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ABSTRACT

In this paper, we describe a novel approach to generate conference call-for-papers
using Natural Language Processing and Long Short-Term Memory network. The
approach has been successfully evaluated on a publicly available dataset.

1 INTRODUCTION

Deep learning LeCun et al. (2015) techniques has been successfully applied to learn and generate
sequence data Sutskever et al. (2014). In this paper, we present an approach to generate conference
Call-for-papers (CFPs) using a stacked Long Short Term Memory (LSTM) network. Regardless
of the hardship of the problem, we will show that the network is capable of predicting intelligible
scientific keywords with relatively short training period. The paper is organized in the following
way: Section 2 describes the approach in details. We show the quantitaive and qualitative results in
Section 3. Finally, we draw conclusions in Section 4.

2 CALL-FOR-PAPERS GENERATION USING AN STACKED LSTM NETWORK

In this section, we describe the proposed approach in detail. First, we pre-process the raw text
data. Then, we extract 10 topic models from one part of the dataset Blei (2012), which allows us to
categorize the CFPs based on textual similarities. Then, we label the rest of the data with the topic
models and train a Deep Neural Network for each topic. We use the trained models to generate texts
from seed sentences.

2.1 METHODOLOGY

We have used the 2008, 2009 and 2010 versions of the WikiCFP database (http://www.
wikicfp.com). Each dataset contains a large number of unprocessed and un-categorized sci-
entific call-for-papers in an XML format. We have extracted the CFP descriptions from each data
row. We have the 2008 data to create the topic models and we have used the 2009 and 2010 datasets
as training data to the Deep Neural Network. We have used NLTK Bird & Klein (2009) for data
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pre-processing (tokenization, part-of-speech tagging, name entity recognition), Gensim Řehůřek &
Sojka (2010) for topic modeling, Keras Chollet (2015), Theano Bergstra et al. (2010) and cuDNN
Chetlur et al. (2014) for deep learning. For text generation, we have relied on the method pre-
sented in https://github.com/fchollet/keras/blob/master/examples/lstm_
text_generation.py. We have run the experiments on COTS PC with a NVIDIA Titan X in-
stalled.

2.2 DATA PRE-PROCESSING

To prepare the data for topic model creation, we have tokenized the extracted 2008 CFPs. We have
extracted the nouns from the tokens which were not named entities. We have removed the most
frequent words as they were general conference-related terms (e.g. conference, submission, etc).

2.3 TOPIC MODEL CREATION

To extract topic models form the data, we have used Latent Dirichlet Allocation Blei et al. (2003)
on the preprocessed data. 10 models has been extracted from the data what we used to generate
training data from the 2009 and 2010 datasets. Each CFP has been labeled with a topic number
(t = 0, . . . , 9) based on the probability estimates for each topic model. We have used 40 character
long semi-redundant sequences created from the raw text to train a Deep Recurrent Neural Network.

2.4 TRAINING

We have created a 3-layer stacked Long Short Term Memory networkSchmidhuber (1997). To
avoid overfitting, after each LSTM-layer, we have included a Dropout layer Srivastava et al. (2014).
Finally, we have mapped the learned representation to characters using a fully connected dense layer.
The detailed architecture of the network can be seen in Table 1.

Table 1: The architecture of the Deep Recurrent Neural network. The network consists of a 3-layer
stack of LSTM-Dropout layers and a dense layer.

Layer Shape # Parameters Activation
LSTM 40× 512 1347584 sigmoid
Dropout (0.2) 40× 512 0
LSTM 40× 256 787456 sigmoid
Dropout (0.2) 40× 256 0
LSTM 128 197120 sigmoid
Dropout (0.2) 128 0
Dense # Characters 18705 softmax
Total parameters: 2350865

For training we have used the AdaMax Kingma & Ba (2014) and categorical cross-entropy as a loss
function. We have generated 10 models by running training a network for each topic model for 60
epochs.

2.5 CALL-FOR-PAPERS GENERATION

We have used the trained model to predict CFPs in the following way: we have selected a random
part from an existing CFP and used is a seed. Then we have predicted the next characters based on
the probabilities assigned to the seed sentence.

3 RESULTS

To evaluate the approach, we have generated 25 1000 character long CFP-excerpts and measured
their similarity to their respective topic models using Latent Semantic Indexing Landauer (2006).
Table 2 show the results obtained for each topic model.
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Table 2: The corpus length, the number of distinct characters and the similarity score for the ten
topic models.

TOPIC # CORPUS LENGTH # CHARS SIMILARITY
0 4810101 150 0.400
1 7256126 148 0.897
2 1005447 145 0.864
3 1450533 147 0.821
4 7116410 148 0.822
5 1559038 123 0.899
6 661965 124 0.837
7 1926136 146 0.906
8 1635757 146 0.871
9 2692077 145 0.834

As it can be seen, 9 of the 10 generated text sets achieved high similarity with their topic models.
However, generating topic 0 seems to less accurate, potentially because this topic contains the most
special characters from the 10.

The following excerpt shows that the after 60 iteration, the model was able to predict computer-
science and engineering related keywords successfully.

* computer science and technologies
* software engineering
* power electronics
* computer science and systems
* sensor networks and applications
* and service oriented systems
* applications of computer science
* sensor networks and systems and multimedia systems and systems
* service engineering
* computer science and engineering
* electronics and computer science

4 CONCLUSION AND FUTURE WORK

In this paper, we have presented an approach to call-for-paper generation using a stacked LSTM
network and Natural Language Processing. The presented approach was evaluated on a publicly
available dataset where it showed that intelligible scientific keywords were predicted. In the future,
we would like to obtain data with CFP categories assigned and use the approach to predict discipline-
related scientific keywords.
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