
SpeakerGAN: Recognizing Speakers in New
Languages with Generative Adversarial Networks

Anonymous Author(s)
Affiliation
Address
email

Abstract

Verifying a person’s identity based on their voice is a challenging, real-world1

problem in biometric security. A crucial requirement of such speaker verification2

systems is to be domain robust. Performance should not degrade even if speakers3

are talking in languages not seen during training. To this end, we present a flexible4

and interpretable framework for learning domain invariant speaker embeddings5

using Generative Adversarial Networks. We combine adversarial training with6

an angular margin loss function, which encourages the speaker embedding model7

to be discriminative by directly optimizing for cosine similarity between classes.8

We are able to beat a strong baseline system using a cosine distance classifier9

and a simple score-averaging strategy. Our results also show that models with10

adversarial adaptation perform significantly better than unadapted models. In an11

attempt to better understand this behavior, we quantitatively measure the degree of12

invariance induced by our proposed methods using Maximum Mean Discrepancy13

and Fréchet distances. Our analysis shows that our proposed adversarial speaker14

embedding models significantly reduce the distance between source and target data15

distributions, while performing similarly on the former and better on the latter.16

1 Introduction17

Text-Independent Speaker Verification remains a challenging problem in the domain of biometric18

security. Armed with the machinery of deep learning, verification systems can now be deployed19

in the wild, and are still capable of delivering robust performance. In the verification community,20

situations wherein the test data is significantly different from the data available during system training21

are referred to as - In the Wild. For instance, the NIST-SRE 2016 evaluation data contains Cantonese22

and Tagalog speakers (in-domain, target data), while most of the speakers in our training set are23

talking in English (out-of-domain, source data). This distribution shift or mismatch between training24

and test data is an obstacle in several areas of pattern recognition and machine learning [1], and leads25

to a degradation in system performance. The development biometric verification system that perform26

reliably in such conditions is critical for this technology be used safely and securely on a day-to-day27

basis.28

Deep neural networks (DNN) have revolutionized several areas of speech processing, and as such,29

are ideal candidates for learning discriminative speaker representations or embeddings [20, 10, 23, 3].30

Indeed, neural speaker embeddings have surpassed the performance of i-vectors [20, 5], especially31

on real world, in the wild data [17, 14]. Arguably the most popular approach for learning speaker32

embeddings is to optimize the parameters of a DNN by minimizing the cross-entropy loss over33

speakers in the training data. Cross-entropy is natural choice for identifying speakers, however it34

does not directly address the verification task. As a consequence of not being optimized ‘end-to-35

end’, the performance of cross-entropy speaker embeddings (X-vectors) is heavily dependent on a36
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powerful classifier to perform verification. This dependence on a classifier motivates the research and37

development of end-to-end systems. We also believe that such systems can also benefit in downstream38

tasks that make use of speaker embeddings, such as speech recognition and synthesis. Speaker39

verification is a challenging problem, and modern verification datasets like NIST-SRE 2016, add40

to this challenge by introducing a mismatch between the distributions of the training and test data.41

This phenomena is referred to as domain or covariate shift. In the case of NIST-SRE 2016, the test42

data consists of Cantonese and Tagalog speakers, whereas the vast majority of training speakers are43

talking in English. NIST also provide a small amount of unlabelled, in-domain, target data, that can44

be used to compensate for the domain shift. Most the domain adaptation techniques that have been45

proposed for speaker verification have been proposed on top of i-vectors or x-vectors.46

In this work we present a framework for learning domain invariant speaker embeddings using47

Generative Adversarial Networks (GAN). We drawn inspiration from research in computer vision,48

where GAN based unsupervised domain adaptation methods have been extremely successful [6, 21,49

18, 19], and adapt these ideas for feature learning in a verification setting. The basic idea is cast50

domain adaptation/invariance as an adversarial game - generate features or embeddings such that a51

discriminator cannot tell if they come from the source or target domain. Unlike traditional GANs that52

work in high-dimensional spaces (e.g. natural images,speech), domain adaptation GANs operate in53

low-dimensional embedding space. We extend our recent work [2, 4] and propose a novel objective54

for updating the generator network. We find that optimizing GAN models with this objective proves55

to be unstable, and propose to stabilize it by augmenting the discriminator with an auxiliary loss56

function. This strategy also helped stabilize training for the conventional generator objective but was57

not strictly needed.58

Additionally, we analyze the transformed source and target data distributions in order to gain further59

insight regarding the performance of our method. We measure distances between these distributions60

using Maximum Mean Discrepancy and Fréchet distances. From our analysis we see that a good61

performance in terms of distributional distance corresponds to good verification performance. Our62

speaker verification experiments show that the proposed adversarial speaker embedding framework63

delivers robust performance, significantly outperforming a strong i-vector baseline. Furthermore, by64

averaging the scores of our different GAN models, we are able to achieve state-of-the-art results.65

2 Models66

2.1 Feature Extractor (Generator)67

The first step for learning discriminative speaker embeddings is to learn a mapping F (Xs) −→ f,68

f ∈ RD from a sequence of speech frames from speaker s to a D-dimensional feature vector f. F (X)69

can be implemented using a variety of neural network architectures. We design our feature extractor70

using a residual network structure. We choose to model speech using 1-dimensional convolutional71

filters, owing to the fact that speech is translation invariant along the time-axis only. Following the72

residual blocks we use a combination of self-attention and dense layers in order to represent input73

audio of arbitrary size by a fixed-size vector, f. Unlike traditional approaches, our proposed feature74

extractor is updated with an adversarial loss in addition to the standard task loss.75

2.2 Self-Attentive Speaker Statistics76

Self-Attention models are an active area of research in the speaker verification community. Intuitively,77

such models allow the network to focus on fragments of speech that are more speaker discriminative.78

The attention layers computes a scalar weight corresponding to each time-step t:79

et = vT f(Wht + b) + k (1)

These weights are then normalized, αt = softmax(et), to give them a probabilistic interpretation.80

We use the attention model proposed in [25], which extends attention to the mean as well as standard81

deviation:82

µ̂ =

T∑
t

αtht (2)
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Figure 1: Domain Adversarial Neural Speaker Embedding Model.

σ̂ =

T∑
t

αtht � ht − µ̂� µ̂ (3)

In this work we apply the use of self attention to convolutional feature maps, as indicated in Fig. 1.83

The last residual block outputs a tensor of size nB × nF × T , where nB is the batch size, nF is the84

number of filters and T is time. The input to the attention layer, ht, is a nF dimensional vector.85

By using a self-attention model, we also equip our network with a more robust framework for86

processing inputs of arbitrary size than simple global averaging. This allows us simply forward87

propagate a recording through the network in order to extract speaker embeddings.88

2.3 Classifier89

The classifier block, C(f, θy), is arguably the key component of the model, as it is responsible for90

learning speaker discriminative features.Recently, angular margin loss functions have been proposed91

as an alternative to contrastive loss functions for verification tasks [11, 24]. The Additive Margin92

softmax (AM-softmax) loss function is one such algorithm with an intuitive interpretation. The loss93

computes similarity between classes using cosine, and forces the similarity of the correct class to be94

greater than that of incorrect classes by a margin m.95

LAMS = − 1

n

n∑
i=1

log
es.(cosθyi−m)

es.(cosθyi−m) +
∑
j 6=yi e

s.(cosθj)

= − 1

n

n∑
i=1

log
es.(W

T fi−m)

es.(WT fi−m) +
∑
j 6=yi e

s.(WT fj)

(4)

Where WT and fi are the normalized weight vector and speaker embedding respectively. The96

AM-softmax loss also adds a scale parameter s, which helps the model converge faster. We select97

m = 0.6 and s = 30 for all our experiments.98

2.4 Domain Discriminator99

The domain discriminator D(.) is tasked with determining if embeddings come from the source100

or target domains, and is arguably the most important component of the model. In order to learn101

domain invariant features, we engage the domain discriminator in an adversarial game with the feaure102

extractor E(.). The domain discriminator consists of two fully connected layers followed by the103

output layer.104
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3 Domain Adversarial Speaker Embeddings105

A crucial requirement for learning speaker embeddings that are domain invariant is to find a balance106

between the task loss and the adversarial loss. The objective to learn a feature space wherein107

embeddings are speaker discriminative irrespective of the domain. Key to achieving this is the domain108

discriminator D, which is trained using the Binary Cross-Entropy loss (BCE).109

LadvD (Xs,Xt, E) = −Exs∼Xs
[log(D(E(xs))]− Ext∼Xt

[log(1−D(E(xt))] (5)

Where Xs, Xt represent source and target data respectively. E(.) is the feature extractor/generator.110

The adversarial game between D(.) and E(.) is given by:111

min
D
LadvD (Xs,Xt, E)

min
E
LadvE (Xs,Xt, D)

(6)

Equation (6) represents the most general form of the GAN game, and can be used to represent112

different adversarial frameworks depending on the choice of LadvE .113

Gradient Reversal: We obtain the gradient reversal framework by setting LadvE = −LadvD.114

Gradient reversal optimizes the true minmax objective of the adversarial game [6]. However, this115

objective can become problematic, since the discriminator converges early during training and leads116

to vanishing gradients. We refer to the model trained with gradient reversal as Domain Adversarial117

Neural Speaker Embeddings (DANSE).118

GAN: Rather than directly using the minimax loss, the standard way to train the generator is using119

the inverted label loss. The generator objective is given by:120

LadvE (Xs,Xt, D) = −Exs∼Xs [log(D(E(xt))] (7)

This splits the optimization into two independent objectives, one for the generator and one for the121

discriminator. This loss has the same fixed-point properties as the minimax loss while providing122

stronger gradients to target mappings [21].123

3.1 Updating the Generator with Source Embeddings124

In a typical GAN setting, the generator is trained only using fake data (with inverted labels). This125

structure is also maintained in several adversarial domain adaptation algorithms. However, in the126

context of this work we believe that updating the generator using both source and target data can be127

beneficial. In this case, the generator loss simply inverts the discriminator loss of eq. (1):128

LadvE (Xs,Xt, D) =

− Exs∼Xs
[log(D(E(xt))]

− Ext∼Xt
[log(1−D(E(xs))]

(8)

When using the proposed objective for training the generator, we are optimizing the true minimax129

loss like in the gradient reversal approach. Unfortunately, we found that optimizing this loss becomes130

unstable early during training. We found a simple approach to stabilize training for this model was to131

augment the discriminator with an auxiliary loss function.132

3.2 Auxiliary Classifier GAN133

The Auxiliary Classifier GAN (AuxGAN) model augments the standard GAN framework with an134

auxiliary loss to perform conditional image generation [16]. This approach aims to predict side135

information (such as class labels), as opposed to feed the same information to the generator and136
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discriminator. In the context of this work, our goal is to use the prediction loss for regularization and137

representation learning.138

min
D
LadvD (Xs,Xt, E) + LAux(Xs, Ys)

min
E
LadvE (Xs,Xt, D) + LAux(Xs, Ys)

(9)

Eq. (9) is a modified version of the AuxGAN objective. In particular, the original formulation also139

uses the auxiliary loss to train the generator as well (with fake data being assigned its own unique140

label). We found that the auxiliary loss was crucial for stabilizing LadvE (Xs,Xt, D) when using141

the formulation in eq. (8). In our experiments we found that the AuxGAN setup stabilizes model142

training even when we use eq. (7) as the generator objective, and leads to slightly better verification143

performance. In this setting only the discriminator is trained with the auxillary loss.144

3.3 GAN Variants145

Since their introduction, GANs have been one of the most researched topics in the deep learning146

community. Several variations of the original formulation have been proposed, each with different147

generative characteristics and stability issues. In this work we explore three GAN variants in addition148

to the standard GAN - Least-Squares GAN [13], Auxiliary Classifier GAN and Relativistic GAN [9].149

We use the standard average GAN variant of the Relativistic GAN model. These models differ in the150

structure of the discriminator network. We show that each variant transforms the feature space in151

different way, will all the model showing mostly similar performance. Additionally we see that by152

fusing the performance of all GAN variants together through score averaging we achieve the best153

overall performance.154

4 Experimental Setup155

Training Data (Source): We used audio from previous NIST-SRE evaluations (2004-2010) and156

Switchboard Cellular audio for training the proposed DANSE model as well as the x-vector and157

i-vector baseline systems. We also augment our data with noise and reverberation, as in [20]. We add158

128k noisy copies to the clean speech, ending up with 2̃20k recordings in our training set. For DANSE159

model training we filter out speakers with less than 5 recordings, ending up with approximately160

6000 speakers, whereas the x-vector and i-vector systems were trained using the Kaldi recipe. We161

note that the vast majority of our training data consists of English speakers, and is recorded over162

telephone/cellular channels.163

Model: The Embedding function/Generator, E(.), consists of a 3× 23 input convolutional layer, 4164

residual blocks [3,4,6,3], an attentive statistics layer and two fully connected layers (512,512). The165

classifier, C(.), module consists of a fully connected layer (64) and the AM-softmax output layer.166

The former is the final domain invariant speaker embedding extracted during evaluation. Finally,167

the domain discriminator module consists of two fully connected layers (256,256) and a binary168

cross-entropy output layer. Exponential Linear Units (ELU) are used as non-linear activations for all169

layers of the network. Batch Normalization is used on all layers expect the attentive statistics layer.170

Optimization: We start by pre-training the Embedding function using standard cross-entropy171

training. Pre-training is carried out using the RMSprop optimizer with a learning rate (lr) of 0.001.172

For training GAN based speaker embedding models we use different optimizers for training the173

three networks (Embedding function,Classifier, Discriminator). The classifier is optimized using174

RMSprop with lr=0.003, while the domain classifier and feature extractor are trained using SGD175

with lr=0.001. We were able to train all our GAN models using the same set of hyper-parameters.176

We used performance on held out validation set to determine when to stop training.177

Data Sampling: We use an extremely simple approach for sampling data during training. We178

sample random chunks of audio (3-8 seconds) from each recording in the training set. We sample179

each recording 10 times to define an epoch. For each mini-batch of source data, we randomly sample180

(with repetition) a mini-batch from the unlabelled adaptation data for GAN training. The training set181

5



contains recordings from 6000 speakers (we filter out speakers with less than 5 recordings) and a182

total of 217,620 recordings. The adaptation data contatins 2272 unleabelled recordings.183

Speaker Verification: At test time we discard the domain discriminator branch of the model, as it is184

not needed for extracting embeddings. Extraction is done by performing a forward pass on the full185

recording, and using the 64-dimensional FC3 layer as our speaker embeddings. Verification trials186

are scored using cosine distance. Verification performance is reported in terms of Equal Error Rate187

(EER).188

5 Results189

NIST-SRE 2016: Unlike previous years, The 2016 edition of the NIST-SRE introduced a challenging190

new dataset containing Cantonese and Tagalog speakers. We use the Kaldi recipes for our baseline191

i-vector and x-vector systems. We note that the x-vector baseline may be considered as state-of-the-art192

performance on this dataset.193

Adaptation Data (Target): 2722 unlabelled, target data recordings are provided to adapt verification194

systems.195

Table 1: Performance of Baseline Systems (EER).

Model Classifier Cantonese Tagalog Pooled

i-vector PLDA 9.51 17.61 13.65
x-vector COSINE 36.44 41.07 38.69
x-vector LDA/PLDA 7.03 15.41 11.15
x-vector PLDA 18.46 7.99 12.21

Table 2: Performance of Different GAN systems in terms of EER(%). GradRev: Gradient Reversal
SGAN: standard, AuxGAN: auxiliary classifier, LSGAN: least squares, RelGAN: reletavistic,
FuseGAN: score averaging.

Model Classifier Cantonese Tagalog Pooled

GradRev COSINE 8.84 18.21 13.36
SGAN COSINE 8.32 17.51 12.65
AuxGAN COSINE 7.60 16.04 11.93
LSGAN COSINE 7.92 15.63 11.74
RelGAN COSINE 8.01 16.22 12.21
FuseGAN COSINE 6.93 14.77 10.88

Tables 1 & 2. compare the performance of the different speaker representations on the NIST-SRE16196

task. Among the baseline systems the x-vector model produces the best results, however requires197

LDA based dimensionality reduction and the PLDA classifier to produce its best result. We see198

that all of the GAN based models outperform gradient reversal by a large margin, but none of the199

individual models are able to match the best x-vector system. Interestingly, we find that we are able200

to best this system by simply averaging the scores of our different GAN models. The FuseGAN201

results do not include the scores from the standard GAN model, although this does not affect the final202

performance significantly.203

6 Analysis204

One particularly interesting result from our experiments is the improvement we see through a simple205

score averaging procedure. Our hypothesis is that the different discriminator objectives encourage the206

generator to cover different modes of the target data distribution. This finding is consistent with GAN207
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Figure 2: t-SNE visualization of embedding space. Large red cluster represents target data. top row:
No Adaptation, standard GAN, auxGAN bottom: Grad Reversal, Relativistic, auxGAN (ours) (left
to right).

approaches that train multiple discriminators [15], although we do not train them simultaneously. In208

Fig. 2 we visualize the embedding spaces learned by our models using t-SNE [12]. While Gradient209

Reversal primarily appears to rotate the feature space, the transformations induced by the GAN210

models is more pronounced. Crucially, we see that that the source domain speaker clusters appear to211

remain intact. This indicates that our models retain discriminative properties in the source domain, a212

fact we verify experimentally.213

Maximum Mean Discrepancy (MMD): is based on the idea that two distributions are identical if214

and only if all their moments are identical [7]. A divergence can be defined if we can measure how215

“different” the moments of the two distributions are. MMD is a method of efficiently doing this via216

the kernel trick:217

MMD(p(z)||q(z)) =

Ep(z),p(z′ )[k(z, z
′
)] + Eq(z),q(z′ )[k(z, z

′
)]− 2Ep(z),q(z′ )[k(z, z

′
)]

(10)

In order to quantitatively evaluate our models in terms of domain adaptation, we measure the218

Maximum Mean Discrepancy distance between a selection of source data and the unlabelled target219

data. MMD is a standard distribution distance metric and has been applied in the context of domain220

adaptation [22].221

Fréchet Distance: The Fréchet Inception Distance (fid) is a popular approach for evaluating GANs,222

and has been shown to correlate well with human judgement of visual quality [8]. Instead of an223

Inception network, we extract embeddings from our gan models from the source and target data. The224

Fréchet Distance between between the Gaussian (ms,Cs) obtained from the source data distribution225

ps and the Gaussian (mt,Ct) from the target data is given by:226

d2((ms,Cs, (mt,Ct)) = ||ms −mt||22 + Tr(Cs + Ct − 2(CsCt)1/2) (11)

Source Domain Speaker Verification: We use the same source data used to compute the MMD and227

Fréchet Distance to construct a trial list for verification. The list consists of 2500 recordings and we228

score them all versus all. There are a total of 101,666 target and 6,145,834 non-target trials.229

From Fig. 3 we see that MMD and the Fréchet distance display similar trends. Surprisingly we see230

that Gradient Reversal only has a small effect on either metric, while the GAN models all have much231

lower MMD and Fréchet distances. We note that the model using the novel generator objective shows232

7



Frechet DistanceMaximum Mean Discrepancy Equal Error Rate

Figure 3: Comparing Models in terms of MMD, Frćhet distances and source domain verification.
NoAdapt: No Adaptation, GradRev: Gradient Reversal, lsGAN: Least Squares, sGAN: standard,
auxGAN: auxiliary classifier, relGAN: Relativistic, auxGAN*:proposed objective.

the lowest scores on both metrics. The results on source domain speaker verification also indicate233

that our models remain discriminative in the source domain as well, with only a small degradation as234

compared to the unadapted model. The vanilla GAN performs worst on the verification task, and this235

relative performance also translates to the target domain. Interestingly, the Gradient Reversal model236

shows the best performance on this experiment albeit by a small margin.237

7 Conclusion238

In this work we we presented a novel framework for learning domain-invariant speaker embeddings239

using GANs. By combining a powerful deep feature extractor, an end-to-end loss function and240

most importantly, adversarial training we are able to learn extremely compact speaker embeddings241

that deliver robust verification performance on challenging evaluation data. We showed that the242

proposed methods do reduce the domain mismatch between source and target data in terms of MMD243

and Fréchet distance. Furthermore, we see that our methods adapt while maintaining their speaker244

discriminative nature in the source domain as well. In future work we will experiment with other245

GAN variants in an attempt to further improve performance. Given the success of our simple fusion246

approach, we believe that exploring models with multiple discriminators could be an interesting247

research direction.248
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