for any ` ∈ {1, 2, . . . , k},
and any set A, we have G(δ(`)|A) ≥ G(δ(`)|V \ δ(`)) ≥ G(δ(k)|V \ δ(k)) > G(i) ≥ G(i|A)
and thus greedy would always be able to choose an element better than i. This method results in
no reduction in approximation quality, although it might not yield any speedup at all. But with a
decreasing λ, G(A) becomes more modular, and the filtering method can become more effective.
Other methods we can employ are those such as (Zhou et al., 2017; Mirzasoleiman et al., 2015),
resulting in small reduction in approximation quality, but we do not describe these further.

The key contribution of this section is a method exploiting a potential warm start set that might
already achieve a sufficient approximation quality. Normally, the greedy procedure starts with the
empty set and adds elements greedily until a set of size k is reached. In Algorithm 1, by contrast,
a previous iteration has already solved a size-k constrained submodular maximization problem for
the previous submodular function, the solution to which is one that could very nearly already satisfy
a desired approximation bound for the current submodular function. The reason for this is that,
depending on the weight update method in line 9 of Algorithm 1 between inner loop iterations, and
the changes to parameters ∆ and γ between outer iterations, the succession of submodular functions
might not change very quickly. For example, when the learning rate η is small, the Â from the
previous iteration could still be valued highly by the current iteration’s function, so running a greedy
procedure from scratch is unnecessary. Our method warm-starts a submodular maximization process
with a previously computed set, and offers a bound that trades off speed and approximation quality.

The approach is given in Algorithm 2, which (after the aforementioned filtering in line 3 (Wei et al.,
2014a)) tests in linear time if the warm start set Â already achieves a sufficient approximation quality,
and if so, possibly improves it further with an additional linear or quasilinear time computation.
To test approximation quality of Â, our approach uses a simple modular function upper bound, in
line 4, to compute an upper bound on the global maximum value. For the subsequent improvement
of Â, our approach utilizes a submodular semigradient approach (Iyer et al., 2013) (specifically
subgradients (Fujishige, 2005) in this case). If the warm-start set Â does not achieve sufficient
approximation quality in line 5, the algorithm backs off to standard submodular maximization in line

18

Published as a conference paper at ICLR 2018

11 (we use the accelerated/lazy greedy procedure (Minoux, 1978) here although other methods, e.g.,
(Mirzasoleiman et al., 2015), can be used as well).

Algorithm 2 Warm Start (WS) WS-SUBMODULARMAX(G, k, Â, α̃ ∈ [0, 1))

1: Input: G(·), k, Â, α̃
2: Output: Ã
3: Reduce ground set size: arrange V non-increasingly in terms of G(i|V \i) in a permutation δ

where δ(k) is the kth element, set V ← {i ∈ V |G(i) ≥ G(δ(k)|V \δ(k))};
4: Compute upper bound to maximum of Eq. (5):

τ = max
A∈V,|A|≤k

∑
i∈A

[
L
(
yi, f(xi, w

t)
)

+ λF (i)
]

5: if G(Â) ≥ α̃ · τ then
6: Permutation σ of V : the first k elements have Sσk = Â and are chosen ordered non-increasing

by κG(v); the remaining n− k elements V \ Â for σ are chosen non-increasing by κG(v).
7: Define modular function hÂ(A) ,

∑
i∈A hÂ(i) with hÂ(σ(i)) = G(Sσi)−G(Sσi−1);

8: Compute tight, at Â, lower bound L(A) of G(A):
L(A) , G(Â) + hÂ(A)− hÂ(Â) ≤ G(A)

9: Ã← argmaxA∈V,|A|≤k L(A);
10: else
11: Ã← LAZYGREEDY(G,V, k);
12: end if

Line 4 computes the upper bound τ ≥ maxA∈V,|A|≤kG(A) which holds due to submodularity,
requiring only a modular maximization problem (which can be done in O(|V |) time, independent of
k, to select the top k elements). Line 5 checks if an α̃ approximation to this upper bound is achieved
by the warm-start set Â, and if not we back off to a standard submodular maximization procedure in
line 11.

If Â is an α̃ approximation to the upper bound τ , then lines 6-9 runs a subgradient optimization
procedure, a process that can potentially improve it further. The approach selects a subgradient
defined by a permutation σ = (σ(1), σ(2), . . . , σ(n)) of the elements. The algorithm then defines
a modular function L(A), tight at Â and a lower bound everywhere else, i.e., L(Â) = G(Â), and
∀A,L(A) ≤ G(A). Any permutation will achieve this as long as Â = {σ(1), σ(2), . . . , σ(k)}. The
specific permutation we use is described below. Once we have the modular lower bound, we can do
simple and fast modular maximization.

Lines 6-9 of Algorithm 2 offer a heuristic that can only improve the objective — letting Ã be the
solution after line 9, we have

G(Ã) ≥ L(Ã) ≥ L(Â) = G(Â). (30)
The first inequality follows since L(·) is a lower bound of G(·); the second inequality follows from
the optimality of Â+; the equality follows since L is tight at Â.

The approximation factor α̃ is distinct from the submodular maximization approximation factor α
achieved by the greedy algorithm. Setting, for example α̃ = 1 − 1/e would ask for the previous
solution to be this good relative to τ , the upper bound on the global maximum, and the algorithm
would almost always immediately jump to line 11 since achieving such approximation quality might
not even be possible in polynomial time (Feige, 1998). With α̃ large, we recover the approximation
factor of the greedy algorithm but ignore the warm start. If α̃ is small, many iterations might use the
warm start from the previous iteration, updating it only via one step of subgradient optimization, but
with a worse approximation factor. In practice, therefore, we use a more lenient bound (often we set
α̃ = 1/2) which is a good practical tradeoff between approximation accuracy and speed (meaning
lines 6-9 execute a reasonable fraction of the time leading to a good speedup, i.e., in our experiments,
the time cost for WS-SUBMODULARMAX increases if α = 1 by a factor ranging from about 3 to 5).
In general, we have the following final bound based on the smaller of α̃ and α.

19

Published as a conference paper at ICLR 2018

Lemma 2. Algorithm 2 outputs a solution Â such thatG(Â) ≥ min{α̃, α}× max
A∈V,|A|≤k

G(A), where

α is the approximation factor of the greedy procedure (typically α = (1− e−κG)/κG).

Proof. Let A∗ denote an optimal solution to Eq. (5):
A∗ ∈ argmax

A∈V,|A|≤k

∑
i∈A

L
(
yi, f(xi, w

t)
)

+ λF (A). (31)

τ computed in line 4 is an upper bound to G(A∗) since:
τ ≥

∑
i∈A∗ [L (yi, f(xi, w

t)) + λF (i)]
=
∑
i∈A∗ L (yi, f(xi, w

t)) + λ
∑
i∈A∗ F (i)

≥
∑
i∈A∗ L (yi, f(xi, w

t)) + λF (A∗).
(32)

The first inequality follows by the definition of τ ; the last inequality is due to submodularity,
guaranteeing F (i) ≥ F (i|B) for any B ⊆ V .

When G(Â) ≥ α̃ · τ (line 5), the subgradient ascent can only improve the objective. Thus, we have
G(Â) ≥ α̃ ·maxA∈V,|A|≤kG(A) for Â obtained in line 9. Otherwise, we run the greedy algorithm
on the reduced ground set V . Thus, we have G(Â) ≥ α ·maxA∈V,|A|≤kG(A) for Â obtained in line
11.

The heuristic in lines 6-9 is identical to one step of the semigradient-based minorization-maximization
(MM) scheme used in, for example, (Narasimhan & Bilmes, 2005; Jegelka & Bilmes, 2011; Iyer &
Bilmes, 2012; Iyer et al., 2013). Which permutation to use for the subgradient in order to tighten the
gap has been an issue discussed as far back as (Narasimhan & Bilmes, 2005). In the present work,
we offer a new heuristic for this problem. Let the first i elements in the permutation σ be denoted
Sσi = {σ(1), σ(2), . . . , σ(i)}, and let Aσi−1 , {σ(j) ∈ A|j < i} = Sσi−1 ∩A ⊆ Sσi−1 for any i ∈ A.
The gap we wish to reduce is

0 ≤ G(A)− L(A) =
∑

σ(i)∈A

[
G(σ(i)|Aσi−1)−G(σ(i)|Sσi−1)

]
(33)

=
∑

σ(i)∈A

G(σ(i)) ·
[
G(σ(i)|Aσi−1)

G(σ(i))
−
G(σ(i)|Sσi−1)

G(σ(i))

]
(34)

≤
∑

σ(i)∈A

G(σ(i)) ·
[
G(σ(i)|Aσi−1)

G(σ(i))
− (1− κG(σ(i)))

]
(35)

Which follows since hÂ(σ(i)) = G(σ(i)|Sσi−1) by definition. Line 6 chooses a particular permutation
in an attempt to reduce this gap. Define an element-wise form of curvature as κG(v) = 1 −
G(v|V \v)/G(v) ∈ [0, 1] for all v ∈ V . Note that κG = maxv∈V κG(v). If κG(v) ≈ 0 then G
is practically modular at v and so G(v|A) ≈ G(v) for any set A; in other words, G(v|A) is close
to v’s maximum possible gain even if v is ranked with index very late in the permutation σ where
A is very large. If κG(v) ≈ 1, on the other hand, then there is some set A ⊆ V \ {v} that can
appreciably reduce G(v|A) relative to the maximum possible gain G(v), and so it is best to rank
v very early in the order σ where A must be a small set. One heuristic to achieve these goals is to
choose a permutation σ that arranges the elements in an order non-increasing according to κG(v),
meaning κG(σ(1)) ≥ κG(σ(2)) ≥ Choosing this order is therefore an attempt to keep each of
the conditional gains G(σ(i)|Sσi−1) as close as possible to σ(i)’s maximum possible gain, G(σ(i)).
This corresponds to an attempt to reduce Eq. (34) (and correspondingly close the G(A)− L(A) gap)
as much as possible. Line 6 of Algorithm 2 does this, subject to the requirement that the first k
elements of the permutation must correspond to Â in order to be a subgradient. These tricks all help
lines 6-9 produce a better updated approximate maximizer but at appreciably increased speed.

4.7 ADDITIONAL RESULTS

This section concludes by, in the form of tables and plots, providing more information about our
experiments and experimental results for the algorithms mentioned above.

20

Published as a conference paper at ICLR 2018

Dataset News20 MNIST CIFAR10 STL10 SVHN Fashion
#Training 11314 50000 50000 5000 73257 50000
#Test 7532 10000 10000 8000 26032 10000
#Feature 129791 28× 28 32× 32× 3 96× 96× 3 32× 32 28× 28
#Class 20 10 10 10 10 10

Table 3: Details regarding the datasets.

Dataset News20 MNIST CIFAR10 STL10 SVHN Fashion
p 50 50 20 20 20 50
#cluster 200 1000 1000 400 800 1000
γ 0.05 0.05 0.05 0.2 0.2 0.05
initial k 4 4 4 20 30 10
initial λ 6× 10−6 1× 10−6 8× 10−7 1× 10−7 1× 10−6 1× 10−6

initial η 3.5 0.02 0.01 0.02 0.01 0.02

Table 4: Parameters of MCL (Algorithm 1) and its variants for different datasets.

5000 6000 7000 8000 9000 10000 11000
number of distinct labeled samples ever needing loss gradient calculation

0

20

40

60

80

tra
in
in
g
er
ro
r r
at
e
(%

)

SPL(ρ=25, μ=0.1)
SPLD(ρ=25, ξ=0.4)
MCL(.>0, λ>0, γ=0)
MCL(.=0, λ>0, γ>0)
MCLΔRAND(μ=3, r=12)
MCL(.=0, λ=0, γ=0)
MCL(.>0, λ>0, γ>0)

0 20000 40000 60000 80000
number of training batches (batch size = 64)

0

10

20

30

40

50

tra
in
in
g
er
ro
r r

at
e
(%

)

SPL(ρ=25, μ=0.1)
SPLD(ρ=25, ξ=0.4)
MCL(Δ>0, λ>0, γ=0)
MCL(Δ=0, λ>0, γ>0)
MCLΔRAND(μ=3, r=12)
MCL(Δ=0, λ=0, γ=0)
MCL(Δ>0, λ>0, γ>0)

Figure 9: Training error rate (%) vs. number of distinct labeled samples ever needing loss gradient
calculation (left) and number of training batches (right) on 20newsgroups (grey curves represents 10
random trials of SGD).

5000 6000 7000 8000 9000 10000 11000
number of distinct labeled samples ever needing loss gradient calculation

0.0

0.5

1.0

1.5

2.0

2.5

tra
in

in
g

lo
ss

SPL(ρ=25, μ=0.1)
SPLD(ρ=25, ξ=0.4)
MCL(Δ>0, λ>0, γ=0)
MCL(Δ=0, λ>0, γ>0)
MCL-RAND(μ=3, r=12)
MCL(-=0, λ=0, γ=0)
MCL(->0, λ>0, γ>0)

0 20000 40000 60000 80000
number of training batches (batch size = 64)

0.0

0.5

1.0

1.5

2.0

2.5

tra
in

in
g
lo
ss

SPL(ρ=25, μ=0.1)
SPLD(ρ=25, ξ=0.4)
MCL(Δ>0, λ>0, γ=0)
MCL(Δ=0, λ>0, γ>0)
MCLΔRAND(μ=3, r=12)
MCL(Δ=0, λ=0, γ=0)
MCL(Δ>0, λ>0, γ>0)

Figure 10: Training loss vs. number of distinct labeled samples ever needing loss gradient calculation
(left) and number of training batches (right) on 20newsgroups (grey curves represents 10 random
trials of SGD).

21

Published as a conference paper at ICLR 2018

5000 6000 7000 8000 9000 10000 11000
number of distinct labeled samples ever needing loss gradient calculation

0.5

1.0

1.5

2.0

2.5

te
st

 lo
ss

SPL(ρ=25, μ=0.1)
SPLD(ρ=25, ξ=0.4)
MCL(Δ>0, λ>0, γ=0)
MCL(Δ=0, λ>0, γ>0)
MCL-RAND(μ=3, r=12)
MCL(-=0, λ=0, γ=0)
MCL(->0, λ>0, γ>0)

0 20000 40000 60000 80000
number of training batches (batch size = 64)

0.5

1.0

1.5

2.0

2.5

te
st
 lo

ss

SPL(ρ=25, μ=0.1)
SPLD(ρ=25, ξ=0.4)
MCL(Δ>0, λ>0, γ=0)
MCL(Δ=0, λ>0, γ>0)
MCLΔRAND(μ=3, r=12)
MCL(Δ=0, λ=0, γ=0)
MCL(Δ>0, λ>0, γ>0)

Figure 11: Test loss vs. number of distinct labeled samples ever needing loss gradient calculation
(left) and number of training batches (right) on 20newsgroups (grey curves represents 10 random
trials of SGD).

10000 15000 20000 25000 30000 35000 40000 45000 50000
number of distinct labeled samples ever needing loss gradient calculation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tra
in

in
g

lo
ss

SPL(ρ=15, μ=0.2)
SPLD(ρ=15, ξ=0.1)
MCL(Δ=0, λ=0, γ=0)
MCL(Δ>0, λ>0, γ=0)
MCL(Δ=0, λ>0, γ>0)
MCLΔRAND(μ=4, r=8)
MCL(Δ>0, λ>0, γ>0)

0 10000 20000 30000 40000
number of training batches (batch si(e = 128)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

tra
in

in
g

 o
ss

SPL(ρ= 15, μ= 0.2)
SPLD(ρ= 15, ξ= 0.1)
MCL() = 0, λ= 0, γ= 0)
MCL() > 0, λ> 0, γ= 0)
MCL() = 0, λ> 0, γ> 0)
MCLΔRAND(μ= 4, r= 8)
MCL() > 0, λ> 0, γ> 0)

Figure 12: Training loss vs. number of distinct labeled samples ever needing loss gradient calculation
(left) and number of training batches (right) on CIFAR10 (grey curves represents 10 random trials of
SGD).

10000 15000 20000 25000 30000 35000 40000 45000 50000
number of distinct labeled samples ever needing loss gradient calculation

0.0

0.5

1.0

1.5

2.0

2.5

3.0

te
st

 lo
ss

SPL(ρ=15, μ=0.2)
SPLD(ρ=15, ξ=0.1)
MCL(Δ=0, λ=0, γ=0)
MCL(Δ>0, λ>0, γ=0)
MCL(Δ=0, λ>0, γ>0)
MCLΔRAND(μ=4, r=8)
MCL(Δ>0, λ>0, γ>0)

0 10000 20000 30000 40000
number of training batches (batch si(e = 128)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

te
st

 o
ss

SPL(ρ= 15, μ= 0.2)
SPLD(ρ= 15, ξ= 0.1)
MCL() = 0, λ= 0, γ= 0)
MCL() > 0, λ> 0, γ= 0)
MCL() = 0, λ> 0, γ> 0)
MCLΔRAND(μ= 4, r= 8)
MCL() > 0, λ> 0, γ> 0)

Figure 13: Test loss vs. number of distinct labeled samples ever needing loss gradient calculation
(left) and number of training batches (right) on CIFAR10 (grey curves represents 10 random trials of
SGD).

10000 15000 20000 25000 30000 35000 40000 45000 50000
number of distinct labeled samples ever needing loss gradient calculation

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

tra
in
in
g
er
ro
r r
at
e
(%

)

SPL(ρ=15, μ=0.1)
SPLD(ρ=25, ξ=0.01)
MCL-RAND(μ=3, r=16)
MCL(,>0, λ>0, γ=0)
MCL(,=0, λ>0, γ>0)
MCL(,=0, λ=0, γ=0)
MCL(,>0, λ>0, γ>0)

0 50000 100000 150000 200000
number of training batches (batch size = 50)

10)2

10)1

100

101

tra
in
in
g
er
ro
r r

at
e
(%

)

SPL(ρ=15, μ=0.1)
SPLD(ρ=25, ξ=0.01)
MCL-RAND(μ=3, r=16)
MCL((Δ0, λΔ0, γ=0)
MCL((=0, λΔ0, γΔ0)
MCL((=0, λ=0, γ=0)
MCL((Δ0, λΔ0, γΔ0)

Figure 14: Training error rate (%) vs. number of distinct labeled samples ever needing loss gradient
calculation (left) and number of training batches (right) on MNIST (grey curves represents 10 random
trials of SGD).

22

Published as a conference paper at ICLR 2018

0 10000 20000 30000 40000 50000 60000
number of distinct labeled samples ever needing loss gradient calculation

0

20

40

60

80

tra
in
in
g
er
ro
r r
at
e
(%

)
SPL(ρ=10, μ=0.1)
SPLD(ρ=10, ξ=0.2)
MCL(,=0, λ=0, γ=0)
MCL(,=0, λ>0, γ>0)
MCLΔRAND(μ=5, r=10)
MCL(,>0, λ>0, γ=0)
MCL(,>0, λ>0, γ>0)

0 20000 40000 60000 80000 100000 120000
number of training batches (batch size = 128)

0

20

40

60

80

tra
in

in
g

er
ro

r r
at

e
(%

)

SPL(ρ=10, μ=0.1)
SPLD(ρ=10, ξ=0.2)
MCL()=0, λ=0, γ=0)
MCL()=0, λ>0, γ>0)
MCLΔRAND(μ=5, r=10)
MCL()>0, λ>0, γ=0)
MCL()>0, λ>0, γ>0)

Figure 15: Training error rate (%) vs. number of distinct labeled samples ever needing loss gradient
calculation (left) and number of training batches (right) on Fashion-MNIST (grey curves represents
10 random trials of SGD).

1500 2000 2500 3000 3500 4000 4500 5000
number of distinct labeled samples ever needing loss gradient calculation

0

20

40

60

80

tra
in
in
g
er
ro
r r
at
e
(%

)

SPL(ρ=10, μ=0.1)
SPLD(ρ=10, ξ=0.2)
MCL(,=0, λ=0, γ=0)
MCL(,=0, λ>0, γ>0)
MCLΔRAND(μ=5, r=10)
MCL(,>0, λ>0, γ=0)
MCL(,>0, λ>0, γ>0)

0 5000 10000 15000 20000 25000 30000
number of training batches (batch size = 128)

0

20

40

60

80

tra
in
in
g
er
ro
r r

at
e
(%

)

SPL(ρ=10, μ=0.1)
SPLD(ρ=10, ξ=0.2)
MCL(Δ=0, λ=0, γ=0)
MCL(Δ=0, λ>0, γ>0)
MCLΔRAND(μ=5, r=10)
MCL(Δ>0, λ>0, γ=0)
MCL(Δ>0, λ>0, γ>0)

Figure 16: Training error rate (%) vs. number of distinct labeled samples ever needing loss gradient
calculation (left) and number of training batches (right) on STL10 (grey curves represents 10 random
trials of SGD).

0 10000 20000 30000 40000 50000 60000 70000
number of distinct labeled samples ever needing loss gradient calculation

0

10

20

30

40

50

60

70

80

tra
in

in
g

er
ro

r r
at

e
(%

)

SPL(ρ=10, μ=0.1)
SPLD(ρ=10, ξ=0.2)
MCL(Δ=0, λ=0, γ=0)
MCL(Δ>0, λ>0, γ=0)
MCL(Δ=0, λ>0, γ>0)
MCL-RAND(μ=5, r=10)
MCL(->0, λ>0, γ>0)

0 10000 20000 30000 40000 50000 60000
number of training batches (batch size = 128)

0

10

20

30

40

50

60

70

80

tra
in
in
g
er
ro
r r
at
e
(%

)

SPL(ρ=10, μ=0.1)
SPLD(ρ=10, ξ=0.2)
MCL(Δ=0, λ=0, γ=0)
MCL(Δ>0, λ>0, γ=0)
MCL(Δ=0, λ>0, γ>0)
MCLΔRAND(μ=5, r=10)
MCL(Δ>0, λ>0, γ>0)

Figure 17: Training error rate (%) vs. number of distinct labeled samples ever needing loss gradient
calculation (left) and number of training batches (right) on SVHN (grey curves represents 10 random
trials of SGD).

23

	Introduction
	Our Approach: Minimax Curriculum Learning

	Minimax Curriculum Learning and Machine Teaching
	Submodular Maximization
	Conditions at Convergence
	Heuristic Improvements

	Experiments
	Appendix
	Proof of Lemma 1
	Proof of Proposition 1
	Proof of Theorem 1
	Proposition 2
	Proof of Corollary 1
	Submodular Maximization Starting from a Previous ``Warm'' Solution
	Additional Results

