
Under review as a conference paper at ICLR 2020

HOW THE SOFTMAX ACTIVATION HINDERS THE
DETECTION OF ADVERSARIAL AND OUT-OF-
DISTRIBUTION EXAMPLES IN NEURAL NETWORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Despite having excellent performances for a wide variety of tasks, modern neural
networks are unable to provide a prediction with a reliable confidence estimate
which would allow to detect misclassifications. This limitation is at the heart of
what is known as an adversarial example, where the network provides a wrong pre-
diction associated with a strong confidence to a slightly modified image. Moreover,
this overconfidence issue has also been observed for out-of-distribution data. We
show through several experiments that the softmax activation, usually placed as
the last layer of modern neural networks, is partly responsible for this behaviour.
We give qualitative insights about its impact on the MNIST dataset, showing that
relevant information present in the logits is lost once the softmax function is applied.
The same observation is made through quantitative analysis, as we show that two
out-of-distribution and adversarial example detectors obtain competitive results
when using logit values as inputs, but provide considerably lower performances
if they use softmax probabilities instead: from 98.0% average AUROC to 56.8%
in some settings. These results provide evidence that the softmax activation hin-
ders the detection of adversarial and out-of-distribution examples, as it masks a
significant part of the relevant information present in the logits.

1 INTRODUCTION

Thanks to their excellent performances, Neural Networks (NN) are now used to tackle important
problems such as medical diagnosis (Shen et al., 2017) or pedestrian detection for autonomous cars
(Tian et al., 2015). However, regarding classification, one of the issues that prevent widespread
adoption of such solutions is their overconfidence in their predictions (Amodei et al., 2016). It
has been observed that they can provide predictions with high confidence values for errors (Guo
et al., 2017), out-of-distribution (OOD) examples such as tailored noise (Nguyen et al., 2015) and
adversarial examples (Szegedy et al., 2014).

The softmax layer has been identified as one potential culprit for these overconfident predictions
(Hendrycks & Gimpel, 2017; Neumann et al., 2018). The softmax function is defined as follows:

σ(zi) =
ezi∑C
j=1 e

zj
for i = 1, ..., C and z ∈ RC

Hendrycks & Gimpel (2017) state that overconfident prediction are due to the use of the fast-growing
exponential function in the softmax computation. It is thus designed to output high maximum values,
even for small differences in the logits z. Solutions have been proposed for this specific issue, such
as temperature scaling, which divides the logits z by a constant T > 1 in order to obtain ”softer”
probabilities. Several works showed that this method significantly improves the calibration of the
probabilities (Guo et al., 2017; Neumann et al., 2018).

However, another property of the softmax, which is less discussed, is that the outputs are normalized
in order to obtain a probability distribution. These probabilities are indeed easier to interpret than
logits, as humans can process probabilities intuitively (Cosmides & Tooby, 1996). However, the
information about the logits absolute values is lost due to this normalization. To the best of our
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knowledge, only the very recent work of Ozbulak et al. (2019) adress this issue. In their work, they
state that some adversarial examples, referred to as ”over-optimized” adversarial examples, have
very high logit values, but their magnitude is masked by the softmax function. They thus use this
difference in logit distribution to detect this type of adversarial examples. Our work is aligned with
theirs and extends their findings, as we show that logits can be used not only to detect over-optimized
adversarial examples, but also ”regular” adversarial examples and OOD data. We also propose new
experiments to quantify the impact of the loss of the information contained in the logits on detection
performances.

Our main contrutions are :

• We provide some intuition about the difference between logit and softmax distributions
through experiments on MNIST. We show that there is a significant difference in logit
distributions between regular MNIST images and OOD and adversarial images, but this
difference is not present to the same extent after the softmax function is applied.

• We propose 2 logit-based solutions inspired by state-of-the-art methods, each being suited
for a different scenario: a NN trained on logit activations when the adversarial attacks and
OOD datasets are known beforehand, and a kernel density estimation of the logit distribution
when they are not. We achieve competitive performances for the detection of 4 kinds of
adversarial attacks and 4 OOD datasets. These results remains true for 2 datasets, MNIST
and CIFAR10, and 2 NN architectures, a custom, relatively shallow one and a Wide Residual
Network (Zagoruyko & Komodakis, 2016). It is noteworthy that few detectors are evaluated
on both adversarial and OOD examples, as most work focus on only one problem.

• Finally, we show that using the softmax probabilities in place of the logit activations
results in significantly worse performances for both detectors. This highlights that relevant
information is lost once the softmax function is applied, and raises questions about its role
in the lack of robustness observed in NN.

The ouline of the paper is as follows. In Section 2, we present a brief summary of state-of-the-art
methods for 3 related problems: adversarial example detection, out-of-distribution example detection
and uncertainty estimation. Section 3 provides some qualitative insights about the difference in
distribution between logit and softmax values on MNIST. In Section 4, we show quantitatively the
detrimental impact of the softmax on OOD and adversarial detectors performances. We summarize
our findings and propose future directions in Section 5.

2 RELATED WORK

2.1 ADVERSARIAL EXAMPLE DETECTION

In response to the growing number of adversarial attacks that have appeared in the literature recently
(Chen & Jordan, 2019; Goodfellow et al., 2015; Szegedy et al., 2014; Moosavi-Dezfooli et al., 2016),
detecting adversarial examples has also become a hot topic (Feinman et al., 2017; Lee et al., 2018;
Metzen et al., 2017; Ozbulak et al., 2019; Xu et al., 2018). Detection methods can be split into 3
categories: detecting changes in sample statistics (Feinman et al., 2017; Lee et al., 2018; Ozbulak
et al., 2019), training a detector (Metzen et al., 2017) and looking for prediction inconsistency (Xu
et al., 2018).

Feinman et al. (2017) propose to use a combination of density estimates on the last hidden layer
and bayesian uncertainty estimates (computed using dropout during inference (Gal & Ghahramani,
2016)) to determine whether an exemple has been adversially perturbed or not. Metzen et al. (2017)
train an adversarial example detector network using intermediate feature representations as inputs.
Ozbulak et al. (2019) show that over-optimized adversarial examples have much higher logit values
than legitimate samples, and thus propose to use a threshold on these values for detection. Xu et al.
(2018) check the consistency of a NN predictions between a given input and a squeezed version of it
to differentiate adversarial and regular images. Lee et al. (2018) use the Mahalanobis distance on
NN learned representations to detect both adversarial and OOD examples. It is noteworthy that their
detector is, to the best of our knowledge, one of the only other detectors that have been evaluated on
these 2 tasks.
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2.2 OUT-OF-DISTRIBUTION EXAMPLE DETECTION

Another related challenge that has recently received attention from the research community is the
detection of OOD examples (DeVries & Taylor, 2018; Hendrycks & Gimpel, 2017; Lee et al., 2018;
Liang et al., 2017; Vyas et al., 2018). Indeed, it has been shown that a NN trained on ImageNet can
provide predictions with almost 100% confidence for images that are just noise to the human eye
(Nguyen et al., 2015). Hendrycks & Gimpel (2017) present a framework to evaluate misclassified
and OOD example detectors and show that softmax probabilities can detect both of them to some
extent, but that there is room for improvement. DeVries & Taylor (2018) propose to learn confidence
estimates that discriminates between in and out-of-distribution examples by allowing NNs to ask
for ”hints” during training when the prediction is uncertain. Liang et al. (2017) introduce ODIN, a
method that separates in and out-of-distribution examples by preprocessing the input using adversarial
perturbation and then thresholding the softmax scores computed after temperature scaling. Vyas et al.
(2018) train an ensemble of classifiers with a margin-based term added to the loss to detect OOD
examples.

2.3 UNCERTAINTY ESTIMATION

A closely related and more general field of research is uncertainty estimation. It can be used in
different settings such as semi-supervised learning (Triguero et al., 2015), weighting an ensemble
of classifiers (Mandelbaum & Weinshall, 2017), or misclassification detection (Jiang et al., 2018;
Mandelbaum & Weinshall, 2017; Papernot & McDaniel, 2018). Regarding this last task, it is
noteworthy that all 3 works are strongly inspired by the KNN algorithm. Jiang et al. (2018) introduce
the Trust Score, a specific 1-NN ratio applied on a filtered version of the training set in order to
recognize misclassified examples. In the same spirit, Mandelbaum & Weinshall (2017) propose a
confidence score based on the distance in the hidden representation space between an examples and
its K nearest neighbors in the training set. Papernot & McDaniel (2018) compute a confidence score
based on the homogeneity of the set of nearest neighbors computed in the representation space of
each layer.

3 DIFFERENCE BETWEEN LOGIT AND SOFTMAX DISTRIBUTIONS

In this Section, we provide intuition about the difference between logit and softmax values distribu-
tions through experiments on the MNIST dataset (LeCun et al., 1998). Our results show that there
are significant differences in logit activations between MNIST, OOD and adversarial examples, but
that these differences are less or not present at all once the softmax function has been applied.

3.1 SETUP

NN model: For these experiments, we train a simple custom NN using the Keras framework (Chollet
et al., 2015). The architecture is described in Table 1. The training was done for 30 epochs. We used
the RMSprop optimizer, a batch size of 64 and data augmentation (i.e. slight rotations, zooms and
shifts).

OOD and adversarial examples: In order to study how logit and softmax values are distributed, we
use or generate the following OOD and adversarial datasets:

• For out-of-distribution examples, we study 4 different kinds of data. We use random normal
and uniform noise images, as well as images from CIFAR-10 (Krizhevsky et al., 2014) and
Fashion MNIST (Xiao et al., 2017) datasets. This allows to study 3 different kinds of OOD
examples: noise images, natural images drawn from a significantly different distribution
(CIFAR-10), and images drawn from a relatively close distribution (Fashion-MNIST).

• For adversarial examples, we use the CleverHans framework (Papernot et al., 2018). We
generate 4 adversarial datasets using different methods: FGSM (Goodfellow et al., 2015),
BIM (Chen & Jordan, 2019), DeepFool (Moosavi-Dezfooli et al., 2016) and the MaxCon-
fidence attack (Goodfellow et al., 2019). FGSM and BIM are two well known attacks,
while DeepFool and MaxConfidence are complementary: DeepFool aims at finding the
minimal perturbation which changes the prediction, while MaxConfidence aims at finding
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Table 1: Architecture of the custom NN.

LAYER TYPE PATCH SIZE STRIDE DEPTH PADDING ACTIVATION OUTPUT SIZE

CONVOLUTION 3X3 1 32 NONE RELU 26X26X32
CONVOLUTION 3X3 1 32 NONE RELU 24X24X32
MAX POOLING 2X2 2 12X12X32
DROPOUT (20%) 12X12X32
CONVOLUTION 3X3 1 64 SAME RELU 12X12X64
CONVOLUTION 3X3 1 64 SAME RELU 12X12X64
MAX POOLING 2X2 2 6X6X64
DROPOUT (25%) 6X6X64
CONVOLUTION 3X3 1 128 SAME RELU 6X6X128
DROPOUT (25%) 6X6X128
FLATTEN 4608
DENSE RELU 128
BATCH NORMALIZATION 128
DROPOUT (25%) 128
DENSE SOFTMAX 10
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Figure 1: Distribution of the average logit values for 1000 examples of each dataset.

the perturbation which results in the highest confidence for a wrong class. We only keep the
images that are misclassified by the NN. All the images have been generated using the l∞
norm with ε = 0.3.

3.2 ANALYSIS OF THE DISTRIBUTION OF LOGIT AND SOFTMAX VALUES

Figure 1 displays the distribution of the average logit values for MNIST, OOD and adversarial images.
We can clearly see that logits values are higher for MNIST images than for any other dataset. These
differences are statistically significant according to the Student’s t-test (p < 0.0001 between MNIST
and any other dataset). Whereas for softmax values, the average is always 1/C with C the number of
classes, as the sum of the probabilities over all the classes is equal to 1. Thus, we can see that because
of the normalization of the softmax function, we lose the information about the average logit value,
which appears to be discriminating.

Figure 2 presents a scatterplot of the logit and softmax minimum and maximum values for the
MNIST, Gaussian, CIFAR-10, FGSM and MaxConfidence datasets. The Figure displays only these 5
datasets for the sake of visibility. Exhaustive results are presented in the Appendix. Qualitatively,
we can clearly distinguish cluster of points representing each dataset. Hence, it appears that these
2 simple statistics for logits are enough to separate fairly well legitimate examples from OOD and
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Figure 2: Scatterplot of the logit and softmax minimum and maximum values. Best viewed in color.

adversarial ones. We can see that legitimate images tend to have higher minimum and/or maximum
logit values, which correlates well with the distributions showed in Figure 1. However, we can see
that the discriminating information is once again lost when we apply the softmax function, as the
exponential function combined with the normalization is pushing the highest value towards 1 and the
lowest one towards 0.

These observations give some insights about the detrimental effect of the softmax function regarding
OOD and adversarial example detection. The valuable information about the average of the logit
value is lost due to the normalization, while the exponential function pushes minimum output values
towards 0 and maximum ones toward 1, making it difficult to determine if an example is legitimate or
not.

4 OOD AND ADVERSARIAL DETECTION

In this Section, we propose and evaluate 2 simple detection solutions inspired by state-of-the-art
methods: a NN detector trained on both legitimate and illegitimate examples, and a kernel density
estimator (KDE) fitted only on legitimate inputs. We first show that these 2 methods perform at
a competitive level when using logit activations. Then, we show that using softmax probabilities
instead of logit activation results in a significant drop in performance.

4.1 FIRST METHOD: NN-BASED DETECTOR

Similarly to the solution proposed by Metzen et al. (2017), but with a simpler architecture, we train a
3 layers regression NN with the considered representation (either logit of softmax values) as input. It
aims at predicting the confidence value associated to a given prediction, i.e. whether it is a correct
(value of 1) or incorrect (value of 0). The NN is composed of 3 dense layers with 128 neurons and
RELU activations. The first 2 layers are followed by dropout layers with a dropout rate of 20%, and
the second dropout layer is also followed by a Batch Normalization layer. We train the network for
60 epochs using RMSProp to optimize the mean squared error loss. It is noteworthy that only one
NN is trained on all OOD and adversarial datasets. One could train one NN per kind of illegitimate
examples, but we chose to train a generic one instead.

4.2 SECOND METHOD: KDE-BASED DETECTOR

Based on the solution proposed by Feinman et al. (2017), we fit a KDE on the considered repre-
sentation of legitimate inputs. To do so, we use the implementation provided by the scipy python
package (Jones et al., 2001). The main parameter of a KDE is the bandwidth, as it manages whether
the resulting estimated distribution is going to be ”spiky” or ”smooth”. The scipy implementation
uses the Scott’s rule (Scott, 2015) to compute its value.

5



Under review as a conference paper at ICLR 2020

4.3 EXPERIMENTAL SETUP

Experiments: We evaluate both methods on 2 datasets, MNIST and CIFAR-10, and on 2 NN
architectures. The first one is the custom network presented in Section 3, the second one is a
Wide Residual Network (Zagoruyko & Komodakis, 2016), with depth 28 and width 8, whose
implementation is provided by Keras contrib. We evaluate each combination of NN architecture ×
dataset, resulting in 4 experimental settings. We do so to ensure that our results can be generalized
to several conditions. Regarding classification performances, the custom network achieves 99.6%
accuracy on MNIST and 80.2% on CIFAR-10, while the Wide Residual Network achieves 99.7% on
MNIST and 95.2% on CIFAR-10.

Evaluation metrics: We use the evaluation framework introduced in Hendrycks & Gimpel (2017):
we compute the Area Under the Receiver Operating Characteristic curve (AUROC), the Areas Under
the Precision-Recall curve (AUPR) for both the correct (AUPR In) and incorrect (AUPR Out) classes.
In addition, we also compute the False Positive Rate at 95% True Positive Rate (FPR) as in Liang et al.
(2017). For clarity reasons, we only display the average of these metrics over OOD and adversarial
datasets.

Data: For the NN-based detector, the training set is composed of 5000 examples belonging to
the in-distribution dataset (i.e. MNIST or CIFAR-10), and of 1000 examples of all the remaining
datasets presented in Section 3 (MNIST is used as an OOD dataset when CIFAR-10 is the considered
in-distribution dataset). These numbers were chosen in order to have a fairly balanced dataset. From
this data, we use 10% as a validation set. For the KDE detector, we only use the 5000 legitimate
examples to fit the distribution. In both cases, the testing set is composed of 2000 images of each
dataset.

4.4 COMPARISON WITH STATE OF THE ART METHODS

In this first set of experiments, we compare the 2 methods we presented, using logit activations as
inputs, with 2 detectors proposed in the literature. The first method is the baseline proposed by
Hendrycks & Gimpel (2017), which consists in thresholding on the max softmax probabilities to
determine whether an example is legitimate or not. We refer to this method as the Softmax Baseline.
The second method is the Trust Score introduced in Jiang et al. (2018). To compare these detectors, we
mostly focus on the AUROC metric, as it is the most comprehensive metric among the 4 considered.

Results are presented in Table 2. The NN detector outperforms the other methods for all settings,
most of the time by a large margin. It achieves results close to perfection on the MNIST dataset, with
average AUROC over 99% for both architectures. It is especially true for OOD examples, for which
it obtains an average AUROC of 99.9%. Regarding the CIFAR-10 dataset, it obtains slighty lower
results for the detection of adversarial examples, with AUROC averages close to 95%. However,
this detector is the only one which has the advantage of knowing beforehand the kind of illegitimate
examples it is going to be evaluated on. It is thus expected that it would provide the best results.
Nevertheless, it shows that logits contain the required information to detect adversarial and OOD
examples with high accuracy.

Regarding the other 3 methods, we can see that the Trust Score and the KDE solution achieve overall
comparable performances. When comparing the average AUROC on both adversarial and OOD
examples, they achieve similar performances on both datasets with the Wide Residual Network
architecture: 98.0% on MNIST and 82.6% on CIFAR-10 for the Trust Score, 98.0% on MNIST and
82.7% on CIFAR-10 for the KDE. Their performances differ slightly with the custom architecture, as
the Trust Score achieves better results on MNIST (91.6% compared to 89.7%), but lower ones on
CIFAR-10 (71.1% compared to 79.7%). When looking at the detailed results, it appears that the KDE
detector struggles with detecting OOD examples on CIFAR-10, as it is significantly outperformed by
the Softmax Baseline for both architectures. However, this observation does not hold for the MNIST
dataset, as the KDE obtain the second best results for OOD example detection on both architectures.
It also vastly outperforms the Trust Score on adversarial example detection on CIFAR-10.

These results show that both the NN and the KDE detectors achieve results which are competitive
with state of the art methods. This observation remains true for different architectures and datasets,
showing that these methods can be relevant OOD and adversarial example detectors when provided
with the relevant inputs.
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Table 2: OOD and adversarial example detection results on MNIST and CIFAR-10, for both the
custom NN and the Wide Residual Network (referred to as WR-28-8). The best result for each
metric/experience, in italic, is always achieved by the NN-based detector. However, as this detector is
the only one which has the advantage of knowing beforehand the OOD and adversarial datasets, we
also highlight the second best results in bold.

EXPERIMENT DATASETS FPR (95% TPR) AUROC AUPR IN AUPR OUT

SOFTMAX BASELINE / TRUST SCORE / KDE / NN

CUSTOM NETWORK

MNIST

ADVERSARIAL 54.2/47.3/59.0/6.4 72.8/90.4/83.0/98.4 80.2/92.6/85.3/98.5 73.0/86.3/78.6/98.0
OOD 58.1/43.5/24.2/0.2 59.5/92.8/96.4/99.9 73.7/95.0/97.0/99.9 62.1/87.2/95.2/99.9
ALL 56.2/45.4/41.4/3.3 66.2/91.6/89.7/99.2 76.9/93.8/91.2/99.2 67.6/86.7/86.9/99.0

WR-28-8
MNIST

ADVERSARIAL 63.5/23.2/20.3/3.3 65.8/96.8/96.9/99.3 78.6/97.6/97.6/99.5 64.8/95.5/95.8/98.8
OOD 60.6/3.0/3.4/0.1 65.5/99.1/99.1/99.9 79.4/99.3/99.3/99.9 60.0/98.9/98.9/99.9
ALL 62.0/13.1/11.9/1.7 65.6/98.0/98.0/99.6 79.0/98.5/98.4/99.7 62.4/97.2/97.4/99.4

CUSTOM NETWORK

CIFAR-10

ADVERSARIAL 90.9/90.1/36.7/35.7 35.2/63.7/87.7/94.1 52.9/71.2/87.9/95.0 45.1/56.8/85.7/91.2
OOD 87.5/83.5/69.1/5.4 78.0/79.6/71.6/98.6 83.5/83.5/77.8/98.6 69.4/72.9/71.7/98.7
ALL 89.2/86.8/52.9/20.6 56.6/71.1/79.7/96.4 68.2/77.3/82.9/96.8 57.3/64.8/78.7/95.0

WR-28-8
CIFAR-10

ADVERSARIAL 67.2/76.6/33.5/30.4 53.9/71.2/91.2/95.7 69.8/76.9/91.9/96.6 57.8/66.6/89.3/93.4
OOD 51.4/33.4/49.1/1.2 91.7/94.0/74.3/99.6 93.8/94.9/76.2/99.7 87.5/92.8/73.0/99.6
ALL 59.3/55.0/41.3/15.8 72.8/82.6/82.7/97.7 81.8/85.9/84.0/98.1 72.7/79.7/81.2/96.5

4.5 THE DETRIMENTAL EFFECT OF THE SOFTMAX FUNCTION

In this second set of experiments, we compare the performances of the KDE and NN detectors
depending on whether the logit or softmax values are used as inputs. Using both detectors is
interesting as they operate in different conditions. On one hand, the KDE detector operates in an
unsupervised setting (i.e. the OOD and adversarial datasets are not known in advance) and is using
the ”raw” values to fit the distribution. On the other hand, the NN detector represents the best-case
scenario, as it operates in a supervised setting and can extract the most relevant features out of the
inputs for the detection task.

Results of these experiments are summarized in Table 3. Using the logits as inputs instead of softmax
probabilities provides better results in the vast majority of settings, with the only exception of
detecting OOD examples on CIFAR-10 with the KDE solution, for which softmax values obtain
slightly better performances (average AUROC of 76.0% compared to 74.3% for logits). This is
consistent with the results presented in Table 2, as the Softmax Baseline outperformed the KDE
detector for OOD example detection on CIFAR-10. However, the logit version of the NN detector
outperform the softmax version in the same setting (average AUROC of 99.6% compared to 96.8%).
One possible explanation is that ”raw” logits might not be refined enough to separate legitimate and
OOD examples, but extracting features from them fixes this issue to a greater extent than for softmax
probabilities.

Regarding all the other settings, using the logits as input leads to significantly better results. It is
especially true for the KDE detector, for which we observe considerable relative improvements in
average AUROC: +59% on MNIST and +32% on CIFAR-10 for the custom architecture, +72% and
+19% for the Wide Residual Network. Regarding the NN detector, we observe slightly lower relative
improvements: +9% on MNIST and +14% on CIFAR-10 for the custom NN, +12% and +10% for
the Wide Residual Network. However, the FPR at 95% TPR provides intuitive insights about what
these differences in AUROC means. For instance, regarding the custom NN on MNIST for which we
observed a relative improvement of 9% by using logits instead of softmax for the NN detector, the
FPR decreases from 55.1% to 3.3%. Hence, the seperation of legitimate and illegitimate examples
seems to be considerably better for an average AUROC of 99.2% than for an average of 90.2%.

Looking at the detailed results, it appears that it is more detrimental to use softmax probabilities for
detecting adversarial examples than for detecting OOD examples. If we consider the NN detector, the
improvement obtained by using the logits is indeed higher for adversarial than for OOD examples. A
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Table 3: Comparison of detection performances between using the softmax and logits values as input
for both the KDE and NN detectors. For each detector, the best result of each settings is in bold.

EXPERIMENT DATASETS FPR (95% TPR) AUROC AUPR IN AUPR OUT

KDE SOFTMAX/KDE LOGITS NN SOFTMAX/NN LOGITS

CUSTOM NETWORK

MNIST

ADVERSARIAL 67.8/59.0 58.9/6.4 67.3/83.0 86.6/98.4 69.8/85.3 88.9/98.5 66.0/78.6 81.8/98.0
OOD 72.6/24.2 51.4/0.2 45.1/96.4 95.2/99.9 56.5/97.0 97.3/99.9 53.0/95.2 79.6/99.9
ALL 70.2/41.6 55.1/3.3 56.2/89.7 90.9/99.2 63.1/91.2 93.1/99.2 59.5/86.9 80.7/99.0

WR-28-8
MNIST

ADVERSARIAL 66.2/20.3 60.0/3.3 65.3/96.9 80.4/99.3 64.9/97.6 83.5/99.5 67.4/95.8 75.9/98.8
OOD 74.9/3.4 3.6/0.1 48.3/99.1 97.1/99.9 59.6/99.3 97.8/99.9 58.9/98.9 84.5/99.9
ALL 70.6/11.9 31.8/1.7 56.8/98.0 88.7/99.6 62.3/98.4 90.7/99.7 63.2/97.4 80.2/99.4

CUSTOM NETWORK

CIFAR-10

ADVERSARIAL 85.8/36.7 85.3/35.7 49.7/87.7 75.2/94.1 57.3/87.9 79.9/95.0 51.9/85.7 69.2/91.2
OOD 77.7/69.1 26.8/5.4 70.6/71.6 93.6/98.6 72.5/77.8 93.0/98.6 69.1/71.7 94.1/98.7
ALL 81.7/52.9 56.1/20.6 60.1/79.7 84.4/96.4 64.9/82.9 86.5/96.8 60.5/78.7 81.6/95.0

WR-28-8
CIFAR-10

ADVERSARIAL 67.7/33.5 68.7/30.4 62.4/91.2 79.1/95.7 68.3/91.9 81.9/96.6 62.5/89.3 67.3/93.4
OOD 64.8/49.1 14.4/1.2 76.0/74.3 96.8/99.6 77.3/76.2 96.7/99.7 76.6/73.0 96.3/99.6
ALL 66.2/41.3 41.5/15.8 69.2/82.7 87.9/97.7 72.8/84.0 89.3/98.1 69.6/81.2 81.8/96.5

striking result is that for 3 out of the 4 settings, the logits KDE detector obtain better results than the
softmax NN detector on adversarial examples. The only exception is on MNIST with the custom
architecture, where the performances remains reasonably close (83.0% for KDE Logits, 86.6% for
NN Softmax). It is quite remarkable that a logit-based detector with no prior knowledge on the
illegitimate datasets performs overall better than a softmax-based one which has been exposed to
these datasets during training.

Overall, these results show that a significant part of the information that allows the detection of
adversarial and OOD examples is definitely lost once the softmax function is applied, as the results
obtained with softmax probabilities are lower in almost all the considered settings, even with features
tailored specifically for the detection task.

5 CONCLUSION AND PERSPECTIVES

We have shown through a series of experiments that the softmax function hinders the detection of
adversarial and out-of-distribution, as it masks valuable information contained in the logits. We
indeed observed that the normalization operated by the softmax forces the average value to be 1/C
with C the number of classes, although the average logit value is significantly different between
legitimate and illegitimate examples. Other statistics than the average, such as the minimum and
maximum, are also able to differentiate legitimate examples from the others when applied to logits,
but we also saw that this separation is not present to the same extent with softmax probabilities, as
using the exponential function pushes the highest value towards one and the lowest one towards 0.

We also showed quantitatively that this loss of information has a significant impact on detection
performance. Indeed, detection methods that perform at levels competitive with the state of the art
when using logit activations as inputs suffer from a considerable drop in performances when using
softmax probabilities instead. This observation remains true on 2 datasets and 2 architectures, for a
supervised condition where out-of-distribution and adversarial datasets are known in advance and for
an unsupervised one.

These findings raise questions about the role of the softmax function in the lack of robustness observed
in modern NN. We believe that further research on the impact of alternative activation functions can
lead to interesting insights for this issue.
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Figure 3: Scatterplot of the logit and softmax minimum and maximum values for adversarial examples.
Best viewed in color.
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Figure 4: Scatterplot of the logit and softmax minimum and maximum values for OOD examples.
Best viewed in color.
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