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Abstract

In the recent decades, automotive research has been focused on creating a driverless1

future. Autonomous vehicles are expected to take over tasks which are dull, dirty2

and dangerous for humans (3Ds of robotization). However, augmented autonomy3

increases reliance on the robustness of the system. Autonomous vehicle systems4

are heavily focused on data acquisition in order to perceive the driving environment5

accurately. In the future, a typical autonomous vehicle data ecosystem will include6

data from internal sensors, infrastructure, communication with nearby vehicles,7

and other sources. Physical faults/malicious attack or a misbehaving vehicle can8

result in the incorrect perception of the environment, which can in turn lead to task9

failure or accidents. Anomaly detection is hence expected to play a critical role10

in improving the security and efficiency of autonomous and connected vehicles.11

Anomaly detection can be simply defined as a way of identifying unusual or12

unexpected events and/or measurements. In this paper, we focus on the specific13

case of malicious attack/hijacking of the system which results in unpredictable14

evolution of the autonomous vehicle. We use a Long Short-Term Memory (LSTM)15

network for anomaly/fault detection. It is first trained on non-abnormal data to16

understand the system’s baseline performance and behaviour, monitored through17

four vehicle control parameters namely velocity, acceleration, jerk and steering18

rotation. The model is next used to predict over a number of future time steps19

and an alarm is raised as soons as the observed behaviour of the autonomous20

car significantly deviates from the prediction. The relevance of this approach is21

supported by numerical experiments based on data produced by an autonomous car22

simulator, capable of generating attacks on the system.23

1 Introduction24

The past few decades have seen the automotive industry invest significant amount of resources in25

the development of autonomous driving and connected vehicles. It is expected that, with time,26

autonomous vehicles will find increasing use in real-world applications. With the advancement in27

sensor technology, information exchange networks, and ease of processing data, autonomous systems28

have become exceedingly capable and efficient at performing different driving tasks. As the whole29

autonomous environment is data driven, data acquisition and data reliability become an important30

aspect for smooth and efficient working of the system. In the future a typical autonomous vehicle31

data ecosystem will include data from internal sensors, infrastructure, communication with nearby32

vehicles, and other sources. A data based environment is a delicate structure and is vulnerable to error33

and hacking, which makes the autonomous and connected vehicles highly susceptible to malicious34

attacks and information tampering, along with system failures. Hence an anomaly detection scheme35

is essential, in particular to answer the question : Can the data received be trusted? In an autonomous36

dynamic driving environment where the vehicles do not receive all the information available to a37
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driver, but instead rely on information gathered from sensors on the vehicle, it is impossible to foresee38

all the possible faults. Hence the system must be complemented by anomaly-detection systems, that39

can detect anomalies and trigger diagnosis or alert. Such a system has to be computationally light,40

and detect faults with high degree of both precision and recall. A too-high rate of false positives41

will lead operators to ignoring the system; a too-low rate makes it ineffective. In addition, the42

faults must be detected quickly after their occurrence, so that they can be dealt with before they43

become catastrophic. In this paper, we develop a LSTM approach to online hijacking detection for44

autonomous vehicles in two steps, based on the assumption that, in absence of attack on the system,45

the behavior of a self-driving car is smooth and highly predictible at a short term horizon. Precisely,46

the behavior of the self-driving vehicle is described by three parameters here: speed, acceleration,47

and rotation. The first step consists in training the LSTM network to understand the system’s baseline48

performance and behaviour. The model is then used to predict these parameters over a number of49

future time steps and an alarm is raised as soon as the observed behaviour of the autonomous car50

significantly deviates from the prediction. The dataset used in this study arises from experiments51

performed on a treadmill based autonomous car simulator at University of Waterloo, Canada, see52

https://uwaterloo.ca/embedded-software-group/projects/adas-treadmill-demonstrator. The rest of this53

paper is organized as follows. Section 2 presents the LSTM approach promoted and related works.54

Section 3 describes the Treadmill Demonstrator we used to generate the dataset and the parameters of55

the LSTM model. In section 4, the performance of our approach is investigated and some concluding56

remarks are collected in section 5.57

2 The LSTM Approach58

This section presents the rationale behind our approach. We start by briefly describing LSTM network59

models. We next use LSTM to model the dynamic behaviour of the system (autonomous vehicle in60

our case) in order to gather knowledge about the baseline performance (model training stage). The61

model is then used to detect changes in the system as well as outliers using root mean square error62

metrics (prediction stage).63

2.1 Long Short-Term Memory (LSTM) Networks64

The persistence of information in our brain helps us in understanding any situation based on the65

memory of the past events. The human brain does not erase everything each time a new situation66

occurs and start from scratch. Recurrent neural networks use the same logic and in essence are neural67

networks with loops in them which allows information to persist. A loop allows information to be68

passed from one step of the network to the next.69

Figure 1: RNN.

Thus, RNNs use past information to understand the present situation. One major drawback of RNN’s70

is how far in the past should we search. Sometimes, the recent past can provide enough information to71

execute the present task, but there are also times when we have to look further back in the memory to72

extract the required and relevant information. It’s entirely possible that for certain applications or in73

certain scenarios this gap between the relevant information and the point where it is needed becomes74

very large. Performance of RNNs deteriorates as this gap grows. Long Short Term Memory networks75

are a special kind of RNN, capable of learning long-term dependencies. They were introduced by76

Hochreiter and Schmidhuber in Hochreiter and Schmidhuber [1997] and are explicitly designed to77

avoid the long-term dependency problem. LSTMs also have this chain like structure like RNN, but78

the repeating module has a different structure. Unlike RNN’s that have a single neural network layer,79

LSTM comprises of four layers interacting in a special way. The LSTM has the ability to remove old80

information or add new information at any point, which is regulated by structures called gates. Gates81

are composed of a sigmoid neural net layer and a pointwise multiplication operation and are a way to82

exchange information. An LSTM has three of these gates, to protect and control the information.83
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• Forget Gate: to decide what information we’re going to throw away from the block.84

• Input Gate: to decide what new information we’re going to update/store in the block "85

• Output Gate: to decide what to output based on input and the memory of the block.86

Figure 2: LSTM

2.2 Model Training and Testing87

In Malhotra et al. [2015], LSTM is used to model time series data and proved to be efficient for88

detecting anomalies. In this paper we use a similar approach for on-line detection of malicious attacks89

on autonomous vehicles. We use a stacked LSTM architecture. In the training stage, a LSTM adapts90

its weights to mimic the training data. In our case we train the model using non abnormal data as we91

would like the model to learn and understand a normal driving behaviour. This model is next used for92

prediction: a significant deviation from the predicted behavior tends to indicate the occurence of an93

attack on the system. Root Mean Square Error between the prediction and observed values is used to94

set the threshold for hijacking detection. We use here a simple LSTM network architecture, since95

the goal pursued is not the accurate prediction of the driving behaviour but to investigate the use of96

LSTM model as a hijacking detection tool.97

The parameters of the LSTM model are shown below

Table 1: LSTM Parameters

Layer (type) Output Shape Param
lstm 89 (LSTM) (1, 3, 4) 96
lstm 90 (LSTM) (1, 4) 144
dense 58 (Dense) (1, 1) 5

98

3 Data Acquisition through the Treadmill Demonstrator99

The Treadmill Demonstrator University was used to collect data for different driving scenarios. This100

demonstrator is a laboratory platform at the University of Waterloo, Canada and is used for research101

and validation of results on real-time safety-critical systems in the context of assisted and autonomous102

driving algorithms. The platform consists of treadmill which mimics the movement of a straight103

road. The position control places the vehicle on the treadmill without it drifting away. The car model104

is capable of emulating various driving scenarios like free fun, slalom, platooning and collision105

avoidance. The following data was collected for different driving scenarios with and without injection106

of attacks107

• Position Data (Infrared Sensor)108

• Vehicle Orientation (Infrared Sensor)109

• Vehicle Commands (Steer/Throttle)110

• Anomaly Information111

The position data acquired from the different tests is used to calculate the112

• Velocity: Rate of change of position113
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• Acceleration: Rate of change of Velocity114

• Jerk : Rate of change of Accleration115

The approach uses least-squares smoothing to locally fit a polynomial with a moving window and then116

evaluate the derivative of the polynomial. A Savitzky-Golay filter is used for this step. Savitzky-Golay117

filter is a digital filter used for smoothing of the data using a process known as convolution, i.e. fitting118

successive sub-sets of adjacent data points with a low-degree polynomial by the method of linear119

least squares. The algorithm calculates the velocity and acceleration of a given position signal based120

on two parameters:121

1. the size of the smoothing window122

2. the order of the local polynomial approximation123

Figure 3: Non Anomalous Data Figure 4: Anomalous Data

4 Results and Discussion124

We present the results of LSTM on four vehicle control parameters which have different levels of125

difficulty as far as detecting anomalies in them is concerned. The non anomalous data was collected126

for free run and slalom driving scenarios whereas for anomalous dataset, anomalies were injected in127

the free run scenario. The injected anomaly is called compound injection and it simulates a scenario128

where a malicious attacker manages to gain access to the car’s transmission control wirelessly, by129

causing the throttle value to be multiplied by the specified positive factor.130

Figure 5: Prediction Error in Velocity Data Figure 6: Prediction Error in Acceleration Data

The figures illustrate the prediction errors in the training, validation and testing stages for the four131

parameters under study. The errors tend to converge after 150 epochs. The spikes seen in the errors132

are areas where a driving manoeuvre was performed (increase in speed/acceleration/jerk or change of133
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Figure 7: Prediction Error in Jerk Data Figure 8: Prediction Error in Steering Data

vehicle direction). This manoeuvre can be a non anomalous driving behaviour (as in the training and134

validation set) or anomalous driving behaviour (as in the testing set).135

By comparing the validation set and training set errors, we can clearly see that a certain threshold136

value can be used to detect attacks. The latter may vary with the efficiency of the prediction model137

of course. But the trend remains the same with prediction error being higher in the event of an138

anomalous driving manoeuvre.139

5 Conclusion140

In this paper, we have proposed a model for hijacking detection based on Long Short-Term Memory141

Recurrent Neural Network. We have provided empirical evidence that stacked LSTM networks are142

relevant to predict the normal behaviour of a self-driving vehicle at a short term horizon, and can be143

next used to detect possible attacks on the system. We showed that even a very basic LSTM Model144

approach yielded promising results on four different datasets. In future work, we will focus on:145

1. LSTM model parameter tuning to improve the robustness146

2. Improve the anomaly detection efficiency of the model147

3. Model extension to be able to discriminate between different types of anomalies148
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