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Abstract
Given samples from a group of related regres-
sion tasks, a data-enriched model describes ob-
servations by a common and per-group individual
parameters. In high-dimensional regime, each pa-
rameter has its own structure such as sparsity or
group sparsity. In this paper, we consider the gen-
eral form of data enrichment where data comes
in a fixed but arbitrary number of tasks G and
any convex function, e.g., norm, can character-
ize the structure of both common and individual
parameters. We propose an estimator for the high-
dimensional data enriched model and investigate
its statistical properties. We delineate the sam-
ple complexity of our estimator and provide high
probability non-asymptotic bound for estimation
error of all parameters under a condition weaker
than the state-of-the-art. We propose an itera-
tive estimation algorithm with a geometric con-
vergence rate. Overall, we present a first through
statistical and computational analysis of inference
in the data enriched model.

1. Introduction
Over the past two decades, major advances have been made
in estimating structured parameters, e.g., sparse, low-rank,
etc., in high-dimensional small sample problems (Donoho,
2006; Candès & Tao, 2010; Friedman et al., 2008). Such esti-
mators consider a suitable (semi) parametric model of the re-
sponse: y = φ(x,β∗)+ω based on n samples {(xi, yi)}ni=1

and β∗ ∈ Rp is the true parameter of interest. The unique
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aspect of such high-dimensional setup is that the number
of samples n < p, and the structure in β∗, e.g., sparsity,
low-rank, makes the estimation possible (Tibshirani, 1996;
Candès et al., 2006; Candès & Recht, 2009). In several real
world problems, natural grouping among samples arises and
learning a single common model β0 for all samples or many
per group individual models βgs are unrealistic. The middle
ground model for such a scenario is the superposition of
common and individual parameters β0 +βg which has been
of recent interest in the statistical machine learning com-
munity (Gu & Banerjee, 2016) and is known by multiple
names. It is a form of multi-task learning (Zhang & Yang,
2017; Jalali et al., 2010) when we consider regression in
each group as a task. It is also called data sharing (Gross &
Tibshirani, 2016) since information contained in different
group is shared through the common parameter β0. And
finally, it has been called data enrichment (Chen et al., 2015;
Asiaee et al., 2018) because we enrich our data set with
pooling multiple samples from different but related sources.

In this paper, we consider the following data enrichment
(DE) model where there is a common parameter β∗0 shared
between all groups plus individual per-group parameters β∗g
which characterize the deviation of group g:

ygi = φ(xgi, (β
∗
0 + β∗g)) + ωgi, g ∈ {1, . . . , G}, (1)

where g and i index the group and samples respectively.
Note that the DE model is a system of coupled superposi-
tion models. We specifically focus on the high-dimensional
small sample regime for (1) where the number of samples
ng for each group is much smaller than the ambient di-
mensionality, i.e., ∀g : ng � p. Similar to all other high-
dimensional models, we assume that the parameters βg are
structured, i.e., for suitable convex functions fg’s, fg(βg)
is small. Further, for the technical analysis and proofs, we
focus on the case of linear models, i.e., φ(x,β) = xTβ.
The results seamlessly extend to more general non-linear
models, e.g., generalized linear models, broad families of
semi-parametric and single-index models, non-convex mod-
els, etc., using existing results, i.e., how models like LASSO
have been extended (e.g. employing ideas such as restricted
strong convexity (Negahban & Wainwright, 2012)).

In the context of Multi-task learning (MTL), similar mod-
els have been proposed which has the general form of
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ygi = xTgi(β
∗
1g + β∗2g) + ωgi where B1 = [β11, . . . ,β1G]

and B2 = [β21, . . . ,β2G] are two parameter matrices
(Zhang & Yang, 2017). To capture relation of tasks, different
types of constraints are assumed for parameter matrices. For
example, (Chen et al., 2012) assumes B1 and B2 are sparse
and low rank respectively. In this parameter matrix decom-
position framework for MLT, the most related work to ours
is the one proposed by (Jalali et al., 2010) where authors
regularize the regression with ‖B1‖1,∞ and ‖B2‖1,1 where
norms are p, q-norms on rows of matrices. Parameters of B1

are more general than DE’s common parameter when we use
f0(β0) = ‖β0‖1. This is because ‖B1‖1,∞ regularizer en-
forces shared support of β∗1gs, i.e., supp(β∗1i) = supp(β∗1j)
but allows β∗1i 6= β∗1j . Further sparse variation between pa-
rameters of different tasks is induced by ‖B2‖1,1 which has
an equivalent effect to DE’s individual parameters where
fg(·)s are l1-norm. Our analysis of DE framework suggests
that it is more data efficient than this setup of (Jalali et al.,
2010) because they require every task i to have large enough
samples to learn its own common parameters βi while DE
shares the common parameter and only requires the total
dataset over all tasks to be sufficiently large.

The DE model where βg’s are sparse has recently gained
attention because of its application in wide range of domains
such as personalized medicine (Dondelinger & Mukherjee,
2016), sentiment analysis, banking strategy (Gross & Tib-
shirani, 2016), single cell data analysis (Ollier & Viallon,
2015), road safety (Ollier & Viallon, 2014), and disease sub-
type analysis (Dondelinger & Mukherjee, 2016). In spite
of the recent surge in applying data enrichment framework
to different domains, limited advances have been made in
understanding the statistical and computational properties
of suitable estimators for the data enriched model. In fact,
non-asymptotic statistical properties, including sample com-
plexity and statistical rates of convergence, of regularized
estimators for the data enriched model is still an open ques-
tion (Gross & Tibshirani, 2016; Ollier & Viallon, 2014). To
the best of our knowledge, the only theoretical guarantee
for data enrichment is provided in (Ollier & Viallon, 2015)
where authors prove sparsistency of their proposed method
under the stringent irrepresentability condition of the design
matrix for recovering supports of common and individual
parameters. Existing support recovery guarantees (Ollier
& Viallon, 2015), sample complexity and l2 consistency
results (Jalali et al., 2010) of related models are restricted to
sparsity and l1-norm, while our estimator and norm consis-
tency analysis work for any structure induced by arbitrary
convex functions fg. Moreover, no computational results,
such as rates of convergence of the optimization algorithms
associated with proposed estimators, exist in the literature.

Notation and Preliminaries: We denote sets by curly V ,
matrices by bold capital V, random variables by capital
V , and vectors by small bold v letters. We take [G] =

{0, . . . , G} and [G]\ = [G] \ {0}.

Given G groups and ng samples in each as
{{xgi, ygi}

ng
i=1}Gg=1, we can form the per group de-

sign matrix Xg ∈ Rng×p and output vector yg ∈ Rng .
The total number of samples is n =

∑G
g=1 ng. The data

enriched model takes the following vector form:

yg = Xg(β
∗
0 + β∗g) + ωg, ∀g ∈ [G]\ (2)

where each row of Xg is xTgi and ωTg = (ωg1, . . . , ωgng ) is
the noise vector.

A random variable V is sub-Gaussian if its moments sat-
isfies ∀p ≥ 1 : (E|V |p)1/p ≤ K2

√
p. The minimum

value of K2 is called the sub-Gaussian norm of V , denoted
by |||V |||ψ2

(Vershynin, 2012). A random vector v ∈ Rp
is sub-Gaussian if the one-dimensional marginals 〈v,u〉
are sub-Gaussian random variables for all u ∈ Rp. The
sub-Gaussian norm of v is defined (Vershynin, 2012) as
|||v|||ψ2

= supu∈Sp−1 |||〈v,u〉|||ψ2
. For any set V ∈ Rp

the Gaussian width of the set V is defined as ω(V) =
Eg [supu∈V〈g,u〉] (Vershynin, 2018), where the expecta-
tion is over g ∼ N(0, Ip×p), a vector of independent zero-
mean unit-variance Gaussian.

Contributions: We propose the following Data Enrichment
(DE) estimator β̂ for recovering the structured parameters
where the structure is induced by convex functions fg(·):

β̂ = (β̂T0 , . . . , β̂
T
G) ∈ argmin

β0,...,βG

1

n

G∑
g=1

‖yg −Xg(β0 + βg)‖22, (3)

s.t. ∀g ∈ [G] : fg(βg) ≤ fg(β∗g).

We present several statistical and computational results for
the DE estimator (3) of the data enriched model:

• The DE estimator (3) succeeds if a geometric condition
that we call Data EnRichment Incoherence Condition
(DERIC) is satisfied, Figure 1b. Compared to other
known geometric conditions in the literature such as
structural coherence (Gu & Banerjee, 2016) and stable
recovery conditions (McCoy & Tropp, 2013), DERIC is
a weaker condition, Figure 1a.

• Assuming DERIC holds, we establish a high probability
non-asymptotic bound on the weighted sum of parameter-
wise estimation error, δg = β̂g − β∗g as:

G∑
g=0

√
ng
n
‖δg‖2 ≤ γO

(
maxg∈[G] ω(Cg ∩ Sp−1)

√
n

)
, (4)

where n0 , n is the total number of samples, γ ,
maxg∈[G]

n
ng

is the sample condition number, and Cg is
the error cone corresponding to β∗g exactly defined in
Section 2. To the best of our knowledge, this is the first
statistical estimation guarantee for the data enrichment.



High Dimensional Data Enrichment

𝑪𝟎

𝑪𝟑െ𝑪𝟎

𝛼ସ

𝑪𝟐

𝑪𝟏

𝑪𝟒

𝒐

𝛼ଷ

𝛼ଵ 𝛼ଶ

(a) Structural Coherence
(SC) condition.

𝑪𝟎

െ𝑪𝟎

𝛼ଵ
𝒐

𝑪𝟐
𝑪𝟏

𝑪𝟑
𝑪𝟒

(b) Data EnRichment
Incoherence Condition
(DERIC).

Figure 1. a) State of the art condition for recovering com-
mon and individual parameters in superposition models
where Cg = Cone(Eg) are error cones and Eg ={
δg|fg(β∗g + δg) ≤ fg(β∗g)

}
are the error sets for each parame-

ter β∗g ∈ [G] (Gu & Banerjee, 2016) b) Our more relaxed recovery
condition which allows arbitrary non-zero fraction of the error
cones of individual parameters intersect with −C0.

• We also establish the sample complexity of the DE
estimator for all parameters as ∀g ∈ [G] : ng =
O(ω(Cg ∩ Sp−1))2. We emphasize that our result proofs
that the recovery of the common parameter β0 by DE
estimator benefits from all of the n pooled samples.

• We present an efficient projected block gradient descent
algorithm DICER, to solve DE’s objective (3) which
converges geometrically to the statistical error bound
of (4). To the best of our knowledge, this is the first
rigorous computational result for the high-dimensional
data-enriched regression.

2. The Data Enrichment Estimator
A compact form of our proposed DE estimator (3) is:

β̂ ∈ argmin
β

1

n
‖y −Xβ‖22,∀g ∈ [G] : fg(βg) ≤ fg(β∗g), (5)

where y = (yT1 , . . .y
T
G)T ∈ Rn, β = (β0

T , . . . ,βG
T )T ∈

R(G+1)p and

X =


X1 X1 0 · · · 0
X2 0 X2 · · · 0

...
...

. . . · · ·
...

XG 0 · · · · · · XG

 ∈ Rn×(G+1)p . (6)

Example 1. (L1-norm) When all parameters βgs are sg-
sparse, i.e.,|supp(β∗g)| = sg by using l1-norm as the sparsity
inducing function, DE (5) instantiates to the spare DE:

β̂ ∈ argmin
β

1

n
‖y −Xβ‖22,∀g ∈ [G] : ‖βg‖1 ≤ ‖β∗g‖1. (7)

Consider the group-wise estimation error δg = β̂g − β∗g .
Since β̂g = β∗g + δg is a feasible point of (5), the error
vector δg will belong to the following restricted error set:

Eg =
{
δg|fg(β∗g + δg) ≤ fg(β∗g)

}
, g ∈ [G] . (8)

We denote the cone of the error set as Cg , Cone(Eg)
and the spherical cap corresponding to it as Ag , Cg ∩
Sp−1. Consider the set C = {δ = (δT0 , . . . , δ

T
G)T

∣∣∣δg ∈ Cg},
following two subsets of C play key roles in our analysis:

H ,
{
δ ∈ C

∣∣ G∑
g=0

ng
n
‖δg‖2 = 1

}
, (9)

H̄ ,
{
δ ∈ C

∣∣ G∑
g=0

√
ng
n
‖δg‖2 = 1

}
. (10)

Using optimality of β̂, we can establish the following deter-
ministic error bound.

Theorem 1. For the proposed estimator (5), assume there
exist 0 < κ ≤ infu∈H

1
n‖Xu‖22. Then, for the sample

condition number γ = maxg∈[G]\
n
ng

, the following deter-
ministic upper bounds holds:

G∑
g=0

√
ng
n
‖δg‖2 ≤

2γ supu∈H̄ ω
TXu

nκ
.

3. Restricted Eigenvalue Condition
The main assumptions of Theorem 1 is known as Restricted
Eigenvalue (RE) condition in the literature of high dimen-
sional statistics (Banerjee et al., 2014; Negahban et al., 2012;
Raskutti et al., 2010): infu∈H

1
n‖Xu‖22 ≥ κ > 0. Here, we

show that for the design matrix X defined in (6), the RE
condition holds with high probability under a suitable ge-
ometric condition we call Data EnRichment Incoherence
Condition (DERIC) and for enough number of samples. For
the analysis, similar to existing work (Tropp, 2015; Mendel-
son, 2014; Gu & Banerjee, 2016), we assume the design
matrix to be isotropic sub-Gaussian.1

Definition 1. We assume xgi are i.i.d. random vectors
from a non-degenerate zero-mean, isotropic sub-Gaussian
distribution. In other words, E[x] = 0, E[xTx] = Ip×p,
and |||x|||ψ2

≤ k. As a consequence, ∃α > 0 such that
∀u ∈ Sp−1 we have E|〈x,u〉| ≥ α. Further, we assume
noise ωgi are i.i.d. zero-mean, unit-variance sub-Gaussian
with |||ωgi|||ψ2

≤ K.

Definition 2 (Data EnRichment Incoherence Condition (DE-
RIC)). There exists a non-empty set I ⊆ [G]\ of groups
where for some scalars 0 < ρ̄ ≤ 1 and λmin > 0 the
following holds:

1.
∑
i∈I ni ≥ dρ̄ne.

2. ∀i ∈ I, ∀δi ∈ Ci, and δ0 ∈ C0: ‖δi + δ0‖2 ≥
λmin(‖δ0‖2 + ‖δi‖2)

1Extension to an-isotropic sub-Gaussian case is straightforward
by techniques developed in (Banerjee et al., 2014; Rudelson &
Zhou, 2013).
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Observe that 0 < λmin, ρ̄ ≤ 1 by definition.

Using DERIC and the small ball method (Mendelson, 2014),
a recent tool from empirical process theory in the following
theorem, we elaborate the sample complexity required for
satisfying the RE condition:
Theorem 2. Let xgis be random vectors defined in Defini-
tion 1. Assume DERIC condition of Definition 2 holds for
error cones Cgs and ψI = λminρ̄/3. Then, for all δ ∈ H,
when we have enough number of samples as ∀g ∈ [G]\ :

ng ≥ mg = O(k6α−6ψ−2
I ω(Ag)2), with probability at

least 1 − e−nκmin/4 we have infδ∈H
1√
n
‖Xδ‖2 ≥ κmin

2 ,

where κmin = ming∈[G]\ CψI
α3

k2 − 2cgkω(Ag)√
ng

and κ =

κ2
min

4 is the lower bound of the RE condition.
Example 2. (L1-norm) The Gaussian width of the spher-
ical cap of a p-dimensional s-sparse vector is ω(A) =
Θ(
√
s log p) (Banerjee et al., 2014; Vershynin, 2018).

Therefore, the number of samples per group and total re-
quired for satisfaction of the RE condition in the sparse DE
estimator (7) is ∀g ∈ [G] : ng ≥ mg = Θ(sg log p).

4. Estimation Error Bound
Here, we provide a high probability upper bound for the
deterministic upper bound of Theorem 1 and derive the final
estimation error bound.
Theorem 3. Assume xgi and ωgi distributed according to
Definition 1 and τ > 0, then with probability at least 1 −
σ exp

(
−ming∈[G]

[
νgng − log(G+ 1), τ2

η2
gk

2

])
we have:

2

n
ωTXδ ≤

√
8K2 + 4

n
max
g∈[G]

(
ζgkω(Ag) + εg

√
log(G+ 1) + τ

)
.

The following corollary characterizes the general error
bound and results from the direct combination of Theorem
1, Theorem 2, and Theorem 3.
Corollary 1. For xgi and ωgi described in Definition 1 and
τ > 0 when we have enough number of samples ∀g ∈ [G] :
ng > mg which lead to κ > 0, the following general error
bound holds with high probability for estimator (5):

G∑
g=0

√
ng
n
‖δg‖2 ≤ γ

kζmaxg∈[G] ω(Ag) + ε
√

log(G+ 1) + τ

κ2
min

√
n

. (11)

Example 3. (L1-norm) For the sparse DE estimator of (7),
results of Theorem 2 and 3 translates to the following: For
enough number of samples as ∀g ∈ [G] : ng ≥ mg =
O(sg log p), the error bound of (11) simplifies to:

G∑
g=0

√
ng
n
‖δg‖2 = O

(√
(maxg∈[G] sg) log p

n

)
(12)

Therefore, individual errors are bounded as ‖δg‖2 =
O(
√

(maxg∈[G] sg) log p/ng) which is slightly worse than

Algorithm 1 DICER

1: input: X,y, learning rates (µ0, . . . , µG), initialization
β(1) = 0

2: output: β̂
3: for t = 1 to T do
4: for g=1 to G do
5: β

(t+1)
g = ΠΩfg

(
β

(t)
g + µgX

T
g

(
yg −Xg

(
β

(t)
0 + β

(t)
g

)))
6: end for

7: β
(t+1)
0 = ΠΩf0

β
(t)
0 + µ0X

T
0

y −X0β
(t)
0 −


X1β

(t)
1

.

.

.

XGβ
(t)
G





8: end for

O(
√
sg log p/ng), the well-known error bound for recover-

ing an sg-sparse vector from ng observations using LASSO
or similar estimators (Banerjee et al., 2014; Chandrasekaran
et al., 2012; Candes et al., 2007; Chatterjee et al., 2014;
Bickel et al., 2009). Note that maxg∈[G] sg (instead of sg)
is the price we pay to recover the common parameter β0.

5. Estimation Algorithm
We propose Data enrIChER (DICER) a projected block gra-
dient descent algorithm, Algorithm 1, where ΠΩfg

is the
Euclidean projection onto the set Ωfg (dg) = {fg(β) ≤
fg(β

∗
g)}.To analysis convergence properties of DICER,

we should upper bound the error of each iteration.Let’s
δ(t) = β(t) − β∗ be the error of iteration t of DICER, i.e.,
the distance from the true parameter (not the optimization
minimum, β̂). We show that ‖δ(t)‖2 decreases exponen-
tially fast in t to the statistical error ‖δ‖2 = ‖β̂ − β∗‖2.

Theorem 4. Let τ = C
√

log(G+ 1) + b for b > 0 and
ω0g = ω(A0) + ω(Ag). For the step sizes of µ0 = Θ( 1

n )

and µg = Θ( 1√
nng

) and sample complexities of ∀g ∈ [G] :

ng ≥ 2c2g(2ω(Ag) + τ)2, updates of the Algorithm 1 obey
the following with high probability:

G∑
g=0

√
ng
n
‖δ(t+1)
g ‖2 ≤ r(τ)t

G∑
g=0

√
ng
n
‖β∗g‖2

+
(G+ 1)

√
(2K2 + 1)√

n(1− r(τ))

(
ζk max

g∈[G]
ω(Ag) + τ

)
,

where r(τ) < 1.
Corollary 2. For enough number of samples, iterations
of DE algorithm with step sizes µ0 = Θ( 1

n ) and µg =

Θ( 1√
nng

) geometrically converges to the following with
high probability:
G∑
g=0

√
ng
n
‖δ∞g ‖2 ≤ c

ζkmaxg∈[G] ω(Ag) + C
√

log(G+ 1) + b
√
n(1− r(τ))

(13)

which is a scaled variant of statistical error bound deter-
mined in Corollary 1.
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A. Proofs of Theorems
In this Section we present detail proof for each theorem and proposition. To avoid cluttering, during our proofs, we state
some needed results as lemmas and provide their proof in the next Section B.

A.1. Proof of Theorem 1

Proof. Starting from the optimality inequality, for the lower bound with the setH we get:

1

n
‖Xδ‖22 ≥ 1

n
inf
u∈H
‖Xu‖22

(
G∑
g=0

ng
n
‖δg‖2

)2

(14)

≥ κ

(
G∑
g=0

ng
n
‖δg‖2

)2

≥ κ

(
min
g∈[G]

ng
n

)( G∑
g=0

√
ng
n
‖δg‖2

)2

where 0 < κ ≤ 1
n infu∈H ‖Xu‖22 is known as Restricted Eigenvalue (RE) condition. The upper bound will factorize as:

2

n
ωTXδ ≤ 2

n
sup
u∈H̄

ωTXu

(
G∑
g=0

√
ng
n
‖δg‖2

)
, u ∈ H (15)

Putting together inequalities (14) and (15) completes the proof. �

A.2. Proof of Proposition 1

Proposition 1. Assume observations distributed as defined in Definition 1 and pair-wise SC conditions are satisfied.
Consider each superposition model (2) in isolation; to recover the common parameter β∗0 requires at least one group i to
have ni = O(ω2(A0)). To recover the rest of individual parameters, we need ∀g 6= i : ng = O(ω2(Ag)) samples.

Proof. Consider only one group for regression in isolation. Note that yg = Xg(β
∗
g + β∗0) + ωg is a superposition model

and as shown in (Gu & Banerjee, 2016) the sample complexity required for the RE condition and subsequently recovering
β∗0 and β∗g is ng ≥ c(maxg∈[G] ω(Ag) +

√
log 2)2. �

A.3. Proof of Theorem 2

Let’s simplify the LHS of the RE condition:

1√
n
‖Xδ‖2 =

(
1

n

G∑
g=1

ng∑
i=1

|〈xgi, δ0 + δg〉|2
) 1

2

≥ 1

n

G∑
g=1

ng∑
i=1

|〈xgi, δ0 + δg〉|

≥ 1

n

G∑
g=1

ξ‖δ0 + δg‖2
ng∑
i=1

1 (|〈xgi, δ0 + δg〉| ≥ ξ‖δ0 + δg‖2) ,

where the first inequality is due to Lyapunov’s inequality. To avoid cluttering we denote δ0g = δ0 + δg where δ0 ∈ C0 and
δg ∈ Cg. Now we add and subtract the corresponding per-group marginal tail function, Qξg (δ0g) = P(|〈x, , δ0g〉| > ξg)
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where ξg > 0. Let ξg = ‖δ0g‖2ξ then the LHS of the RE condition reduces to:

inf
δ∈H

1√
n
‖Xδ‖2 ≥ inf

δ∈H

G∑
g=1

ng
n
ξgQ2ξg (δ0g) (16)

− sup
δ∈H

1

n

G∑
g=1

ξg

ng∑
i=1

[
Q2ξg (δ0g)− 1(|〈xgi, δ0g〉| ≥ ξg)

]
= t1(X)− t2(X)

For the ease of exposition we have written the LHS of (16) as the difference of two terms, i.e., t1(X)− t2(X) and in the
followings we lower bound the first term t1 and upper bound the second term t2.

A.3.1. LOWER BOUNDING THE FIRST TERM

Our main result is the following lemma which uses the DERIC condition of the Definition 2 and provides a lower bound for
the first term t1(X):

Lemma 1. Suppose DERIC holds. Let ψI = λminρ̄
3 . For any δ ∈ H, we have:

G∑
g=1

ng
n
ξgQ2ξg (δ0g) ≥ ψIξ

(α− 2ξ)2

4ck2

(
‖δ0‖2 +

n∑
g=1

ng
n
‖δg‖2

)
, (17)

which implies that t1(X) = infδ∈H
∑G
g=1

nG
n ξgQ2ξg (δ0g) satisfies the same RHS bound of (17).

A.3.2. UPPER BOUNDING THE SECOND TERM

Let’s focus on the second term, i.e., t2(X). First we want to show that the second term satisfies the bounded difference
property defined in Section 3.2. of (Boucheron et al., 2013). In other words, by changing each of xgi the value of t2(X) at
most change by one. First, we rewrite t2 as follows:

h (x11, . . . ,xjk, . . . ,xGnG) = t2 (x11, . . . ,xjk, . . . ,xGnG) = sup
δ∈H

g (x11, . . . ,xjk, . . . ,xGnG)

where g (x11, . . . ,xjk, . . . ,xGnG) =
∑G
g=1

ξg
n

∑ng
i=1

[
Q2ξg (δ0g)− 1(|〈xgi, δ0g〉| ≥ ξg)

]
. To avoid cluttering let’s X =

{x11, . . . ,xjk, . . . ,xGnG}. We want to show that t2 has the bounded difference property, meaning:

sup
X ,x′jk

|h (x11, . . . ,xjk, . . . ,xGnG)− h
(
x11, . . . ,x

′
jk, . . . ,xGnG

)
| ≤ ci
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for some constant ci. Note that for bounded functions f, g : X → R, we have | supX f − supX g| ≤ supX |f − g|.
Therefore:

sup
X ,x′jk

|h (x11, . . . ,xjk, . . . ,xGnG)− h
(
x11, . . . ,x

′
jk, . . . ,xGnG

)
|

≤ sup
X ,x′jk

sup
δ∈H

∣∣g (x11, . . . ,xjk, . . . ,xGnG)− g
(
x11, . . . ,x

′
jk, . . . ,xGnG

) ∣∣
≤ sup

X ,x′jk
sup
δ∈H

sup
xjk,x′jk

ξj
n

(
1(|〈x′jk, δ0j〉| ≥ ξj)− 1(|〈xjk, δ0j〉| ≥ ξj)

)
≤ sup

X ,x′jk
sup
δ∈H

ξj
n

=
ξ

n
sup
δ∈H
‖δ0 + δg‖2

=
ξ

n
sup
δ∈H
‖δ0‖2 + ‖δg‖2

(δ ∈ H) = ξ

(
1

n
+

1

ng

)
≤ 2ξ

n

Note that for δ ∈ H we have ‖δ0‖2 +
ng
n ‖δg‖2 ≤ 1 which results in ‖δ0‖2 ≤ 1 and ‖δg‖2 ≤ n

ng
. Now, we can invoke

the bounded difference inequality from Theorem 6.2 of (Boucheron et al., 2013) which says that with probability at least
1− e−τ2/2 we have: t2(X) ≤ Et2(X) + τ√

n
.

Having this concentration bound, it is enough to bound the expectation of the second term. Following lemma provides us
with the bound on the expectation.

Lemma 2. For the random vector x of Definition 1, we have the following bound:

2

n
E sup
δ[G]

G∑
g=1

ξg

ng∑
i=1

[
Q2ξg (δ0g)− 1(|〈xgi, δ0g〉| ≥ ξg)

]
≤ 2√

n

G∑
g=0

√
ng
n
cgkω(Ag)‖δg‖2

A.3.3. CONTINUING THE PROOF OF THEOREM 2

Set n0 = n. Putting back bounds of t1(X) and t2(X) together from Lemma 1 and 2, with probability at least 1− e− τ
2

2 we
have:

inf
δ∈H

1√
n
‖Xδ‖2 ≥

G∑
g=0

ng
n
ψIξ‖δg‖2

(α− 2ξ)2

4ck2
− 2√

n

G∑
g=0

√
ng
n
cgkω(Ag)‖δg‖2 −

τ√
n(

q =
(α− 2ξ)2

4ck2

)
=

G∑
g=0

ng
n
ψIξ‖δg‖2q −

2c√
n

G∑
g=0

√
ng
n
kω(Ag)‖δg‖2 −

τ√
n

= n−1
G∑
g=0

ng‖δg‖2(ψIξq − 2ck
ω(Ag)√
ng

)− τ√
n

(κg = ψIξq −
2ckω(Ag)√

ng
) =

G∑
g=0

ng
n
‖δg‖2κg −

τ√
n

≥ κmin

G∑
g=0

ng
n
‖δg‖2 −

τ√
n

(δ ∈ H) = κmin −
τ√
n
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where κmin = argming∈[G] κg . Note that all κgs should be bounded away from zero. To this end we need the follow sample
complexities:

∀g ∈ [G] :

(
2ck

ψIξq

)2

ω(Ag)2 ≤ ng (18)

Taking ξ = α
6 we can simplify the sample complexities to the followings:

∀g ∈ [G] :

(
Ck3

ψIα3

)2

ω(Ag)2 ≤ ng (19)

Finally, to conclude, we take τ =
√
nκmin/2. �

A.4. Proof of Theorem 3

Proof. From now on, to avoid cluttering the notation assume ω = ω0. We massage the equation as follows:

ωTXδ =

G∑
g=0

〈XT
g ωg, δg〉 =

G∑
g=0

√
ng
n
‖δg‖2〈XT

g

ωg
‖ωg‖2

,
δg
‖δg‖2

〉
√

n

ng
‖ωg‖2

Assume bg = 〈XT
g

ωg
‖ωg‖2 ,

δg
‖δg‖2 〉

√
n
ng
‖ωg‖2 and ag =

√
ng
n ‖δg‖2. Then the above term is the inner product of two vectors

a = (a0, . . . , aG) and b = (b0, . . . , bG) for which we have:

sup
a∈H

aTb = sup
‖a‖1=1

aTb

(definition of the dual norm) ≤ ‖b‖∞
= max

g∈[G]
bg

Now we can go back to the original form:

sup
δ∈H

ωTXδ ≤ max
g∈[G]

〈XT
g

ωg
‖ωg‖2

,
δg
‖δg‖2

〉
√

n

ng
‖ωg‖2 (20)

≤ max
g∈[G]

√
n

ng
‖ωg‖2 sup

ug∈Cg∩Sp−1

〈XT
g

ωg
‖ωg‖2

,ug〉

To avoid cluttering we name hg(ωg,Xg) = ‖ωg‖2 supug∈Ag 〈X
T
g

ωg
‖ωg‖2 ,ug〉 and eg(τ) =√

(2K2 + 1)ng
(
υgCgkω(Ag) + εg

√
logG+ τ

)
. Then from (20), we have:

P
(

2

n
sup
δ∈H

ωTXδ >
2

n
max
g∈[G]

√
n

ng
eg(τ)

)
≤ P

(
2

n
max
g∈[G]

√
n

ng
hg(ωg,Xg) >

2

n
max
g∈[G]

√
n

ng
eg(τ)

)
To simplify the notation, we drop arguments of hg for now. From the union bound we have:

P
(

2

n
max
g∈[G]

√
n

ng
hg >

2

n
max
g∈[G]

√
n

ng
eg(τ)

)
≤

G∑
g=0

P
(
hg > max

g∈[G]
eg(τ)

)

≤
G∑
g=0

P (hg > eg(τ))

≤ (G+ 1) max
g∈[G]

P (hg > eg(τ))

≤ σ exp

(
− min
g∈[G]

[
νgng − log(G+ 1),

τ2

η2
gk

2

])
where σ = maxg∈[G] σg and the last inequality is a result of the following lemma:
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Lemma 3. For xgi and ωgi defined in Definition 1 and τ > 0, with probability at least 1 −
σg

(G+1) exp
(
−min

[
νgng − log(G+ 1), τ2

η2
gk

2

])
we have:

√
n

ng
‖ωg‖2 sup

ug∈Ag
〈XT

g

ωg
‖ωg‖2

,ug〉 ≤
√

(2K2 + 1)n
(
ζgkω(Ag) + εg

√
log(G+ 1) + τ

)
,

where σg, ηg, ζg and εg are group dependent constants.

�

A.5. Proof of Theorem 5

Proof. To analysis convergence properties of DICER, we should upper bound the error of each iteration.Let’s δ(t) = β(t)−β∗
be the error of iteration t of DICER, i.e., the distance from the true parameter (not the optimization minimum, β̂). We show
that ‖δ(t)‖2 decreases exponentially fast in t to the statistical error ‖δ‖2 = ‖β̂ − β∗‖2. We first start with the required
definitions for our analysis.

Definition 3. We define the following positive constants as functions of step sizes µg > 0:

∀g ∈ [G] : ρg(µg) = sup
u,v∈Bg

vT
(
Ig − µgXT

gXg

)
u,

ηg(µg) = µg sup
v∈Bg

vTXT
g

ωg
‖ωg‖2

,

∀g ∈ [G]\ : φg(µg) = µg sup
v∈Bg,u∈B0

−vTXT
gXgu,

where Bg = Cg ∩ Bp is the intersection of the error cone and the unit ball.

In the following theorem, we establish a deterministic bound on iteration errors ‖δ(t)
g ‖2 which depends on constants defined

in Definition 3.

Theorem 5. For Algorithm 1 initialized by β(1) = 0, we have the following deterministic bound for the error at iteration
t+ 1:

G∑
g=0

√
ng
n
‖δ(t+1)
g ‖2 ≤ ρt

G∑
g=0

√
ng
n
‖β∗g‖2 +

1− ρt

1− ρ

G∑
g=0

√
ng
n
ηg‖ωg‖2, (21)

where ρ , max

(
ρ0 +

∑G
g=1

√
ng
n
φg,maxg∈[G]

[
ρg +

√
n
ng

µ0
µg
φg

])
.

The RHS of (21) consists of two terms. If we keep ρ < 1, the first term approaches zero fast, and the second term determines
the bound. In the following, we show that for specific choices of step sizes µgs, the second term can be upper bounded
using the analysis of Section 4. More specifically, the first term corresponds to the optimization error which shrinks in
every iteration while the second term is constant times the upper bound of the statistical error characterized in Corollary
1. Therefore, if we keep ρ below one, the estimation error of DE algorithm geometrically converges to the approximate
statistical error bound.

One way for having ρ < 1 is to keep all arguments of max(· · · ) defining ρ strictly below 1. To this end, we first establish
high probability upper bound for ρg , ηg , and φg (in the Appendix A.6) and then show that with enough number of samples
and proper step sizes µg , ρ can be kept strictly below one with high probability.

In the following lemma we establish a recursive relation between errors of consecutive iterations which leads to a bound for
the tth iteration.
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Lemma 4. We have the following recursive dependency between the error of t+ 1th iteration and tth iteration of DE:

‖δ(t+1)
g ‖2 ≤

(
ρg(µg)‖δ(t)

g ‖2 + ξg(µg)‖ωg‖2 + φg(µg)‖δ(t)
0 ‖2

)
‖δ(t+1)

0 ‖2 ≤

(
ρ0(µ0)‖δ(t)

0 ‖2 + ξ0(µ0)‖ω0‖2 + µ0

G∑
g=1

φg(µg)

µg
‖δ(t)
g ‖2

)

By recursively applying the result of Lemma 4, we get the following deterministic bound which depends on constants
defined in Definition 3:

bt+1 =

G∑
g=0

√
ng
n
‖δ(t+1)
g ‖2 ≤

(
ρ0 +

G∑
g=1

√
ng
n
φg

)
‖δ(t)

0 ‖2 +

G∑
g=1

(√
ng
n
ρg + µ0

φg
µg

)
‖δ(t)
g ‖2 +

G∑
g=0

√
ng
n
ξg‖ωg‖2

≤ ρ

G∑
g=0

√
ng
n
‖δ(t)
g ‖2 +

G∑
g=0

√
ng
n
ξg‖ωg‖2 (22)

where ρ = max

(
ρ0 +

∑G
g=1

√
ng
n φg,maxg∈[G]

[
ρg +

√
n
ng

µ0

µg
φg

])
. We have:

bt+1 ≤ ρbt +

G∑
g=0

√
ng
n
ξg‖ωg‖2

≤ (ρ)2bt−1 + (ρ+ 1)

G∑
g=0

√
ng
n
ξg‖ωg‖2

≤ (ρ)tb1 +

(
t−1∑
i=0

(ρ)i

)
G∑
g=0

√
ng
n
ξg‖ωg‖2

= (ρ)t
G∑
g=0

√
ng
n
‖β1

g − β∗g‖2 +

(
t−1∑
i=0

(ρ)i

)
G∑
g=0

√
ng
n
ξg‖ωg‖2

(β1 = 0) ≤ (ρ)t
G∑
g=0

√
ng
n
‖β∗g‖2 +

1− (ρ)t

1− ρ

G∑
g=0

√
ng
n
ξg‖ωg‖2

�

A.6. Proof of Theorem 4

Proof. First we need following two lemmas which are proved separately in the following sections.

Lemma 5. Consider ag ≥ 1, with probability at least 1− 6 exp
(
−γg(ω(Ag) + τ)2

)
the following upper bound holds:

ρg

(
1

agng

)
≤ 1

2

[(
1− 1

ag

)
+
√

2cg
2ω(Ag) + τ

ag
√
ng

]
(23)

Lemma 6. Consider ag ≥ 1, with probability at least 1− 4 exp
(
−γg(ω(Ag) + τ)2

)
the following upper bound holds:

φg

(
1

agng

)
≤ 1

ag

(
1 + c0g

ω(Ag) + ω(A0) + 2τ
√
ng

)
(24)

Note that Lemma 3 readily provides a high probability upper bound for ηg(1/(agng)) as√
(2K2 + 1)

(
ζgkω(Ag) + εg

√
logG+ τ

)
/(ag
√
ng).
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Starting from the deterministic form of the bound in Theorem 5 and putting in the step sizes as µg = 1
ngag

:

G∑
g=0

√
ng
n
‖δ(t+1)
g ‖2 ≤ (ρ)t

G∑
g=0

‖β∗g‖2 +
1− (ρ)t

1− ρ

G∑
g=0

√
ng
n
ηg

(
1

ngag

)
‖ωg‖2, (25)

where

ρ(a0, · · · , aG) = max

(
ρ0

(
1

na0

)
+

G∑
g=1

√
ng
n
φg

(
1

ngag

)
, max
g∈[G]

ρg

(
1

ngag

)
+

√
n

ng

µ0

µg
φg

(
1

ngag

))
(26)

Remember the following two results to upper bound ρgs and φgs from Lemmas 5 and 6:

ρg

(
1

agng

)
≤ 1

2

[(
1− 1

ag

)
+
√

2cg
2ω(Ag) + τ

ag
√
ng

]
, w.p. 1− 6 exp

(
−γg(ω(Ag) + τ)2

)
φg

(
1

agng

)
≤ 1

ag

(
1 + c0g

ω0g + τ
√
ng

)
, w.p. 1− 4 exp

(
−γg(ω(Ag) + τ)2

)

First we want to keep ρ0 +
∑G
g=1

√
ng
n φg of (26) strictly below 1.

ρ0

(
1

a0n

)
+

G∑
g=1

√
ng
n
φg

(
1

agng

)
≤ 1

2

[(
1− 1

a0

)
+
√

2c0
2ω0 + τ

a0
√
n

]

+
1

2

G∑
g=1

2

ag

√
ng
n

(
1 + c0g

ω0g + τ
√
ng

)

Remember that ag ≥ 1 was arbitrary. So we pick it as ag = 2
√

n
ng

(
1 + c0g

ω0g+τ√
ng

)
/bg where bg ≤

2
√

n
ng

(
1 + c0g

ω0g+τ√
ng

)
(because we need ag ≥ 1) and the condition becomes:

ρ0

(
1

a0n

)
+

G∑
g=1

√
ng
n
φg

(
1

agng

)
≤ 1

2

[(
1− 1

a0

)
+
√

2c0
2ω(A0) + τ

a0
√
n

]
+

1

2

G∑
g=1

ng
n
bg ≤ 1

We want to upper bound the RHS by 1/θf which will determine the sample complexity for the shared component:

√
2c0

2ω(A0) + τ√
n

≤ a0

(
1−

G∑
g=1

ng
n
bg

)
+ 1 (27)

Note that any lower bound on the RHS of (27) will lead to the correct sample complexity for which the coefficient of ‖δ(t)
0 ‖2

(determined in (26)) will be below one. Since a0 ≥ 1 we can ignore the first term by assuming maxg∈[G]\ bg ≤ 1 and the
condition becomes:

n > 2c20(2ω(A0) + τ)2,∀g ∈ [G]\ : ag = 2b−1
g

√
n

ng

(
1 + c0g

ω0g + τ
√
ng

)
,

a0 ≥ 1, 0 < bg ≤ 2

√
n

ng

(
1 + c0g

ω0g + τ
√
ng

)
, max
g∈[G]\

bg ≤ 1,

which can be simplified to:

n > 2c20(2ω(A0) + τ)2, a0 ≥ 1, (28)

∀g ∈ [G]\ : ag = 2b−1
g

√
n

ng

(
1 + c0g

ω0g + τ
√
ng

)
, 0 < bg ≤ 1
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Secondly, we want to bound all of ρg + µ0

√
n
ng

φg
µg

terms of (26) for µg = 1
agng

by 1:

ρg

(
1

ngag

)
+

√
n

ng

µ0

µg
φg

(
1

ngag

)
= ρg

(
1

ngag

)
+

√
ng
n

ag
a0
φg

(
1

ngag

)
(29)

=
1

2

[ [(
1− 1

ag

)
+
√

2cg
2ωg + τ

ag
√
ng

]

+
2

a0

√
ng
n

(
1 + c0g

ω0g + τ
√
ng

)]
≤ 1

The condition becomes:

√
2cg

2ωg + τ
√
ng

≤ ag + 1−
√
ng
n

2ag
a0

(
1 + c0g

ω0g + τ
√
ng

)
(30)

Remember that we chose ag = 2b−1
g

√
n
ng

(
1 + c0g

ω0g+τ√
ng

)
. We substitute the value of ag by keeping in mind the constraints

for the bg and the condition reduces to:

√
2cg

2ωg + τ

dg
≤ √ng, dg := ag + 1− 4

bga0

(
1 + c0g

ω0g + τ
√
ng

)2

(31)

for dg > 0. Note that any positive lower bound of the dg will satisfy the condition in (31) and the result is a valid
sample complexity. In the following we show that dg > 1.We have a0 ≥ 1 condition from (28), so we take a0 =

4 maxg∈[G]\

(
1 + c0g

ω0g+τ√
ng

)2

and look for a lower bound for dg:

dg ≥ ag + 1− bg−1 (32)

(ag from (28)) = 2b−1
g

√
n

ng

(
1 + c0g

ω0g + τ
√
ng

)
+ 1− bg−1

= 1 + b−1
g

[
2

√
n

ng

(
1 + c0g

ω0g + τ
√
ng

)
− 1

]
(33)

The term inside of the last bracket (33) is always positive and therefore a lower bound is one, i.e., dg ≥ 1. From the
condition (31) we get the following sample complexity:

ng > 2c2g(2ωg + τ)2 (34)

Now we need to determine bg from previous conditions (28), knowing that a0 = 4 maxg∈[G]\

(
1 + c0g

ω0g+τ√
ng

)2

. We have
0 < bg ≤ 1 in (28) and we take the largest step by setting bg = 1.

Here we summarize the setting under which we have the linear convergence:

n > 2c20 (2ω(A0) + τ)
2
,∀g ∈ [G]\ : ng ≥ 2c2g(2ω(Ag) + τ)2

a0 = 4 max
g∈[G]\

(
1 + c0g

ω0g + τ
√
ng

)2

, ag = 2

√
n

ng

(
1 + c0g

ω0g + τ
√
ng

)
(35)

µ0 =
1

4n
× 1

maxg∈[G]\

(
1 + c0g

ω0g+τ√
ng

)2 , µg =
1

2
√
nng

(
1 + c0g

ω0g + τ
√
ng

)−1

Now we rewrite the same analysis using the tail bounds for the coefficients to clarify the probabilities. To simplify the

notation, let rg1 = 1
2

[(
1− 1

ag

)
+
√

2cg
2ω(Ag)+τ
ag
√
ng

]
and rg2 = 1

ag

(
1 + c0g

ω0g+τ√
ng

)
and r0(τ) = r01 +

∑G
g=1

√
ng
n rg2



High Dimensional Data Enrichment

and rg(τ) = rg1 +
√

ng
n
ag
a0
rg2,∀g ∈ [G]\, and r(τ) = maxg∈[G] rg . All of which are computed using ags specified in (35).

Basically r is an instantiation of an upper bound of the ρ defined in (26) using ags in (35).

We are interested to upper bound the following probability:

P

(
G∑
g=0

√
ng
n
‖δ(t+1)
g ‖2 ≥ r(τ)t

G∑
g=0

√
ng
n
‖β∗g‖2 +

(G+ 1)
√

(2K2 + 1)

(1− r(τ))
√
n

(
ζk max

g∈[G]
ω(Ag) + τ

))

≤ P

(
(ρ)t

G∑
g=0

√
ng
n
‖β∗g‖2 +

1− (ρ)t

1− ρ

G∑
g=0

√
ng
n
ηg

(
1

ngag

)
‖ωg‖2

≥ r(τ)t
G∑
g=0

√
ng
n
‖β∗g‖2 +

(G+ 1)
√

(2K2 + 1)

(1− r(τ))
√
n

(
ζk max

g∈[G]
ω(Ag) + τ

))
≤ P (ρ ≥ r(τ))

+ P

(
1

1− ρ

G∑
g=0

√
ngηg

(
1

ngag

)
‖ωg‖2 ≥

(G+ 1)
√

(2K2 + 1)

(1− r(τ))

(
ζk max

g∈[G]
ω(Ag) + τ

))
(36)

where the first inequality comes from the deterministic bound of (25), We first focus on bounding the first term P (ρ ≥ r(τ)):

P (ρ ≥ r(τ))

= P

(
max

(
ρ0

(
1

na0

)
+

G∑
g=1

√
ng
n
φg

(
1

ngag

)
, max
g∈[G]

ρg

(
1

ngag

)
+

√
n

ng

µ0

µg
φg

(
1

ngag

))
≥ max
g∈[G]

r(τ)

)

≤ P

(
ρ0

(
1

na0

)
+

G∑
g=1

√
ng
n
φg

(
1

ngag

)
≥ r0

)
+

G∑
g=1

P
(
ρg

(
1

ngag

)
+

√
n

ng

µ0

µg
φg

(
1

ngag

)
≥ rg

)

≤ P
(
ρ0

(
1

na0

)
≥ r01

)
+

G∑
g=1

P
(
φg

(
1

ngag

)
≥ rg2

)
+

G∑
g=1

[
P
(
ρg

(
1

ngag

)
≥ rg1

)
+ P

(
φg

(
1

ngag

)
≥ rg2

)]

≤
G∑
g=0

P
(
ρg

(
1

ngag

)
≥ rg1

)
+ 2

G∑
g=1

P
(
φg

(
1

ngag

)
≥ rg2

)

≤
G∑
g=0

6 exp
(
−γg(ω(Ag) + τ)2

)
+ 2

G∑
g=1

4 exp
(
−γg(ω(Ag) + τ)2

)
≤ 6(G+ 1) exp

(
−γ min

g∈[G]
(ω(Ag) + τ)2

)
+ 8G exp

(
−γ min

g∈[G]\
(ω(Ag) + τ)2

)
≤ 14(G+ 1) exp

(
−γ min

g∈[G]
(ω(Ag) + τ)2

)
(37)

Now we focus on bounding the second term:

P

(
1

1− ρ

G∑
g=0

√
ngηg

(
1

ngag

)
‖ωg‖2 ≥

(G+ 1)
√

(2K2 + 1)

(1− r(τ))

(
ζk max

g∈[G]
ω(Ag) + τ

))

≤ P

(
1

1− ρ

G∑
g=0

√
ngηg

(
1

ngag

)
‖ωg‖2 ≥

1

(1− r(τ))

G∑
g=0

√
(2K2 + 1) (ζgkω(Ag) + τ)

)

≤ P

(
G∑
g=0

√
ngηg

(
1

ngag

)
‖ωg‖2 ≥

G∑
g=0

√
(2K2 + 1) (ζgkω(Ag) + τ)

)
+ P (ρ ≥ r(τ))

≤
G∑
g=0

P
(
√
ngηg

(
1

ngag

)
‖ωg‖2 ≥

√
(2K2 + 1) (ζgkω(Ag) + τ)

)
+ P (ρ ≥ r(τ)) (38)
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Focusing on the summand of the first term, remember from Definition 3 that ηg(µg) = 1
agng

supv∈Bg v
TXT

g
ωg
‖ωg‖2 , g ∈

[G] and ag ≥ 1:

P

(
‖ωg‖2 sup

v∈Bg
vTXT

g

ωg
‖ωg‖2

≥ ag
√

(2K2 + 1)ng (ζgkω(Ag) + τ)

)
≤ σg exp

(
−min

[
νgng,

τ2

η2
gk

2

])
(39)

where we used the intermediate form of Lemma 3 for τ > 0. Putting all of the bounds (37), (38), and (39) back into the (36):

σg(G+ 1) exp

(
− min
g∈[G]

(
min

[
νgng,

τ2

η2
gk

2

]))
+ 28(G+ 1) exp

(
−γ min

g∈[G]
(ω(Ag) + τ)2

)
≤ υ exp

[
min
g∈[G]

(
−min

[
νgng − logG, γ(ω(Ag) + t)2,

t2

η2
gk

2

])]
where υ = max(28, σ) and γ = ming∈[G] γg and τ = t + max(ε, γ−1/2)

√
log(G+ 1) where ε = kmaxg∈[G] ηg. Note

that τ = t+ C
√

log(G+ 1) increases the sample complexities to the followings:

n > 2c20

(
2ω(A0) + C

√
log(G+ 1) + t

)2

,∀g ∈ [G]\ : ng ≥ 2c2g(2ω(Ag) + C
√

log(G+ 1) + t)2

and it also affects step sizes as follows:

µ0 =
1

4n
× min
g∈[G]\

(
1 + c0g

ω0g + C
√

log(G+ 1) + t
√
ng

)−2

, µg =
1

2
√
nng

(
1 + c0g

ω0g + C
√

log(G+ 1) + t
√
ng

)−1

�

B. Proofs of Lemmas
Here, we present proofs of each lemma used during the proofs of theorems in Section A.

B.1. Proof of Lemma 1

Proof. LHS of (17) is the weighted summation of ξgQ2ξg (δ0g) = ‖δ0g‖2ξP(|〈x, , δ0g/‖δ0g‖2〉| > 2ξ) = ‖δ0g‖2ξQ2ξ(u)
where ξ > 0 and u = δ0g/‖δ0g‖2 is a unit length vector. So we can rewrite the LHS of (17) as:

G∑
g=1

ng
n
ξgQ2ξg (δ0g) =

G∑
g=1

ng
n
‖δ0 + δg‖2ξQ2ξ(u)

With this observation, the lower bound of the Lemma 1 is a direct consequence of the following two results:

Lemma 7. Let u be any unit length vector and suppose x obeys Definiton 1. Then for any u, we have

Q2ξ(u) ≥ (α− 2ξ)2

4ck2
. (40)

Lemma 8. Suppose Definition 2 holds. Then, we have:

G∑
i=1

ni‖δ0 + δi‖2 ≥
ρ̄λmin

3

(
Gn‖δ0‖2 +

G∑
i=1

ni‖δi‖2

)
, ∀i ∈ [G] : δi ∈ Ci. (41)

�
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B.2. Proof of Lemma 2

Proof. Consider the following soft indicator function which we use in our derivation:

ψa(s) =


0, |s| ≤ a
(|s| − a)/a, a ≤ |s| ≤ 2a

1, 2a < |s|

Now:

E sup
δ[G]

G∑
g=1

ξg

ng∑
i=1

[
Q2ξg (δ0g)− 1(|〈xgi, δ0g〉| ≥ ξg)

]
= E sup

δ[G]

G∑
g=1

ξg

ng∑
i=1

[E1(|〈xgi, δ0g〉| ≥ 2ξg)− 1(|〈xgi, δ0g〉| ≥ ξg)]

≤ E sup
δ[G]

G∑
g=1

ξg

ng∑
i=1

[
Eψξg (〈x, δ0g〉)− ψξg (〈xgi, δ0g〉)

]
≤ 2E sup

δ[G]

G∑
g=1

ξg

ng∑
i=1

εgiψξg (〈xgi, δ0g〉)

≤ 2E sup
δ[G]

G∑
g=1

ng∑
i=1

εgi〈xgi, δ0g〉

where εgi are iid copies of Rademacher random variable which are independent of every other random variables and
themselves. Now we add back 1

n and expand δ0g = δ0 + δg:

2

n
E sup
δ[G]∈C[G]

G∑
g=1

ng∑
i=1

εgi〈xgi, δ0g〉 =
2

n
E sup
δ0∈C0

n∑
i=1

εi〈xi, δ0〉+
2

n
E sup
δ[G]\∈C[G]\

G∑
g=1

ng∑
i=1

εgi〈xgi, δg〉

=
2√
n
E sup
δ0∈C0

n∑
i=1

〈 1√
n
εixi, δ0〉+

2√
n
E sup
δ[G]\∈C[G]\

G∑
g=1

√
ng
n

ng∑
i=1

〈 1
√
ng
εgixgi, δg〉

(n0 := n, ε0i := ε0,x0i := xi) =
2√
n
E sup
δ[G]∈C[G]

G∑
g=0

√
ng
n

ng∑
i=1

〈 1
√
ng
εgixgi, δg〉

(hg :=
1
√
ng

ng∑
i=1

εgixgi) =
2√
n
E sup
δ[G]∈C[G]

G∑
g=0

√
ng
n
〈hg, δg〉

(Ag ∈ Cg ∩ Sp−1) ≤ 2√
n
E sup
δ[G]∈A[G]

G∑
g=0

√
ng
n
〈hg, δg〉‖δg‖2

≤ 2√
n

G∑
g=0

√
ng
n
Ehg sup

δg∈Ag
〈hg, δg〉‖δg‖2

≤ 2√
n

G∑
g=0

√
ng
n
cgkω(Ag)‖δg‖2

Note that the hgi is a sub-Gaussian random vector which let us bound the E sup using the Gaussian width (Tropp, 2015) in
the last step. �
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B.3. Proof of Lemma 3

Proof. To avoid cluttering let hg(ωg,Xg) =
√

n
ng
‖ωg‖2 supug∈Ag 〈X

T
g

ωg
‖ωg‖2 ,ug〉, eg = ζgkω(Ag) + εg

√
logG + τ ,

where sg =
√

n
ng

√
(2K2 + 1)ng .

P (hg(ωg,Xg) > egsg) = P
(
hg(ωg,Xg) > egsg

∣∣∣√ n

ng
‖ωg‖2 > sg

)
P
(√

n

ng
‖ωg‖2 > sg

)
(42)

+ P
(
hg(ωg,Xg) > egsg

∣∣∣√ n

ng
‖ωg‖2 < sg

)
P
(√

n

ng
‖ωg‖2 < sg

)
≤ P

(√
n

ng
‖ωg‖2 > sg

)
+ P

(
hg(ωg,Xg) > egsg

∣∣∣√ n

ng
‖ωg‖2 < sg

)
≤ P

(
‖ωg‖2 >

√
(2K2 + 1)ng

)
+ P

(
sup

ug∈Cg∩Sp−1

〈XT
g

ωg
‖ωg‖2

,ug〉 > eg

)

≤ P
(
‖ωg‖2 >

√
(2K2 + 1)ng

)
+ sup

v∈Sp−1

P

(
sup

ug∈Cg∩Sp−1

〈XT
g v,ug〉 > eg

)

Let’s focus on the first term. Since ωg consists of i.i.d. centered unit-variance sub-Gaussian elements with |||ωgi|||ψ2
< K,

ω2
gi is sub-exponential with |||ωgi|||ψ1

< 2K2. Let’s apply the Bernstein’s inequality to ‖ωg‖22 =
∑ng
i=1 ω

2
gi:

P
(∣∣‖ωg‖22 − E‖ωg‖22

∣∣ > τ
)
≤ 2 exp

(
−νg min

[
τ2

4K4ng
,
τ

2K2

])
We also know that E‖ωg‖22 ≤ ng (Banerjee et al., 2014) which gives us:

P
(
‖ωg‖2 >

√
ng + τ

)
≤ 2 exp

(
−νg min

[
τ2

4K4ng
,
τ

2K2

])
Finally, we set τ = 2K2ng:

P
(
‖ωg‖2 >

√
(2K2 + 1)ng

)
≤ 2 exp (−νgng) =

2

(G+ 1)
exp (−νgng + log(G+ 1))

Now we upper bound the second term of (42). Given any fixed v ∈ Sp−1, Xgv is a sub-Gaussian random vector with∣∣∣∣∣∣XT
g v
∣∣∣∣∣∣
ψ2
≤ Cgk (Banerjee et al., 2014). From Theorem 9 of (Banerjee et al., 2014) for any v ∈ Sp−1 we have:

P

(
sup

ug∈Ag
〈XT

g v,ug〉 > υgCgkω(Ag) + t

)
≤ πg exp

(
−
(

t

θgCgkφg

)2
)

where φg = supug∈Ag ‖ug‖2 and in our problem φg = 1. We now substitute t = τ + εg
√

log(G+ 1) where εg = θgCgk.

P

(
sup

ug∈Ag
〈XT

g v,ug〉 > υgCgkω(Ag) + εg
√

log(G+ 1) + τ

)
≤ πg exp

−(τ + εg
√

log(G+ 1)

εg

)2


≤ πg exp

(
− logG−

(
τ

θgCgk

)2
)

≤ πg
(G+ 1)

exp

(
−
(

τ

θgCgk

)2
)
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Now we put back results to the original inequality (42):

P
(
hg(ωg,Xg) >

√
n

ng

√
(2K2 + 1)ng ×

(
υgCgkω(Ag) + εg

√
log(G+ 1) + τ

))
≤ σg

(G+ 1)
exp

(
−min

[
νgng − log(G+ 1),

τ2

θ2
gC

2
gk

2

])
≤ σg

(G+ 1)
exp

(
−min

[
νgng − log(G+ 1),

τ2

η2
gk

2

])

where σg = πg + 2, ζg = υgCg , ηg = θgCg . �

B.4. Proof of Lemma 4

Proof. We upper bound the individual error ‖δ(t+1)
g ‖2 and the common one ‖δ(t+1)

0 ‖2 in the followings:

‖δ(t+1)
g ‖2 = ‖β(t+1)

g − β∗g‖2

=

∥∥∥∥ΠΩfg

(
β(t)
g + µgX

T
g

(
yg −Xg

(
β

(t)
0 + β(t)

g

)))
− β∗g

∥∥∥∥
2

(Lemma 6.3 of (Oymak et al., 2015)) =

∥∥∥∥ΠΩfg−{β∗g}

(
β(t)
g + µgX

T
g

(
yg −Xg

(
β

(t)
0 + β(t)

g

))
− β∗g

)∥∥∥∥
2

=

∥∥∥∥ΠEg

(
δ(t)
g + µgX

T
g

(
yg −Xg

(
β

(t)
0 + β(t)

g

)
−Xg

(
β∗0 + β∗g

)
+ Xg

(
β∗0 + β∗g

)))∥∥∥∥
2

=

∥∥∥∥ΠEg

(
δ(t)
g + µgX

T
g

(
ωg −Xg

(
δ

(t)
0 + δ(t)

g

)))∥∥∥∥
2

(Lemma 6.4 of (Oymak et al., 2015)) ≤
∥∥∥∥ΠCg

(
δ(t)
g + µgX

T
g

(
ωg −Xg

(
δ

(t)
0 + δ(t)

g

)))∥∥∥∥
2

(Lemma 6.2 of (Oymak et al., 2015)) ≤ sup
v∈Cg∩Bp

vT
(
δ(t)
g + µgX

T
g

(
ωg −Xg

(
δ

(t)
0 + δ(t)

g

)))
(Bg = Cg ∩ Bp) = sup

v∈Bg
vT
(
δ(t)
g + µgX

T
g

(
ωg −Xg

(
δ

(t)
0 + δ(t)

g

)))
≤ sup

v∈Bg
vT
(
Ig − µgXT

gXg

)
δ(t)
g + µg sup

v∈Bg
vTXT

g ωg + µg sup
v∈Bg

−vTXT
gXgδ

(t)
0

≤
∥∥∥δ(t)

g

∥∥∥
2

sup
u,v∈Bg

vT
(
Ig − µgXT

gXg

)
u + µg‖ωg‖2 sup

v∈Bg
vTXT

g

ωg
‖ωg‖2

+ µg‖δ(t)
0 ‖2 sup

v∈Bg,u∈B0

−vTXT
gXgu

= ρg(µg)‖δ(t)
g ‖2 + ξg(µg)‖ωg‖2 + φg(µg)‖δ(t)

0 ‖2

So the final bound becomes:

‖δ(t+1)
g ‖2 ≤ ρg(µg)‖δ(t)

g ‖2 + ξg(µg)‖ωg‖2 + φg(µg)‖δ(t)
0 ‖2 (43)
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Now we upper bound the error of common parameter. Remember common parameter’s update: β
(t+1)
0 =

ΠΩf0

β(t)
0 + µ0X

T
0


(y1 −X1(β

(t)
0 + β

(t)
1 ))

...
(yG −XG(β

(t)
0 + β

(t)
G ))


.

‖δ(t+1)
0 ‖2 = ‖β(t+1)

0 − β∗0‖2

=

∥∥∥∥∥ΠΩf0

(
β

(t)
0 + µ0

G∑
g=1

XT
g

(
yg −Xg(β

(t)
0 + β(t)

g )
))
− β∗0

∥∥∥∥∥
2

(Lemma 6.3 of (Oymak et al., 2015)) =

∥∥∥∥∥ΠΩf0−{β
∗
0}

(
β

(t)
0 + µ0

G∑
g=1

XT
g

(
yg −Xg(β

(t)
0 + β(t)

g )
)
− β∗0

)∥∥∥∥∥
2

=

∥∥∥∥∥ΠE0

(
δ

(t)
0 + µ0

G∑
g=1

XT
g

(
yg −Xg(β

(t)
0 + β(t)

g )
)∥∥∥∥∥

2

(Lemma 6.4 of (Oymak et al., 2015)) ≤

∥∥∥∥∥ΠC0

(
δ

(t)
0 + µ0

G∑
g=1

XT
g

(
ωg −Xg(δ

(t)
0 + δ(t)

g )
))∥∥∥∥∥

2

(Lemma 6.2 of (Oymak et al., 2015)) ≤ sup
v∈B0

vT
(
δ

(t)
0 + µ0

G∑
g=1

XT
g

(
ωg −Xg(δ

(t)
0 + δ(t)

g )
))

≤ sup
v∈B0

vT
(
I− µ0

G∑
g=1

XT
gXg

)
δ

(t)
0 + µ0 sup

v∈B0

vT
G∑
g=1

XT
g ωg

+ µ0 sup
v∈B0

−vT
G∑
g=1

XT
gXgδ

(t)
g

≤ ‖δ(t)
0 ‖2 sup

u,v∈B0

vT
(
I− µ0X

T
0 X0

)
u + µ0 sup

v∈B0

vTXT
0

ω0

‖ω0‖2
‖ω0‖2

+ µ0

G∑
g=1

sup
vg∈B0,ug∈Bg

−vTgXT
gXgug‖δ(t)

g ‖2

≤ ρ0(µ0)‖δ(t)
0 ‖2 + ξ0(µ0)‖ω0‖2 + µ0

G∑
g=1

φg(µg)

µg
‖δ(t)
g ‖2 (44)

To avoid cluttering we drop µg as the arguments. Putting together (43) and (44) inequalities we reach to the followings:

‖δ(t+1)
g ‖2 ≤ ρg‖δ(t)

g ‖2 + ξg‖ωg‖2 + φg‖δ(t)
0 ‖2

‖δ(t+1)
0 ‖2 ≤ ρ0‖δ(t)

0 ‖2 + ξ0‖ω0‖2 + µ0

G∑
g=1

φg
µg
‖δ(t)
g ‖2

�

B.5. Proof of Lemma 5

We will need the following lemma in our proof. It establishes the RE condition for individual isotropic sub-Gaussian designs
and provides us with the essential tool for proving high probability bounds.

Lemma 9 (Theorem 11 of (Banerjee et al., 2014)). For all g ∈ [G], for the matrix Xg ∈ Rng×p with independent
isotropic sub-Gaussian rows, i.e., |||xgi|||ψ2

≤ k and E[xgix
T
gi] = I, the following result holds with probability at least
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1− 2 exp
(
−γg(ω(Ag) + τ)2

)
for τ > 0:

∀ug ∈ Cg : ng

(
1− cg

ω(Ag) + τ
√
ng

)
‖ug‖22 ≤ ‖Xgug‖22 ≤ ng

(
1 + cg

ω(Ag) + τ
√
ng

)
‖ug‖22

where cg > 0 is constant.

The statement of Lemma 9 characterizes the distortion in the Euclidean distance between points ug ∈ Cg when the matrix
Xg/ng is applied to them and states that any sub-Gaussian design matrix is approximately isometry, with high probability:

(1− α)‖ug‖22 ≤
1

ng
‖Xgug‖22 ≤ (1 + α)‖ug‖22

where α = cg
ω(Ag)√
ng

.

Now the proof for Lemma 5:

Proof. First we upper bound each of the coefficients ∀g ∈ [G]:

ρg(µg) = sup
u,v∈Bg

vT
(
Ig − µgXT

gXg

)
u

We upper bound the argument of the sup as follows:

vT
(
Ig − µgXT

gXg

)
u =

1

4

[
(u + v)T (I− µgXT

gXg)(u + v)− (u− v)T (I− µgXT
gXg)(u− v)

]
=

1

4

[
‖u + v‖22 − µg‖Xg(u + v)‖22 − ‖u− v‖22 + µg‖Xg(u− v)‖22

]
(Lemma 9) ≤ 1

4

[(
1− µgng

(
1− cg

2ω(Ag) + τ
√
ng

))
‖u + v‖2

−
(

1− µgng
(

1 + cg
2ω(Ag) + τ
√
ng

))
‖u− v‖2

]
(
µg =

1

agng

)
≤ 1

4

[(
1− 1

ag

)
(‖u + v‖2 − ‖u− v‖2) + cg

2ω(Ag) + τ

ag
√
ng

(‖u + v‖2 + ‖u− v‖2)

]

≤ 1

4

[(
1− 1

ag

)
2‖v‖2 + cg

2ω(Ag) + τ

ag
√
ng

2
√

2

]

where the last line follows from the triangle inequality and the fact that ‖u + v‖2 + ‖u− v‖2 ≤ 2
√

2 which itself follows
from ‖u + v‖22 + ‖u − v‖22 ≤ 4. Note that we applied the Lemma 9 for bigger sets of Ag + Ag and Ag − Ag where
Gaussian width of both of them are upper bounded by 2ω(Ag). The above holds with high probability (computed below).
Now we set :

vT
(
Ig −

1

agng
XT
gXg

)
u ≤ 1

2

[(
1− 1

ag

)
+
√

2cg
2ω(Ag) + τ

ag
√
ng

]
(45)

To keep the upper bound of ρg in (45) below any arbitrary 1
b < 1 we need ng = O(b2(ω(Ag) + τ)2) samples.

Now we rewrite the same analysis using the tail bounds for the coefficients to clarify the probabilities. Let’s set µg =
1

agng
, dg := 1

2

(
1− 1

ag

)
+
√

2cg
ω(Ag)+τ/2
ag
√
ng

and name the bad events of ‖Xg(u + v)‖22 < ng

(
1− cg 2ω(Ag)+τ√

ng

)
and

‖Xg(u− v)‖22 > ng

(
1 + cg

2ω(Ag)+τ√
ng

)
as E1 and E2 respectively:

P(ρg ≥ dg) ≤ P(ρg ≥ dg|¬E1,¬E2) + 2P(E1) + P(E2)

Lemma 9 ≤ 0 + 6 exp
(
−γg(ω(Ag) + τ)2

)
which concludes the proof. �
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B.6. Proof of Lemma 6

Proof. The following holds for any u and v because of ‖Xg(u + v)‖22 ≥ 0:

−vTXT
gXgu ≤

1

2

(
‖Xgu‖22 + ‖Xgv‖22

)
(46)

Now we can bound φg as follows:

φg(µg) = µg sup
v∈Bg,u∈B0

−vTXT
gXgu ≤ µg

2

(
sup
u∈B0

‖Xgu‖22 + sup
v∈Bg

‖Xgv‖22

)
(47)

So we have:

φg

(
1

agng

)
≤ 1

2ag

(
1

ng
sup
u∈B0

‖Xgu‖22 +
1

ng
sup
v∈Bg

‖Xgv‖22

)
(48)

(Lemma 9) ≤ 1

ag

(
1 + c0g

ω(Ag) + ω(A0) + 2τ

2
√
ng

)
(ω0g = max(ω(A0), ω(Ag)) ≤ 1

ag

(
1 + c0g

ω0g + τ
√
ng

)
where c0g = max(c0, cg).

To compute the exact probabilities lets define sg := 1
ag

(
1 + c0g

ω(Ag)+ω(A0)+2τ
2
√
ng

)
and name the bad events of

1
ng

supu∈B0
‖Xgu‖22 > 1 + c0

ω(A0)+τ√
ng

and 1
ng

supv∈Bg ‖Xgv‖22 > 1 + cg
ω(Ag)+τ√

ng
as E1 and E2 respectively.

P(φg > sg) ≤ P(φg > sg|¬E1)P(¬E1) + P(E1) (49)
≤ P(E2) + P(E1)

≤ 4 exp
(
−γg(ω(Ag) + τ)2

)
�

B.7. Proof of Lemma 7

Proof. To obtain lower bound, we use the Paley–Zygmund inequality for the zero-mean, non-degenerate (0 < α ≤
E|〈x,u〉|,u ∈ Sp−1) sub-Gaussian random vector x with |||x|||ψ2

≤ k (Tropp, 2015).

Q2ξ(u) ≥ (α− 2ξ)2

4ck2
.

�

B.8. Proof of Lemma 8

Proof. We split [G]\ − I into two groups J ,K. J consists of δi’s with ‖δi‖2 ≥ 2‖δ0‖2 and K = [G]\ − I − J . We use
the bounds

‖δ0 + δi‖2 ≥


λmin(‖δi‖2 + ‖δ0‖2) if i ∈ I
‖δi‖2/2 if i ∈ J
0 if i ∈ K

(50)

This implies
G∑
i=1

ni‖δ0 + δi‖2 ≥
∑
i∈J

ni
2
‖δi‖2 + λmin

∑
i∈I

ni(‖δi‖2 + ‖δ0‖2).
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Let SS =
∑
i∈S ni‖δi‖2 for S = I,J ,K. We know that over K, ‖δi‖2 ≤ 2‖δ0‖2 which implies SK =

∑
i∈K ni‖δi‖2 ≤

2
∑
i∈K ni‖δ0‖2 ≤ 2n‖δ0‖2. Set ψI = min{1/2, λminρ̄/3} = λminρ̄/3. Using 1/2 ≥ ψI , we write:

G∑
i=1

ni‖δ0 + δi‖2 ≥ ψISJ + λmin

∑
i∈I

ni(‖δi‖2 + ‖δ0‖2)

(SK ≤ 2n‖δ0‖2) ≥ ψISJ + ψISK − 2ψIn‖δ0‖2 +

(∑
i∈I

ni

)
λmin‖δ0‖2 + λminSI

(λmin ≥ ψI) ≥ ψI(SI + SJ + SK) +

((∑
i∈I

ni

)
λmin − 2ψIn

)
‖δ0‖2.

Now, observe that, assumption of the Definition 2,
∑
i∈I ni ≥ ρ̄n implies:(∑

i∈I
ni

)
λmin − 2ψIn ≥ (ρ̄λmin − 2ψI)n ≥ ψIn.

Combining all, we obtain:

G∑
i=1

ni‖δ0 + δi‖2 ≥ ψI(SI + SJ + SK + ‖δ0‖2) = ψI(n‖δ0‖2 +

G∑
i=1

ni‖δi‖2).

�


