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Abstract

Despite promising progress on unimodal data imputation (e.g. image inpainting), models for
multimodal data imputation are far from satisfactory. In this work, we propose variational
selective autoencoder (VSAE) for this task. Learning only from partially-observed data,
VSAE can model the joint distribution of observed/unobserved modalities and the imputation
mask, resulting in a unified model for various down-stream tasks including data generation
and imputation. Evaluation on synthetic high-dimensional and challenging low-dimensional
multimodal datasets shows improvement over the state-of-the-art imputation models.

1. Introduction

Modern deep learning techniques rely heavily on extracting information from large scale
datasets of clean and complete training data, such as labeled data or images with all pixels.
Practically these data is costly due to the limited resources or privacy concerns. Having a
model that learns and extracts information from partially-observed data will largely increase
the application spectrum of deep learning models and provide benefit to down-stream tasks,
e.g. data imputation, which has been an active research area. Despite promising progress,
there are still challenges in learning effective imputation models: 1) Some prior works focus
on learning from fully-observed data and then performing imputation on partially-observed
data (Suzuki et al., 2016; Ivanov et al., 2019); 2) They usually have strong assumptions on
missingness mechanism (see Appendix A.1) such as data is missing completely at random
(MCAR) (Yoon et al., 2018); 3) Some other works explore only unimodal imputation such as
image in-painting for high-dimensional data (Ivanov et al., 2019; Mattei and Frellsen, 2019).

Modeling any combination of data modalities has not been well-established yet. This
can limit the potential of such models since raw data in real-life is usually acquired in
a multimodal manner (Ngiam et al., 2011). A class of prior works focus on learning
the conditional likelihood of the modalities (Sohn et al., 2015; Pandey and Dukkipati,
2017). However, they require complete data during training and cannot handle arbitrary
conditioning. In practice, one or more of the modalities maybe be missing, leading to a
challenging multimodal data imputation task. For more on related works, see Appendix A.2.
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Figure 1: Overall architecture. Blue is observed, red/yellow are unobserved (shaded).
The unimodal/multimodal proposal networks are employed by selection indicated by the
arrows. Standard normal prior is ignored for simplicity. φ, ψ, θ and ε are the parameters of
each modules. All components are trained jointly.

We propose Variational Selective Autoencoder (VSAE) for multimodal data generation
and imputation. It can model the joint distribution of data and mask and avoid the
limited assumptions such as MCAR. VSAE is optimized efficiently with a single variational
objective. The contributions are summarized as: (1) A novel variational framework to
learn from partially-observed multimodal data; (2) VSAE can learn the joint distribution
of observed/unobserved modalities and the mask, resulting in a unified model for various
down-stream tasks including data generation/imputation with relaxed assumptions on
missigness mechanism; (3) Evaluation on both synthetic high-dimensional and challenging
low-dimensional multimodal datasets shows improvement over the state-of-the-art data
imputation models.

2. Method

Problem Statement. Let x = [x1,x2...,xM ] be the complete data with M modalities.
The size of each xi may vary. A binary mask variable m ∈ {0, 1}M : mi = 1 indicates
xi is observed and mi = 0 indicates xi is unobserved. The set of observed modalities
O = {i|mi = 1} and unobserved modalities U = {i|mi = 0} are complementary. Accordingly,
we denote the representation of observed and unobserved modalities with xo = [xi|mi = 1]
and xu = [xi|mi = 0]. Assuming x and m are dependent, we aim to model the joint
distribution p(x,m). As a result, VSAE can be used for both imputation and generation.

Proposed Model. The high-level overview of VSAE (see Figure 1) is that the multimodal
data is encoded to a latent space factorized w.r.t. the modalities. The latent variable of each
modality is selectively chosen between a unimodal encoder (if the modality is observed) or a
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multimodal encoder (if the modality is unobserved). Next all the modalities and mask are
reconstructed by decoding the aggregated latent codes. Mathematically, we aim to model
the joint distribution of the data x = [xo,xu] and mask m. Following VAE formulation (see
Appendix A.3), we derive the ELBO for log p(x,m) with approximate posterior q(z|x,m):

Lφ,ψ,θ,ε(x,m) = Ez∼qφ,ψ(z|x,m)[log pθ,ε(x,m|z)]−DKL[qφ,ψ(z|x,m)||p(z)]

= Ez∼qφ,ψ(z|x,m)[log pθ(x|m, z) + log pε(m|z)]− Ez∼qφ,ψ(z|x,m)[log qφ,ψ(z|x,m)− log p(z)].

(1)

Decoder The probability distribution factorizes over modalities assuming that reconstruc-
tions are conditionally independent given complete latent variables of all modalities:

log pθ(x|m, z) = log pθ(xo,xu|m, z) =
∑
i∈O

log pθ(xi|m, z) +
∑
j∈U

log pθ(xj |m, z) (2)

Selective proposal distribution for encoders Following Tsai et al. (2019), we as-
sume latent variables factorizes w.r.t the modalities z = [z1, z2, ..., zM ]. Thus, log p(z) =∑M

i=1 log p(zi) and log q(z|x,m) =
∑M

i=1 log q(zi|x,m) . Given this, we define the proposal
distribution for each modality as

qφ,ψ(zi|x,m) =

{
qφ(zi|xi) if mi = 1

qψ(zi|xo,m) if mi = 0
(3)

This is based on the intuitive assumption that the latent space of each modality is independent
of the others given its data is observed. If the modality is missing, its latent variable is
selectively inferred from other observed modalities. For partially-observed setting, xu is
unavailable even during training. Thus, we define the objective function for training by
taking expectation of the ELBO in Equation (1) over xu. Only one term in Equation (2) is
dependent on xu, so the final objective is derived as

L′φ,ψ,θ,ε(xo,m) = Exu [Lφ,ψ,θ,ε(xo,xu,m)] = Ez

∑
i∈O

log pθ(xi|m, z) +
∑
j∈U

Exj [log pθ(xj |m, z)


+ Ez [log pε(m|z)]−

M∑
i=1

Ezi [log qφ,ψ(zi|x,m)− log p(zi)] where zi ∼ qφ,ψ(zi|x,m) (4)

We approximate Exj [log pθ(xj |m, z)], j ∈ U by sampling xj from the prior network (standard
normal) and passing through the decoder. Our experiments show even a single sample
is sufficient to learn the model effectively. In fact, the prior network can be used as a
self-supervision mechanism to find the most likely samples which dominate the other samples
when taking the expectation. See Appendix B for more details.

3. Experiment

We evaluate our model on high-dimensional multi-modal data and low-dimensional tabular
data in comparison with state-of-the-art latent variable models. To test the robustness of
our model, we evaluate our model under various challenging missingness mechanisms.
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Categorical(PFC) Numerical(NRMSE) Bimodal(MSE)

Phishing Mushroom Yeast Glass Synthetic1 Synthetic2

AE 0.348± 0.002 0.56± 0.01 0.74± 0.04 1.65± 0.05 0.215±∆ 0.234±∆
VAE 0.293± 0.003 0.47± 0.02 0.46±∆ 1.41± 0.01 0.140±∆ 0.127±∆
CVAE w/ mask 0.241± 0.003 0.45± 0.01 0.45±∆ 1.50±∆ 0.141±∆ 0.125±∆
MVAE (Wu and Goodman, 2018) 0.308± 0.015 0.59± 0.02 0.44± 0.02 1.57± 0.04 0.156±∆ 0.131±∆
VSAE 0.237± 0.001 0.40± 0.01 0.41± 0.01 1.31± 0.02 0.138±∆ 0.120±∆

CVAE w/ data 0.301± 0.005 0.49± 0.03 0.45±∆ 1.38± 0.05 0.134±∆ 0.127±∆
VAEAC(Ivanov et al., 2019) 0.240± 0.006 0.40± 0.01 0.45±∆ 1.43± 0.03 0.134±∆ 0.121±∆

Table 1: Data Imputation. Missing ratio is 0.5. For all lower is better. Last two rows are
trained with fully-observed data. We show mean/std over 3 independent runs. ∆ ≤ 0.001.

3.1. Data Imputation

Low-dimensional tabular data. We choose UCI repository datasets (contains both
numerical and categorical data, training/test split as 4/1 and 20% of training set for
validation). We randomly sample from independent Bernoulli distributions with pre-defined
missing ratio to generate masks that are fixed during training and test. In Table 1, we
observe that VSAE trained with partially-observed data outperforms other baselines, even
those models trained with fully-observed data on some datasets. We argue this is due to
two potential reasons: (1) the mask provides a natural way of dropout on the data space,
thereby, helping the model to generalize; (2) If the data is noisy or has outliers, which is
common in low-dimensional data, learning from partially-observed data can improve the
results by ignoring these data. Figure 2 indicates VSAE are more robust to missing ratio.

High-dimensional multimodal data. We synthesize two bimodal datasets using MNIST
and SVHN datasets: Synthetic1 contains randomly paired two digits in MNIST as [0, 9], [1,
8], [2, 7], [3, 6], [4, 5]; Synthetic2 contains pairs of one digit in MNIST with a random same
digit in SVHN. VSAE has better performance with lower variance (see Table 1). Experiments
also indicate that VSAE is robust under different missing ratios, whereas other baselines are
sensitive to the missing ratio, which is consistent as UCI experiments. We believe this is
because of the underlying mechanism of proper proposal distribution selection and prior
sharing. The separation of unimodal/multimodal encoders helps the model to attend to the
observed data, while baselines only have single proposal distribution inferred from the whole
input. Thus, VSAE can easily ignore unobserved noisy modalities and attends on observable
useful modalities, but baselines rely on neural networks to extract useful information from
the whole data (which is dominated by missing information in case of high missing ratio).

Figure 2: Feature Imputations in different missing ratios, over 3 independent runs.
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Figure 3: Data Generation. Generated w/o conditional information. As shown, the
correspondence between modalities (pre-defined pairs) are preserved.

3.2. Data and Mask Generation

After training, we sample from prior to generate the data and mask. In UCI experiments,
We calculate the proportion of 0 in generated mask vectors over 100 samples and average on
all experiments, we get 0.3123± 0.026, 0.4964± 0.005, 0.6927± 0.013 for missing ratio of
0.3, 0.5, 0.7. It indicates VSAE can learn mask distribution. We observe that conditions on
the reconstructed mask in the data decoders improve the performance. We believe this is
because the mask vector can inform the data decoder about the missingness in data space
since the latent space is shared by all modalities thereby allowing it to generate data from
the selective proposal distribution. Figure 3 qualitatively shows VSAE can perform good
data generation in bimodal experiments.
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Appendix A. Backgroud

A.1. Imputing data from missing information

Imputation Process and Missingness Mechanisms. Following (Little and Rubin,
1986), the imputation process is to learn a generative distribution for unobserved missing
data. To be consistent with notations in Section 2, let x = [x1,x2, ...,xM ] be the complete
data of all modalities where xi denote the feature representation for the i-th modality. We
also define m ∈ {0, 1}M as the binary mask vector, where mi = 1 indicates if the i-th
modality is observed, and mi = 0 indicates if it is unobserved:

x ∼ pdata(x),

m ∼ p(m|x). (5)

Given this, the observed data xo and unobserved data xu are represented accordingly:

xo = [xi|mi = 1],

xu = [xi|mi = 0]. (6)

In the standard maximum likelihood setting, the unknown parameters are estimated by
maximizing the following marginal likelihood, integrating over the unknown missing data
values:

p(xo,m) =

∫
p(xo,xu,m)dxu =

∫
p(xo,xu)p(m|xo,xu)dxu (7)

Little and Rubin (1986) characterizes the missingness mechanism p(m|xo,xu) in terms of
independence relations between the complete data x = [xo,xu] and the mask m:

• Missing completely at random (MCAR): p(m|xo,xu) = p(m),

• Missing at random (MAR): p(m|xo,xu) = p(m|xo),

• Not missing at random (NMAR): p(m|xo,xu) = p(m|xu) or p(m|xo,xu).

Most previous data imputation methods works under MCAR or MAR assumptions since
p(xo,m) can be factorized into p(xo)p(m|xo) or p(xo)p(m). With such decoupling, we do
not need missing information to marginalize the likelihood, and it provides a simple but
approximate framework to learn from partially-observed data.

Data Imputation. Classical imputation methods such as MICE (Buuren and Groothuis-
Oudshoorn, 2010) and MissForest (Stekhoven and Bühlmann, 2011) learn discriminative
models to impute missing features from observed ones. With recent advances in deep learning,
several deep imputation models have been proposed based on autoencoders (?Gondara and
Wang, 2017; Ivanov et al., 2019), generative adversarial nets (GANs) (Yoon et al., 2018; Li
et al., 2019), and autoregressive models (?). GAN-based imputation method GAIN proposed
by Yoon et al. (2018) assumes that data is missing completely at random. Moreover, this
method does not scale to high-dimensional multimodal data. Several VAE based data
imputation methods (Ivanov et al., 2019; Nazabal et al., 2018; Mattei and Frellsen, 2019)
have been proposed in recent years. Ivanov et al. (2019) formulated variational autoencoders
with arbitrary conditioning (VAEAC) for data imputation which allows generation of missing
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data conditioned on any combination of observed data. This algorithm needs complete
data during training cannot learn from partially-observed data only. Nazabal et al. (2018)
and Mattei and Frellsen (2019) modified VAE formulation to model the likelihood of the
observed data only. However, they require training of a separate generative network for each
dimension thereby increasing computational requirements. In contrast, our method aims
to model joint distribution of observed and unobserved data along with the missingness
pattern (imputation mask). This enables our model to perform both data generation and
imputation even under relaxed assumptions on missingness mechanism (see Appendix A.1).

A.2. Learning from Multimodal Data.

A class of prior works such as conditional VAE (Sohn et al., 2015) and conditional multimodal
VAE (Pandey and Dukkipati, 2017) focus on learning the conditional likelihood of the
modalities. However, these models requires complete data during training and cannot
handle arbitrary conditioning. Alternatively, several generative models aim to model joint
distribution of all modalities (Ngiam et al., 2011; ?; Sohn et al., 2014; Suzuki et al., 2016).
However, multimodal VAE based methods such as joint multimodal VAE (Suzuki et al.,
2016) and multimodal factorization model (MFM) (Tsai et al., 2019) require complete data
during training. On the other hand, Wu and Goodman (2018) proposed another multimodal
VAE (namely MVAE) can be trained with incomplete data. This model leverages a shared
latent space for all modalities and obtains an approximate joint posterior for the shared
space assuming each modalities to be factorized. However, if training data is complete, this
model cannot learn the individual inference networks and consequently does not learn to
handle missing data during test. Building over multimodal VAE approaches, our model aims
to address the shortcomings above within a flexible framework. In particular, our model
can learn multimodal representations from partially observed training data and perform
data imputation from arbitrary subset of modalities during test. By employing a factorized
multimodal representations in the latent space it resembles disentangled models which can
train factors specialized for learning from different parts of data (Tsai et al., 2019).

A.3. Variational Autoencoder

Variational Autoencoder (VAE) (Kingma and Welling, 2013) is a probabilistic generative
model, where data is constructed from a latent variable z with a prior distribution p(z). It
is composed of an inference network and a generation network to encode and decode data.
To model the likelihood of data, the true intractable posterior p(z|x) is approximated by
a proposal distribution qφ(z|x), and the whole model is trained until ideally the decoded
reconstructions from the latent codes sampled from the approximate posterior match the
training data. In the generation module, pθ(x̃|z), a decoder realized by a deep neural network
parameterized by θ, maps a latent variable z to the reconstruction x̃ of observation x. In
the inference module, an encoder parameterized by φ produces the sufficient statistics of
the approximation posterior qφ(z|x) (a known density family where sampling can be readily
done). In vanilla VAE setting, by simplifying approximate posterior as a parameterized
diagonal normal distribution and prior as a standard diagonal normal distribution N (0, I),
the training criterion is to maximize the following evidence lower bound (ELBO) w.r.t. θ

10



Variational Selective Autoencoder

and φ.

log p(x) ≥ Lθ,φ(x) = Eqφ(z|x)[log pθ(x|z)]−DKL[qφ(z|x)||p(z)] (8)

where DKL denotes the Kullback-Leibler (KL) divergence. Usually the prior p(z) and the
approximate qφ(z|x) are chosen to be in simple form, such as a Gaussian distribution with
diagonal covariance, which allows for an analytic calculation of the KL divergence. While
VAE approximates p(x), conditional VAE (Sohn et al., 2015) approximates the conditional
distribution p(x|y). By simply introducing a conditional input, CVAE is trained to maximize
the following ELBO:

log p(x|y) ≥ Lθ,φ,ψ(x,y) = Eqφ(z|x,y)[log pθ(x|z,y)]−DKL[qφ(z|x,y)||pψ(z|y)] (9)
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Appendix B. Module Details

B.1. Architecture

We construct each module of our model using neural networks and optimize the parameters
via backpropagation techniques. Following the terms in standard VAE, our model is
composed of encoders and decoders. The architecture is shown in Figure 1 with different
modalities denoted by different colors. The data space of unobserved modalities is shaded
to differentiate from observed modalities. The whole architecture can be viewed as an
integration of two auto-encoding structures: the top-branch data-wise encoders/decoders
and the bottom-branch mask-wise encoders/decoder. The selective proposal distribution
chooses between the unimodal and multimodal encoders if the data is observed or not. The
outputs of all encoders are aggregated and a common latent space is shared among all
decoders. In the rest of this section we explain different modules in the proposed model.
For more details about architecture and implementation see Appendix B.

Selective Factorized Encoders Standard proposal distribution of VAEs depends on the
whole data and can not handle incomplete input when the data is partially-observed. To
overcome this, we introduce our selective proposal distribution, which is factorized with
respect to the modalities. As defined in Equation (3), qφ(zi|xi), named as the unimodal
proposal distribution, is inferred only from each observed individual modality of data.
However, if the modality is unobserved, the multimodal proposal distribution qψ(zi|xo,m) is
used to infer corresponding latent variables from other observed modalities and mask. Hence,
the learned model can impute the missing information by combining unimodal proposal
distribution of observed modalities and multimodal proposal distribution of the unobserved
modalities. The condition on the mask could make the model aware of the missing pattern
and could help the model to attend to observed modalities.

For each modality xi, we have a separate encoder to infer its unimodal proposal dis-
tribution parameterized by φ. For the multimodal proposal distribution, however, we
use a single encoder parameterized by ψ. This encoder outputs the latent codes for all
modalities, and we simply obtain the latent variable for each modality by slicing the output
vector to M sequential vectors. We simply model all the proposal distributions as normal
distributions by setting the outputs of all encoders as mean and variance of a normal distri-
bution. For the unimodal proposal distributions, we have qφ(zi|xi) = N (zi;µφ(xi),Σφ(xi)),
where µφ and Σφ are deterministic neural networks parameterized by φ that output
the mean and covariance respectively. Similarly, the multimodal proposal distribution
qψ(zi|xo,m) = N (zi;µψ(xo,m),Σψ(xo,m)) can be modeled by a neural network with
xo and m as the inputs. The reparameterization in standard VAE is used for end-to-end
training.

Decoding through Latent Variable Aggregator F After selecting and sampling from
proper proposal distributions for all modalities, the variational latent codes can be fed to the
downstream decoders even when the observation is incomplete. To do this, the information
from different modalities interact by aggregating their stochastic latent codes before going
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through the decoders:

pε(m|z) = pε(m|F(z)),

pθ(xi|z,m) = pθ(xi|F(z),m)), (10)

Here we simply choose the aggregator F(·) = concat(·), i.e., concatenating the latent codes
as one single vector. One may also use other aggregation functions such as max/mean
pooling or matrix fusion (Veit et al., 2018) to combine latent codes from all modalities. The
decoders take the shared aggregated variational latent codes as input to generate data and
mask.

Mask Vector Encoding and Decoding The mask variable m is encoded into the latent
space through the multimodal proposal network. The latent space is shared by the mask and
data decoders. The mask decoder is an MLP parameterized by ε in our implementation. It
maps the aggregated latent codes from the selective proposal distributions to a reconstruction
of the M -dimensional binary mask vector. We assume each dimension of the mask variable
is an independent Bernoulli distribution.

Training With reparameterization trick (Kingma and Welling, 2013), we can jointly
optimize the objective derived in Equation Equation (4) with respect to these parameters
defined above on training set:

max
φ,θ,ψ,ε

Exo,m[L′φ,θ,ψ,ε(xo,m)] (11)

Since Equation (11) only requires the mask and observed data during training, this modified
ELBO L′φ,θ,ψ,ε(xo,m) can be optimized without the presence of unobserved modalities.
The KL-divergence term is calculated analytically for each factorized term. The conditional
log-likelihood term is computed by negating reconstruction loss function. (See Section 3 and
Appendix B.3.)

Inference The learned model can be used for both data imputation and generation. For
imputation, the observed modalities xo and mask m are fed through the encoders to infer
the selective proposal distributions. Then the sampled latent codes are decoded to estimate
the unobserved modalities xu. All the modules in Figure 1 are used for imputation. For
generation, since no data is available at all, the latent codes are sampled from the prior and
go through the decoders to generate the data and the mask. In this way, only modules after
the aggregator are used without any inference modules.

B.2. Implementation

In all models, all the layers are modeled by MLP without any skip connections or resnet
modules. Basically, the unimodal encoders take single modality data vector as input to
infer the unimodal proposal distribution; the multimodal encoders take the observed data
vectors and mask vector as as input to infer the multimodal proposal distributions. The
input vector to multimodal encoders should have same length for the neural network. Here
we just concatenate all modality vectors and replace the unobserved modality vectors with
some noise. In UCI repository experiment, we replace the unobserved modality vectors as
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standard normal noise. In Bimodal experiment, we simply replace the pixels of unobserved
modality as zero. Note that all the baselines has encoders/decoders with same or larger
number of parameters than our method. We implement our model using PyTorch.

Unimodal Encoders In UCI repository experiment, the unimodal encoders for numerical
data are modeled by 3-layer 64-dim MLPs and the unimodal encoders for categorical data
are modeled by 3-layer 64-dim MLPs, all followed by Batch Normalization and Leaky ReLU
nonlinear activations. In MNIST+MNIST bimodal experiment, the unimodal encoders
are modeled by 3-layer 128-dim MLPs followed by Leaky ReLU nonlinear activations; In
MNIST+SVHN bimodal experiment, the unimodal encoders are modeled by 3-layer 512-dim
MLPs followed by Leaky ReLU nonlinear activations. We set the latent dimension as 20-dim
for every modality in UCI repository experiments and 256-dim for every modality in Bimodal
experiments.
UCI data unimodal encoder: Linear(1, 64)→ BatchNorm1d(64)→ LeakyReLU→ Linear(64,
64)→ LeakyReLU→ Linear(64, 64)→ LeakyReLU→ Linear(64, 20);
MNIST+MNIST synthetic unimodal encoder: Linear(data-dimension, 128)→ LeakyReLU→
Linear(128,128)→ LeakyReLU→ Linear(128, 128)→ LeakyReLU→ Linear(128, 256);
MNIST+SVHN synthetic unimodal encoder: Linear(data-dimension, 512)→ LeakyReLU→
Linear(512,512)→ LeakyReLU→ Linear(512, 512)→ LeakyReLU→ Linear(512, 256);

Multimodal Encoders In general, any model capable of multimodal fusion (Zadeh et al.,
2017; Morency et al., 2011) can be used here to map the observed data xo and the mask
m to the latent variables z. However, in this paper we simply use an architecture similar
to unimodal encoders. The difference is that the input to unimodal encoders are lower
dimensional vectors of an individual modalities. But, the input to the multimodal encoders
is the complete data vector with unobserved modalities replaced with noise or zeros. As
the input to the multimodal encoders is the same for all modalities (i.e., q(zi|xo,m) ∀i),
we model the multimodal encoders as one single encoder to take advantage of the parallel
matrix calculation speed. Thus the multimodal encoder for every experiment has the same
structure as its unmidal encoder but with full-dimensional input.

Aggregator In our models, we simply use vector concatenation as the way of aggregating.

Mask Decoder UCI mask decoder: Linear(20*data-dimension, 64)→ BatchNorm1d(64)→
LeakyReLU→ Linear(64, 64)→ LeakyReLU→ Linear(64, 64)→ LeakyReLU→ Linear(64,
mask-dimension)→Sigmoid;
MNIST+MNIST synthetic mask decoder: Linear(512, 16)→ BatchNorm1d(16)→ LeakyReLU→
Linear(16,16)→ LeakyReLU→ Linear(16, 16)→ LeakyReLU→ Linear(16, 2)→Sigmoid;
MNIST+SVHN synthetic mask encoder: Linear(512, 16)→ BatchNorm1d(16)→ LeakyReLU→
Linear(16,16)→ LeakyReLU→ Linear(16,16)→ LeakyReLU→ Linear(16,2)→Sigmoid;

Data Decoder As the output is factorized over modalities and for every decoder the
input is shared as the latent codes sampled from the selective proposal distribution. We
implement all the decoders of the data modalities as one single decoder for parallel speed.
UCI data decoder: Linear(20*data-dimension, 128)→ BatchNorm1d(128)→ LeakyReLU→
Linear(128)→ Linear(128, 128)→ Linear(128, data-dimension);
MNIST+MNIST synthetic data decoder: Linear(512, 128)→ BatchNorm1d(128)→ LeakyReLU→
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Linear(128,128)→ Linear(128, 128)→ Linear(128, 784)→Sigmoid;
MNIST+SVHN synthetic mask encoder: Linear(512, 512)→ BatchNorm1d(512)→ LeakyReLU→
Linear(512,512)→ Linear(512,512)→ Linear(512,784/3072)→Sigmoid;

B.3. Training

We use Adam optimizer for all models. For UCI numerical experiment, learning rate is 1e-3
and use validation set to find a best model in 1000 epochs. For UCI categorical experiment,
learning rate is 1e-2 and use validation set to find a best model in 1000 epochs. For bimodal
experiments, learning rate is 1e-4 and use validation set to find a best model in 1000 epochs.
All modules in our models are trained jointly.
In our model, we calculate the conditional log-likelihood of unobserved modality by generating
corresponding modalities from prior. We initially train the model for some (empirically
we choose 20) epochs without calculating the conditional log-likelihood of xu. And then
first feed the partially-observed data to the model and generate the unobserved modality
x̃u without calculating any loss; then feed the same batch for another pass, calculate the
conditional log-likelihood using real xo and generated xu as ground truth.

Appendix C. Additional Results

C.1. UCI repository Datasets

Phishing Zoo Mushroom

AE 0.348± 0.002 0.295± 0.022 0.556± 0.009
VAE 0.293± 0.003 0.304± 0.009 0.470± 0.017
CVAE w/ mask 0.241± 0.003 0.270± 0.023 0.445± 0.004
MVAE 0.308± 0.015 0.233± 0.013 0.586± 0.019
VSAE 0.237± 0.001 0.213± 0.004 0.396± 0.008

CVAE w/ data 0.301± 0.005 0.323± 0.032 0.485± 0.034
VAEAC 0.240± 0.006 0.168± 0.006 0.403± 0.006

Table 2: Imputation on Categorical datasets. Missing ratio is 0.5. Last two rows are
trained with fully-observed data. Evaluated by PFC, lower is better.
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Yeast White Wine Glass

AE 0.737± 0.036 0.3772± 0.0008 1.651± 0.049
VAE 0.461± 0.001 0.3714± 0.0001 1.409± 0.011
CVAE w/ mask 0.449± 0.001 0.3716± 0.0001 1.498± 0.0013
MVAE 0.442± 0.018 0.3722± 0.0009 1.572± 0.035
VSAE 0.409± 0.012 0.3711± 0.0002 1.312± 0.021

CVAE w/ data 0.449± 0.0001 0.3567± 0.0016 1.380± 0.045
VAEAC 0.447± 0.0016 0.3647± 0.0039 1.432± 0.027

Table 3: Imputation on Numerical datasets. Missing ratio is 0.5. Last two rows are
trained with fully-observed data. Evaluated by NRMSE, lower is better.

C.2. MNIST+MNIST Bimodal dataset

0.3 0.5 0.7

AE 0.2124± 0.0012 0.2147± 0.0008 0.2180± 0.0008
VAE 0.1396± 0.0002 0.1416± 0.0001 0.1435± 0.0006
CVAE w/ mask 0.1393± 0.0002 0.1412± 0.0006 0.1425± 0.0012
MVAE 0.1547± 0.0012 0.1562± 0.0003 0.1579± 0.0006
VSAE 0.1371± 0.0001 0.1376± 0.0002 0.1379± 0.0001

CVAE w/ data 0.1336± 0.0003 0.1340± 0.0003 0.1343± 0.0002
VAEAC 0.1333± 0.0004 0.1338± 0.0003 0.1344± 0.0001

Table 4: Imputation on MNIST+MNIST. Missing ratio is 0.3, 0.5 and 0.7. Last two
rows are trained with fully-observed data. Evaluated by combined errors of two modalities,
lower is better.

Figure 4: Imputation on MNIST+MNIST. Top row visualizes observed modality,
middle row unobserved modality, and bottom row shows the imputation of unobserved
modality from VSAE.
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Figure 5: Generation on MNIST+MNIST. Generated Samples w/o conditional infor-
mation. As shown, the correspondence between modalities (pre-defined pairs) are preserved
while generation.

C.3. MNIST+SVHN Bimodal dataset

MNIST-MSE/784 SVHN-MSE/3072 Bimodal Error

AE 0.0867± 0.0001 0.1475± 0.0006 0.2342± 0.0007
VAE 0.0714± 0.0001 0.0559± 0.0027 0.1273± 0.0003
CVAE w/ mask 0.0692± 0.0001 0.0558± 0.0003 0.1251± 0.0005
MVAE 0.0707± 0.0003 0.602± 0.0001 0.1309± 0.0005
VSAE 0.0682± 0.0001 0.0516± 0.0001 0.1198± 0.0001

CVAE w/ data 0.0716± 0.0002 0.0550± 0.0007 0.1266± 0.0005
VAEAC 0.0682± 0.0001 0.0523± 0.0001 0.1206± 0.0001

Table 5: Imputation on MNIST+SVHN. Missing ratio is 0.5. Last two rows are trained
with fully-observed data. Evaluated by combined errors of two modalities, lower is better.
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0.3 0.5 0.7

AE 0.1941± 0.0006 0.2342± 0.0007 0.2678± 0.0012
VAE 0.1264± 0.0001 0.1273± 0.0003 0.1322± 0.0005
CVAE w/ mask 0.1255± 0.0002 0.1251± 0.0005 0.1295± 0.0006
MVAE 0.1275± 0.0029 0.1309± 0.0005 0.1313± 0.0013
VSAE 0.1217± 0.0002 0.1198± 0.0001 0.1202± 0.0002

CVAE w/ data 0.1288± 0.0011 0.1266± 0.0005 0.1248± 0.0003
VAEAC 0.1218± 0.0002 0.1206± 0.0001 0.1211± 0.0001

Table 6: Imputation on MNIST+SVHN. Missing ratio is 0.3, 0.5 and 0.7. Last two
rows are trained with fully-observed data. Evaluated by combined errors of two modalities,
lower is better.
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