
Under review as a conference paper at ICLR 2017

EXPLORING THE APPLICATION OF DEEP LEARNING
FOR SUPERVISED LEARNING PROBLEMS

Jose Rozanec
Universidad de Buenos Aires

Gilad Katz, Eui Chul Richard Shin & Dawn Song
University of California, Berkeley

ABSTRACT

One of the main difficulties in applying deep neural nets (DNNs) to new domains
is the need to explore multiple architectures in order to discover ones that perform
well. We analyze a large set of DNNs across multiple domains and derive insights
regarding their effectiveness. We also analyze the characteristics of various DNNs
and the general effect they may have on performance. Finally, we explore the ap-
plication of meta-learning to the problem of architecture ranking. We demonstrate
that by using topological features and modeling the changes in its weights, biases
and activation functions layers of the initial training steps, we are able to rank
architectures based on their predicted performance. We consider this work to be
a first step in the important and challenging direction of exploring the space of
different neural network architectures.

1 INTRODUCTION

Recent advances in deep neural networks (DNNs) have led to breakthroughs in fields such as image
classification (He et al., 2015; Krizhevsky et al., 2012) and speech recognition (Yu et al., 2010; Dahl
et al., 2012). One reason for the effectiveness of DNNs is their ability to integrate low, mid and high-
level features in a natural way (Zeiler & Fergus, 2014). While recent work such as (Simonyan &
Zisserman, 2014) suggests that in many cases the depth of the architecture is crucial, the emergence
of more complex architectures (He et al., 2015; Szegedy et al., 2015) demonstrates that depth alone
often does not suffice.

While DNNs have been highly effective in several domains, their application in additional fields
is yet to become widespread. We argue that this is the case due to two challenges. The first is
the difficulty of designing effective architectures for domains in which there is little or no previous
knowledge on the application of deep learning. Moreover, since designing DNN architectures is
not intuitive for most people, this task is likely to fall to experts whose time is in high demand.
The second challenge, which is strongly coupled with the first, is the large amounts of computing
power and time required to evaluate multiple DNNs. These traits constrain the number of DNN
architectures that can be evaluated, thus further limiting one’s ability to explore new architectures or
respond to changing circumstances.

In this study we explore the possibility of applying architectures that are effective for one domain to
another. We do so by generating a large number of architectures and evaluate their performance on
multiple tabular datasets in order to determine whether the architectures are transferable. We also
explore the feasibility of architectures with parallel layers and compare their effectiveness to that
of their “linear” counterparts. Our results show that while architectures do not perform well across
multiple datasets, parallel architectures are surprisingly effective.

When attempting to apply DNNs to an unknown domain, one way of approaching the problem
would be to randomly “sample” various architectures and analyze their performance distribution.
The top-performing architectures found in the sampling can form the base for future exploration
while the variance in performance can assist in determining the number of architectures that need to
be sampled. We explore a meta-learning approach that may improve the efficiency of this process by
ranking the architectures based on their expected performance. Our approach models the topology
of the DNN as well as the changes in weights, biases and activation function layers throughout the
initial training steps and uses this information to rank the architectures by their relative performance.
Preliminary results are encouraging.

1

Under review as a conference paper at ICLR 2017

While we consider this study to be an important first step, we feel obliged to point out that work
is done in a limited setting. To enable the generation of multiple DNN architectures with diverse
topologies, we applied uniform and fixed parameters such as layer sizes and learning rates. As a
result, the architecture space we explore is limited. Validating our results on a more diverse set of
architectures with multiple hyperparameter configuration will require additional experimentation.
We plan to address these issues in future work.

Our contributions are as follows:

• We explore DNNs across multiple datasets, evaluate their effectiveness and analyze if some
perform best across datasets.

• We systematically evaluate a large number of architectures over multiple supervised-
classification datasets and derive insights regarding the design and application of DNNs
with parallel layers for general classification problems.

• We present a novel meta learning-based ranking method that utilizes both topological fea-
tures as well as weights, biases and activation function layers of the various components of
the DNN architecture during the initial training phase. To the best of our knowledge, this is
the first time these characteristics have been used in a meta-learning scheme. Preliminary
results of this approach are promising.

2 RELATED WORK

We review two areas of research whose aim is to better understand and improve the performance
of DNN architectures. The first is area of research focuses on the exploration and analysis of DNN
architectures. The second area of research is automatic parameter tuning.

2.1 EXPLORATION AND ANALYSIS OF DNN ARCHITECTURES

Despite their remarkable success in various domains, the inner-workings of DNNs remain to some
degree a “black box”. Multiple studies attempted to provide insight into this matter. In Jarrett et al.
(2009), the authors analyze convolutional neural networks (CNNs) and derive insights regarding the
architecture design and the contribution of its different components. Another work aimed at better
understanding CNNs is presented in Shang et al. (2016). The authors analyze widely used CNN
architectures and derive insights into their possible shortcomings. To address these shortcomings,
they propose a new version of the popular ReLU activation scheme.

The exploration of DNN architectures has also taken place for recurrent neural networks (RNNs).
In Zaremba (2015), the authors explore various modifications to LSTM architectures to improve
their performance, and propose several enhancements to the architecture. Another study Wu & King
(2016) aims to determine the reasons for the effectiveness of LSTMs and identify the contribution
of its different elements. Based on their conclusions, the authors proposed a simplified version of
LSTM.

2.2 AUTOMATIC DNN PARAMETER TUNING

The ability to automatically tune the hyperparameters of a DNN architecture is important not only
because of its ability to improve performance, but also due to the considerable time it can poten-
tially save. In Maclaurin et al. (2015) the authors demonstrate how information extracted from the
stochastic gradient descent can efficiently tune multiple parameters in the architecture. An addi-
tional work that analyzes the gradient is presented in Duvenaud et al. (2016), where the information
is used to determine when to terminate the training of the architecture to avoid over-fitting. A dif-
ferent optimization approach is presented in Mendoza et al., where the authors define a large set
of hyperparameters (batch size, learning rate, activation types, etc.) and apply Bayesian optimiza-
tion on top-performing configurations. The approach is only applied to feed-forward networks and
outperforms human experts by 10%, using the AUC measure.

Additional types of optimization have also been proposed in recent years. In Jin et al. (2016), the
authors focus on setting the size of hidden layers in RNNs. They accomplish this by converting
the optimization problem into a subset selection problem. An important aspect of this approach is

2

Under review as a conference paper at ICLR 2017

that it takes time constraints into account, thus enabling solutions that are feasible given available
resources. Another approach, in which one long-short term memory network (LSTM) is used to
optimize another, was proposed by Andrychowicz et al. (2016). The two networks have shared pa-
rameters but separate hidden states and the optimizer network is both modifying its own weights and
those of the optimized simultaneously. Finally, an approach that automatically adjusts the learning
rates of the neural net was presented in Schaul et al. (2013). The approach has been shown to be
effective both on convex and non-convex learning tasks.

Recent work by Li et al. (2016) proposes an exploration/exploitation scheme for hyperparameter
tuning. The authors apply a multi-arm bandits algorithm, with each arm representing a parameter
configuration. A process of successive halving (Jamieson & Talwalkar, 2015), in which a certain
percentage of the lowest-performing configurations are dropped every n steps enables the framework
to explore promising directions. We consider this approach complementary to our proposed meta-
learning approach, as the former enables exploration of a large number of configurations while the
latter can reduce time required to assess their performance.

3 PROBLEM DEFINITION

As mentioned in Section 1, one of the challenges in applying deep learning to a new field is the need
to design and test multiple DNN architectures. Only by iterative testing can practitioners discover
the capabilities and limitations of deep learning in the domain. Even with ever-increasing computing
power, the high computational cost of this process currently presents a significant barrier for most
practitioners.

This limitation leads us to explore the following questions:

1. Would DNN architectures that perform well on one general supervised classification prob-
lem also be effective when applied to dataset in other domains?

2. What types of architectures are effective for general supervised learning problems? Should
practitioners consider other types architectures besides “deep”?

3. Can DNN architectures outperform “conventional” machine learning classifiers in general
supervised problems?

4. Is it possible to identify top-performing networks in the early stages of the training? if
possible, such a technique could preserve valuable computing resources.

We attempt to begin addressing these questions in the subsequent sections of this study. We itera-
tively evaluate a large number of DNN architectures on a set of supervised classification problems.
These datasets differ from those of image and speech classification in that they consist of tabular
data with both numeric and discrete features. These differences make it unclear what types of archi-
tectures are likely to perform well on these domains. The datasets we analyze were selected because
of their diversity in terms of size and feature number and composition. These traits also enable us to
better understand the difficulties in applying DNN architectures across multiple domains.

In order to provide meaningful results, the set of architectures we evaluate is also diverse. We
therefore automatically generate a diverse set of architecture with various topological traits. Because
little information is available on the application of deep learning to general supervised classification
problems, we choose to explore not only architectures that are linear but also architectures with
parallel layers. While the generate set is diverse, additional work is required in order to model
additional types of architectures. We elaborate on these points further in the subsequent section.

4 GENERATING MULTIPLE DNN ARCHITECTURES

In order to effectively explore the architecture space, we require a large and diverse set. We create
this set by automatically generating a large number of architectures and training each of them on all
training set datasets. Our generation algorithm, presented in Algorithm 1, generates both “deep” and
“wide” architectures with parallel layers (see Figure 1(b)). Next we describe the generation process.

We consider DNN architectures to consist of components. We define a component as any part
of an architecture, be it a layer, normalization or activation function. In this study we consider

3

Under review as a conference paper at ICLR 2017

Input

Hidden Layer 2

Hidden Layer 1

Output

Input

Output

Hidden Layer 1Hidden Layer 3

Concat

Original (a) (b)

Input

Hidden Layer 2

Hidden Layer 1

Output

Hidden Layer 3

Hidden Layer 2

Figure 1: An example of the architectures that can be derived from an existing one.

the following components: fully-connected layers, softmax, batch normalization, dropout and the
ReLU, sigmoid and tanh activation functions.

We begin the generation process with a “basic” architecture consisting only of two components:
a fully-connected input layer and an output softmax layer. We then expand the set of possible
architectures by iteratively applying the following steps:

1. For each pair of components in the architecture, identify all component that could be in-
serted between them (Figure 1(a)).

2. For each pair of components in the architecture, identify all component that could be in-
serted in parallel to one of them (Figure 1(b)).

3. For each of the components identified in the previous steps, generate a new copy of the
architecture and perform the corresponding insertion.

Our proposed architecture generation approach enables us to generate the topological representation
of every possible neural networks that consist of the predefined components. However, we do not
generate multiple hyperparameter configurations for each topology and use fixed parameters for
each component. We plan to address this limitation in future work, possibly by using an approach
similar to the one presented in Li et al. (2016). It is also important to point out that we currently do
not support weight-sharing and therefore do not consider CNN and RNN architectures. Given the
characteristics of the analyzed data, we do not consider these architecture types likely to produce
meaningful results.

Another important aspect of the our architecture generation approach is that we generate architec-
tures with connections between layers of various depths. An example of this is shown in Figure 1(b),
where we connect layers of depths 1 and 2. This setting enables us to systematically explore more
complex designs than those commonly used. We analyze these architectures further in Section 6.

As the number of possible architectures grows exponentially, we limit the total number of architec-
tures that we generate by constraining the maximal number of components in a architecture and the
number of parallel layers an architecture may contain. The specific settings used in our experiments
are presented in Section 6.1. These settings were chosen in order to ensure a diverse set of both deep
and wide architectures given the time and computing-power constraints, and we plan to change them
in future work to further diversify the set of generated architectures. To select the architectures from
which additional ones will be generated, we apply a priority queue. We first sort the architectures by
the number of their activation layers (in a descending order) with a secondary sorting based on the
total number of components (in an ascending order). This setting prioritizes the creation of deeper
architectures with multiple activation layers. For each architecture in the final set, we generate the

4

Under review as a conference paper at ICLR 2017

meta-features described in Section 5. The algorithm for the architecture generation is presented in
Algorithm 1.

Algorithm 1 Automatic architecture generation
1: procedure ARCHITECTUREGENERATION(arcQueue, initArc)
2: architecturesSet← initArc
3: architecturesQueue← initArc
4: while (architecturesQueue 6= ∅) do
5: newarchitectures← ∅
6: architecture← arcQueue.pop()
7: for each P (ci, cj)i 6= j ∈ {c1, c2, ..., cn} do
8: candidateComponents← proposeInsertBetweenCandidates(P (ci, cj))
9: for each candidate ∈ candidateComponents do

10: newarchitecture← insertBetween(architecture, P (ci, cj), candidate)
11: newarchitectures← newarchitectures ∪ newarchitecture
12: candidateComponents← proposeInsertAsideCandidates(P (ci, cj))
13: for each candidate ∈ candidateComponents do
14: newarchitecture← insertAside(architecture, P (ci, cj), candidate)
15: newarchitectures← newarchitectures ∪ newarchitecture
16: newarchitectures← filter(newarchitectures)
17: arcQueue← arcQueue ∪ newarchitectures
18: architecturesSet← architecturesSet ∪ newarchitectures
19: return architecturesSet

5 META-LEARNING FOR ARCHITECTURE RANKING

Our goal is to determine whether by analyzing the topology of DNN architecture as well as the
transformations it undergoes in its early training iterations could be used to predict its performance.
To this end we develop a novel machine learning-based approach that generates a set of features
for each analyzed architecture. Once the features are generated, we use a ranking classifier to as-
sign a score to each architecture. The classifier is trained on a large corpus of datasets (additional
information is provided in Section 6.1).

We apply meta-learning (Vilalta & Drissi, 2002) to predict the performance of the DNN architec-
tures. Meta-learning is a branch of machine learning in which an algorithm “learns how to learn” by
extracting information on the learning process of another algorithm. The features extracted in this
process are called meta-features. We generate three types of meta-features: dataset-based, topology-
based and training-based. We hypothesize that these groups represent the elements that affect the
performance of the DNN architecture - the data on which it is trained, the structure of the network
and the changes in its weights, biases and activation functions during throughout the training pro-
cess. We provide a full overview of the meta-features groups below and detailed information in
Appendix A .

Dataset-based meta-features. As explained in Section 3, the datasets we use in the evaluation
vary significantly in size and feature composition. These meta-features attempt to represent the
multiple characteristics that may affect the performance of deep learning algorithms. We generate
three types of meta-features:

1. General information: general statistics on the analyzed dataset: number of instances and
classes, number and type of features and statistics on the correlations among various fea-
tures.

2. Entropy-based measures: we partition the dataset’s features based on their type (discrete,
numeric, etc.) and calculate statistics on the Information Gain (IG) of the features in each
group.

3. Feature diversity: we partition the dataset into type-based groups and use the chi-squared
and paired-t test to calculate the similarity of each pair in each group. We then generate
meta-features using the tests’ statistic values.

5

Under review as a conference paper at ICLR 2017

Topology-based meta-features. Our generated architectures vary significantly in size, depth and
width. Since these traits are likely to affect their performance, we use the meta-features of this group
to quantify and model them. The meta-features can be partitioned into two groups:

1. Architecture composition: general statistics on the number and types of layers and func-
tions that make up the architecture, statistics on layer composition as a function of depth
etc.

2. Connectivity-based measures: for each layer in the architectures, we calculate various
measures that are frequently used for graph-analysis. These measures include statistics on
the number and ratio of incoming and outgoing edges (overall, per depth and per type) and
node-centrality evaluation measures.

Training-based meta-features. The goal of these meta-features is to model the transformations
undergone by the DNN during the course of its training. These meta-features consist of statistics
on the weights, biases and activation function layers of the various components in the architecture.
These meta-features can be partitioned into two groups:

1. Static evaluation: general statistics on the distribution of the various values across differ-
ent depths and layer types. These features provide “snapshot” information on the training
status of the architecture in multiple training steps.

2. Time series-based evaluation: We compare the values obtained in the various training
iterations to those obtained earlier, calculate ratios and modeling the changes in values
distribution over time.

A full description of all meta-features is provided in Appendix A.

6 EXPERIMENTS AND ANALYSIS

6.1 EXPERIMENTAL SETUP

We conduct our experiments on 13 supervised classification datasets in a tabular form. We se-
lected these datasets since they represent common supervised-learning problems that are not often
addressed by deep learning. In addition, their feature composition consists of both numeric and dis-
crete features, a trait that makes them different from image and speech classification datasets. The
datasets vary significantly in size, number and type of features (some contain only numerical features
while others also contain discrete features) and class imbalance - traits we hypothesize will make
learning across domains more challenging. All datasets are available on the OpenML repository and
their properties are represented in Appendix B.

We use the following settings:

• For each dataset, we train the same set of 11,170 architectures, generated as described in
Section 4. The maximal width (number of parallel layers) allowed for an architecture was
set to 4, and we terminated the generation process upon reaching the predefined number
of architectures. This deepest architectures generated by this approach have 8 activation
layers and 14 components overall.

• For architectures training, all datasets were randomly partitioned into training, validation
and test sets. 80% of the data points was used by the training and the remaining two sets
assigned 10% each. The same split was used for all the architectures explored for each
dataset. Original class ratios were maintained in all sets.

• All generated architectures were trained until convergence, with the time of termination
determined by performance on the validation set.

• The training-based meta-features were only extracted for the following steps: 20, 40, 60,
80 and 100.

• We used a leave-one-out (LOO) cross-validation approach to train the ranking classifier:
for each evaluated dataset di, we train the ranking classifier using the meta-features from
dj ∈ D where i 6= j. This setting enables to test whether a meta-model trained on one
dataset could be effectively applied on another.

6

Under review as a conference paper at ICLR 2017

• We randomly split the generated architectures into two groups. The first group, consisting
of 70% of the architectures, is used for training. We use the remaining 30% to evaluate the
performance of our approach on each dataset.

6.2 ANALYSIS

We begin by analyzing the accuracy distribution of the generated architectures across the datasets.
We found that the distribution of accuracies varies significantly across the different datasets, with
some datasets with ranges of [45%-90%] accuracy while others are in the range [89%-95%]. This
difference has significant impact on one’s ability to apply architectures that are effective in one
domain to another, as we confirm with the next experiment. An example of accuracies distributions
is presented in figures 2 and 3 and plots for all datasets are presented in Appendix D.

Figure 2: Accuracies plot for the dataset
Ailerons

Figure 3: Accuracies plot for the dataset Con-
traceptive

Analyzing the performance differences of “parent–child” architectures. In order to determine
whether our architecture generation method is effective, we analyzed the differences in accuracy
between every architecture and its descendant. Our reason for performing this analysis is as fol-
lows: if making incremental additions to an existing architecture does not significantly change its
performance, then we simply generate a large number of architecture which are nearly identical in
performance.

The results of our analysis are presented in Table 1. For every ”parent–child“ pair we calculate
the difference in accuracy on the test set. We then calculate the maximal and average changes in
accuracy for each dataset. It is clear from the results that the changes in accuracy are significant,
especially given the fact that changes are accumulated over time (deeper architectures are a result of
multiple modifications).

Next we analyze the “parent–child” architectures with the maximal differences in order to determine
whether the addition of particular component is most likely to induce large changes in accuracy. Our
results, presented in Table 2, show that no one component type can be consistently attributed with
inducing large changes.

Applying architectures across datasets. We attempt to determine whether it is possible to find
architectures that perform well across multiple datasets. For each of the generated architectures, we
calculate its performance-based ranking (i.e. position in a list ordered by the accuracy measure) on
each of the datasets. Then, for each dataset we test the performance of the architecture with the
best average ranking on the remaining datasets. We compare the performance of this architecture to
that of the best evaluated architecture and to that of the best architecture found by our meta-learning
model (described in the following section). The results, presented in Table 3, show significant
differences in performance and lead us to conclude that in most cases DNN architectures do not
perform well across multiple datasets.

7

Under review as a conference paper at ICLR 2017

Table 1: Analyzing the differences in accuracy for the different architecture parent–child pairs for
each dataset.

Dataset Max difference Average difference
Contraceptive 5% 1.8%
Seismic bumps 4.9% 1.1%
Page Blocks 7.4% 1.4%
Wind 35% 3.2%
Puma 32 19.2% 1.8%
CPU act 40% 3.3%
Delta elevators 39.5% 2.7%
Mammography 3% 1.1%
Ailerons 17.4% 5.7%
Bank marketing 3.5% 0.8%
German Credit 5% 1%
Space 11.5% 2.5%
Cardiography 11.5% 1%

Table 2: Analyzing the differences in accuracy for the different architecture parent–child pairs for
each dataset.

Component type Number of appearances
Dropout 2
Sigmoid 3
TanH 2
Fully connected 2
ReLU 1
Batchnorm 3

Comparing the performance of DNN architectures to those of “conventional classifiers”. As
a point of reference to “classical” machine learning approaches for classifying tabular data, in Table
3 we also presents the performance of the Random Forest algorithm (using the Weka Hall et al.
(2009) implementation with the default parameters). It is clear that neither Random Forest nor the
DNN architectures consistently outperform the other. We intend to explore the factors that cause
these differences in performance in future work.

Table 3: Comparison of the accuracy performance of the best average-ranking architectures to the
top-ranking architecture found by our approach for each dataset.

Dataset Best architecture Top ranked (best
found by model)

Architecture with best
average ranking

Random Forest

Contraceptive 84.5% 84% 79.7% 76.4%
Seismic bumps 95% 94.1% 92.1% 93.4%
Page Blocks 97% 95.2% 89.6% 97.9%
Wind 88% 84.3% 54% 86.5%
Puma 32 70% 67% 50.7% 88.1%
CPU act 91% 87.7% 70% 93.7%
Delta elevators 90% 88.7% 79.2% 87.7%
Mammography 99% 98.9% 97% 98.8%
Ailerons 89% 86.2% 59% 88.6%
Bank marketing 96% 95% 94% 90.5%
German Credit 77.1% 73.6% 68.2% 76.9%
Space 69.6% 66.8% 56.5% 84%
Cardiography 94.5% 93.7 86.4% 95.5%

Analyzing the performance of architectures with parallel layers. Next we explore whether
architectures with parallel layers outperform similar non-parallel architectures. We analyze the 100
top-performing architectures of each dataset and calculate the percentage of architectures with par-
allel layers. The results, presented in Appendix C, show that this type of architecture consists on
average of 62% of the top-performing architectures.

8

Under review as a conference paper at ICLR 2017

To determine whether the benefit of applying parallel layers is significant, we randomly choose one
of our datasets (Ailerons) and identify the 100 top-performing architectures with parallel layers.
From this set we randomly sample 10 architectures and compare the performance of each of them
to those of all of their possible serial counterparts, created by iteratively removing all but one of
the different parallel layers. Our results, presented in Table 4, show that architectures with parallel
layers significantly outperform all of their serial counterparts.

Considering the same sample of parallel architectures, we analyze whether architectures perfor-
mance can be improved by adding a batch normalization before, after or before and after each
activation function. As shown by the results in Table 4, we did not find evidence that the addition
of batch normalization improves the performance of architectures with parallel layers. We find this
fact surprising and intend to explore this further in future work. An example of one of the parallel
architectures is presented in Figure 4 in Appendix C.

Finally, we also analyze the component composition of the 100 top-performing architectures for
each dataset. The most interesting conclusion found in this analysis is the fact that a relatively
shallow architectures (4 fully-connected layers) seem to yield the best performance on average for
all datasets. The full analysis of the architecture components is presented in Table 12 in Appendix
C.

Table 4: Comparison of the performance of parallel architectures to their serial counterparts.
Parallel Ar-
chitectures

Serial
versions

Parallel with
batchnorm –
before

Parallel with
batchnorm –
after

Parallel with
batchnorm –
before & after)

Average 87.6% 71.8% 70.4% 77.4% 76.5%
Standard Deviation 0.39% 7.8% 9.9% 4.2% 3.6%

6.3 EVALUATING THE META-LEARNING APPRAOCH

We analyze the performance of our meta-learning model as a classifier to rank architectures based
on their performance. For these experiments, we use the following settings:

• We define the 5% of the top-performing architectures of each dataset as “good” and label
the remaining as “bad”. We use this setting due to the large variance in the performance of
the DNN architectures on the different datasets (see Appendix D for full details). We also
intend to experiment with other labeling methods in future work.

• We use the precision@X measure as the evaluation metric. We calculate it by ranking all
architectures according with the confidence of the meta-classifier (i.e. the classifier trained
on the meta-features) in them being “good”. Then, for the X top-ranking architectures we
calculate the actual percentage of “good” architectures is X .

• We conduct a separate evaluation on the training-based meta-features and the dataset-based
and topological meta-features. Since the training-based features are more computationally
expensive to compute, we find it interesting to compare their performance to the other
types of meta-features. In our experiments we denote the full set as MLfull, the training-
based meta-features as MLtrain and the topological and dataset-based meta-features as
MLdata+top.

• We use the Random Forest algorithm for the training of the meta-model.

The results of our evaluation are presented in Table 5. We show that we are able to identify multiple
architectures in the top-ranking spots in a much higher ratio than their share of the population. It is
also clear that the joint set of all meta-features outperforms both of the examined subsets.

Next we conduct a random sampling over architectures, and compare the performance of the sam-
pled architectures to those obtained by ranking all architectures using the proposed meta-classifier.
Our goal is to determine the probability that N randomly-sampled architectures will consist of at
least one architecture that outperforms all the top M items ranked by the meta-classifier. We conduct
the experiment as follows: for each dataset, we randomly sample a fixed number of architectures
and identify the one with the highest performance among those sampled. We then check if this

9

Under review as a conference paper at ICLR 2017

architecture outperforms all those in the ranked list provided by the meta-learning model. We re-
peat this process 50,000 for each dataset and calculate the probability of this scenario. The results,
presented in Table 6, show that our model outperforms random sampling for all datasets, often by a
large margin. However, further experimentation is required to fully determine the effectiveness of
the meta-learning approach.

Finally, we analyze the results in order to determine the effectiveness of the different meta-features
used by our model. The analysis was carried out by running LASSO logistic regression and analyz-
ing the weights assigned to the various meta-features. Based on this analysis we reach the following
conclusions:

• The dataset-based meta-features had the smallest contribution to the performance. While
it is somewhat surprising given the fact that DNNs perform very differently on dataset
with different characteristics, we conclude that the model is focused on the way in the
architecture is trained on the data (i.e. weights and activations).

• The topological meta-features that had the largest contribution were those modeling the
depth of the network, the number of parallel layers and those counting the number of vari-
ous components.

• The ranking model uses a large number of training-based meta-features and from all types
described in Appendix A. However, the model includes only weight and activation-based
meta-features among the training-based meta-features. The biases-based meta-features are
almost never used.

Table 5: The evaluation results of different approaches using the precision@X metric. full, train
and d + t denote MLfull (all meta-features), MLtrain (training-based meta-features only) and
MLdata+top (dataset-based and topological meta-features) respectively. Best results are in bold.

Dataset precision@5 precision@10 precision@20 precision@50
full train d+ t full train d+ t full train d+ t full train d+ t

Contraceptive 20% 20% 0% 20% 10% 20% 20% 5% 15% 20% 10% 8%
Seismic Bumps 20% 40% 20% 20% 20% 10% 25% 20% 15% 12% 16% 12%
Page Blocks 40% 20% 0% 30% 20% 0% 20% 15% 0% 16% 14% 14%
Wind 40% 0% 40% 20% 20% 30% 10% 15% 25% 12% 16% 20%
Puma32 20% 20% 0% 10% 20% 20% 15% 20% 10% 16% 10% 10%
CPU Act 40% 20% 20% 30% 20% 20% 30% 15% 10% 22% 12% 16%
Delta Elevators 20% 20% 20% 20% 20% 10% 15% 25% 20% 20% 20% 12%
Mammography 20% 0% 0% 20% 20% 0% 20% 15% 5% 20% 10% 12%
Ailerons 40% 40% 40% 30% 30% 20% 30% 20% 20% 28% 22% 26%
Bank Marketing 20% 0% 20% 30% 10% 20% 20% 10% 10% 10% 14% 10%
German Credit 40% 20% 20% 40% 10% 10% 20% 10% 10% 14% 10% 10%
Space 20% 0% 0% 10% 10% 0% 15% 10% 10% 18% 14% 10%
Cardiography 20% 0% 20% 20% 10% 10% 20% 15% 20% 18% 14% 16%

7 CONCLUSIONS AND FUTURE WORK

In this study we have explored several aspects of applying DNNs to supervised classification prob-
lems. Our results demonstrate the difficulty in using DNN architectures that are effective in one
domain to another. We also systematically compare the performance of architectures with parallel
layers to those of similar linear architectures and demonstrate that the former outperforms the latter
in many cases. We present a novel approach for predicting the performance of a DNN architecture
by analyzing its topology and the changes in its weights, biases and activation function values during
early phases of training. Our aim is that this work can lay the foundation for a better understanding
of the DNN architectures space.

For future work we consider several directions. First, we plan to add additional components to the
ones currently used in our automatic architecture generation method in order to enable further ex-
ploration. In addition, we will seek to enhance our approach adding automatic parameter tuning
methods. This will enable us to efficiently explore multiple configurations and possibly identify
higher-performing architectures. We are also considering the use of an exploration/exploitation

10

Under review as a conference paper at ICLR 2017

Table 6: The probabilities of finding an architecture that outperforms all those in the ranked list when
randomly sampling a set of architectures. The size of the ranked list by our algorithm is always 10
(i.e. for sample size 20 we test a set two times the size of the ranked list.)

Dataset Sample size - 10 Sample size - 20
Contraceptive 1.7% 3.2%
Seismic bumps 11.5 22%
Page Blocks 14.8% 27.7%
Wind 24.3% 41.5%
Puma 32 20.7% 36.5%
CPU act 3.4% 6.7%
Delta elevators 33.3% 55.5%
Mammography 7.5% 14.3%
Ailerons 13.9% 25.5%
Bank marketing 5.6% 10.4%
German Credit 11.9% 22.9%
Space 20.2% 36.3%
Cardiography 5.6% 11.2%

scheme along the lines presented in Li et al. (2016) to enable us to efficiently explore larger archi-
tecture spaces.

Another approach we plan to explore is to make the search over network architectures a fully-
differentiable problem, by encoding the problem only using mechanisms that enable such a search.
As an example, let us imagine that we want to decide the best number of internal hidden layers to
use in a multi-layer fully-connected neural net. For this, we could create multiple parallel stacks
of layers with the same input at the bottom (e.g. the features for each data point) and the same
kind of output at the end (e.g. probabilities over the possible classes) and then use a softmax to
take a weighted sum of the outputs from each of the parallel stacks. By using a penalty on the
negative entropy of this weighted sum, and increasing the penalty over time, the network should
learn to produce the output using only one of the parallel stacks which we can then use at inference
time. We can also train multiple models simultaneously using this method, and introduce additional
penalties to ensure that the multiple models explore different architectures during training, to enable
a more diverse search.

11

Under review as a conference paper at ICLR 2017

REFERENCES

Marcin Andrychowicz, Misha Denil, Sergio Gomez, Matthew W Hoffman, David Pfau, Tom Schaul,
and Nando de Freitas. Learning to learn by gradient descent by gradient descent. arXiv preprint
arXiv:1606.04474, 2016.

George E Dahl, Dong Yu, Li Deng, and Alex Acero. Context-dependent pre-trained deep neural
networks for large-vocabulary speech recognition. IEEE Transactions on Audio, Speech, and
Language Processing, 20(1):30–42, 2012.

David Duvenaud, Dougal Maclaurin, and Ryan P Adams. Early stopping as nonparametric varia-
tional inference. In Proceedings of the 19th International Conference on Artificial Intelligence
and Statistics, pp. 1070–1077, 2016.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reutemann, and Ian H Witten.
The weka data mining software: an update. ACM SIGKDD explorations newsletter, 11(1):10–18,
2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. arXiv preprint arXiv:1512.03385, 2015.

Kevin Jamieson and Ameet Talwalkar. Non-stochastic best arm identification and hyperparameter
optimization. Preprint available a t, 2015.

Kevin Jarrett, Koray Kavukcuoglu, Yann Lecun, et al. What is the best multi-stage architecture
for object recognition? In 2009 IEEE 12th International Conference on Computer Vision, pp.
2146–2153. IEEE, 2009.

Junqi Jin, Ziang Yan, Kun Fu, Nan Jiang, and Changshui Zhang. Optimizing recurrent neural
networks architectures under time constraints. arXiv preprint arXiv:1608.07892, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Ef-
ficient hyperparameter optimization and infinitely many armed bandits. arXiv preprint
arXiv:1603.06560, 2016.

Dougal Maclaurin, David Duvenaud, and Ryan P Adams. Gradient-based hyperparameter optimiza-
tion through reversible learning. In Proceedings of the 32nd International Conference on Machine
Learning, 2015.

Hector Mendoza, Aaron Klein, Matthias Feurer, Jost Tobias Springenberg, and Frank Hutter. To-
wards automatically-tuned neural networks.

Tom Schaul, Sixin Zhang, and Yann LeCun. No more pesky learning rates. ICML (3), 28:343–351,
2013.

Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee. Understanding and im-
proving convolutional neural networks via concatenated rectified linear units. arXiv preprint
arXiv:1603.05201, 2016.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9, 2015.

Ricardo Vilalta and Youssef Drissi. A perspective view and survey of meta-learning. Artificial
Intelligence Review, 18(2):77–95, 2002.

12

Under review as a conference paper at ICLR 2017

Zhizheng Wu and Simon King. Investigating gated recurrent networks for speech synthesis. In
2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp.
5140–5144. IEEE, 2016.

Dong Yu, Li Deng, and George Dahl. Roles of pre-training and fine-tuning in context-dependent
dbn-hmms for real-world speech recognition. In Proc. NIPS Workshop on Deep Learning and
Unsupervised Feature Learning, 2010.

Wojciech Zaremba. An empirical exploration of recurrent network architectures. 2015.

Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional networks. In
European Conference on Computer Vision, pp. 818–833. Springer, 2014.

A THE META-FEATURES USED BY OUR APPROACH

We extract three types of meta-features for the training: dataset-based, topological and training-
based. We now provide a complete description of the features used. Note that because calculate the
meta-features in Table 9 three times: for the weights, biases and activation functions.

Table 7: Description of the dataset-based meta-features used by our approach.
Features Name Description
numOfInstances The number of instances in the dataset.
numOfClasses The number of classes in the dataset.
numOfFeatures The number of features in the dataset.
numOfNumericFeatures The number of numeric (continuous) features in the dataset.
numOfDiscreteFeatures The number of discrete (non-numeric) features in the dataset.
ratioNumericFeatures The percentage of the numeric features of all features.
ratioDiscreteFeatures The percentage of the discrete features of all features.
{max,min, avg, stdev}DiscFeatVals Statistics on the number of possible values for a discrete feature.
{max,min, avg, stdev}IGVal For every feature we calculate the information gain. We then

generate statistics on the set of values.
{max,min, avg, stdev}NumericIGVal Same as the previous meta-feature, but calculated only for nu-

meric features.
{max,min, avg, stdev}DiscreteIGVal Same as the previous meta-feature, but calculated only for dis-

crete features.
{max,min, avg, stdev}PairedTT For every pair of numeric features we calculate the statistic of a

paired-t test. We then generate statistics on the values.
{max,min, avg, stdev}ChiSquareAll For every pair of features we calculate the statistic of a Chi-

Square test. We then generate statistics on the values.
{max,min, avg, stdev}ChiSquareDisc For every pair of discrete features we calculate the statistic of a

Chi-Square test. We then generate statistics on the values.

13

Under review as a conference paper at ICLR 2017

Table 8: Description of the topological meta-features used by our approach.
Features Name Description
numOfVertices The number of vertices in the architecture
numOfEdges The number of edges in the architecture
{max,min,avg,stdev}IncomingEdges Statistics on the number of incoming edges, calculated over all

components.
{max,min,avg,stdev}OutgoingEdges Statistics on the number of outgoing edges, calculated over all

components.
{max,min,avg,stdev}DepthsPerVertex Because of the parallel layers, a vertex may have multiple

depths. We calculate statistics on these values across all com-
ponents.

{max,min,avg,stdev}VerticesPerDepth For each depth in the architecture, we count the number of com-
ponents that are in the said depth. We then calculate statistics
across all depths.

{max,min,avg,stdev}Betweenness For every component in the architecture, we calculate its be-
tweenness centrality measure. We then calculate statistics
across all components.

{max,min,avg,stdev}BetweennessNorm Same as the previous set of meta-features, but the betweenness
values are normalized.

{num,ratio}MaxPool The number of MaxPool Layers in the architecture and their
ratio of the overall number of components.

{num,ratio}Concat The number of Concatination layers in the architecture and their
ratio of the overall number of components.

{max,min,avg,stdev}FCSize Statistics on the size of the fully-connected layers in the archi-
tecture.

14

Under review as a conference paper at ICLR 2017

Table 9: Description of the training-based meta-features used by our approach.
Features Name Description
{max,min,avg,stdev}GlobalMax For every component, get the maximal value of the analyzed

trait. We then calculate statistics for all components
{max,min,avg,stdev}GlobalMaxRatio For each meta-feature in the previous line, divide its value in

the value of same meta-feature calculated at initialization
{max,min,avg,stdev}GlobalMin For every component, get the minimal value of the analyzed

trait. We then calculate statistics for all components
{max,min,avg,stdev}GlobalMinRatio For each meta-feature in the previous line, divide its value in

the value of same meta-feature calculated at initialization
{max,min,avg,stdev}GlobalAvg For every component, get the average of the values of the an-

alyzed trait. We then calculate statistics for all components
{max,min,avg,stdev}GlobalAvgRatio For each meta-feature in the previous line, divide its value in

the value of same meta-feature calculated at initialization
{max,min,avg,stdev}GlobelStdev For every component, get the standard deviation of the val-

ues of the analyzed trait. We then calculate statistics for all
components

{max,min,avg,stdev}GlobalStdevRatio For each meta-feature in the previous line, divide its value in
the value of same meta-feature calculated at initialization

{max,min,avg,stdev}ByTypeMax For each type of components, get the maximal value of the
analyzed trait. We generate separate meta-features for each
component type (i.e. multiple sets of features are generated).

{max,min,avg,stdev}ByTypeMaxRatio For each meta-feature in the previous line, divide its value in
the value of same meta-feature calculated at initialization

{max,min,avg,stdev}ByTypeMin For each type of components, get the minimal value of the an-
alyzed trait. We generate separate meta-features (i.e. multiple
sets of features are generated).

{max,min,avg,stdev}ByTypeMinRatio For each meta-feature in the previous line, divide its value in
the value of same meta-feature calculated at initialization

{max,min,avg,stdev}ByTypeAvg For each type of components, get the average of values of the
analyzed trait. We generate separate meta-features (i.e. multi-
ple sets of features are generated).

{max,min,avg,stdev}ByTypeAvgRatio For each meta-feature in the previous line, divide its value in
the value of same meta-feature calculated at initialization

{max,min,avg,stdev}ByTypeStdev For each type of components, get the standard deviation of
the values of the analyzed trait. We generate separate meta-
features (i.e. multiple sets of features are generated).

{max,min,avg,stdev}ByTypeStdevRatio For each meta-feature in the previous line, divide its value in
the value of same meta-feature calculated at initialization

{max,min,avg,stdev}ByDepthMax For all components at a given depth, identify the maximal
value. Then, generate the statistics across all depths.

{max,min,avg,stdev}ByDepthMaxRatio For each meta-feature in the previous line, divide its value in
the value of same meta-feature calculated at initialization

{max,min,avg,stdev}ByDepthMin For all components at a given depth, identify the minimal
value. Then, generate the statistics across all depths.

{max,min,avg,stdev}ByDepthMinRatio For each meta-feature in the previous line, divide its value in
the value of same meta-feature calculated at initialization

{max,min,avg,stdev}ByDepthAvg For all components at a given depth, identify the average
value. Then, generate the statistics across all depths.

{max,min,avg,stdev}ByDepthAvgRatio For each meta-feature in the previous line, divide its value in
the value of same meta-feature calculated at initialization

{max,min,avg,stdev}ByDepthStdev For all components at a given depth, identify the standard de-
viation value. Then, generate the statistics across all depths.

{max,min,avg,stdev}ByDepthStdevRatio For each meta-feature in the previous line, divide its value in
the value of same meta-feature calculated at initialization

15

Under review as a conference paper at ICLR 2017

B FULL INFORMATION ON THE DATASETS USED IN THE EVALUATION

Table 10: The characteristics of the datasets used in the experiments
Name Num of Data

Points
% of Minority
Class

Num of Features % of Numeric Fea-
tures

German Credit 1,000 30% 20 30%
Contraceptive 1,473 22.6% 9 66.6%
Cardiography 2,126 22.1% 22 100%
Seismic bumps 2,584 6.5% 18 77%
Space 3,107 49.5% 6 100%
Page Blocks 5,473 9.3% 10 100%
Wind 6,574 46.7% 14 100%
Puma 32 8,192 49.6% 32 100%
CPU act 8,192 30.2% 21 100%
Delta elevators 9,517 49.7% 6 100%
Mammography 11,183 2.3% 6 100%
Ailerons 13,750 42.3% 40 100%
Bank marketing 45211 11.6% 16 43.75%

C ANALYSIS OF THE PERFORMANCE PARALLEL LAYERS

For each dataset, we analyze the 100 top-performing architectures and determine the percentage of
architectures with parallel layers. The results, presented in Table 11, show that the percentage is
significant. In table 12 we analyze the component composition of these architectures. The most
interesting point (in our view) is that the number of fully-connected layers is about half of the
possible maximum. We take this as an indication that the creation of very deep DNNs may not be
required for tabular datasets of the type analyzed in this work. In Figure 4 we present an example of
an architecture with parallel layers that was among the 100 top-performing on the Ailerons dataset.

Table 11: The percentage of architectures with parallel layers in the 100 top-performing architectures
for each dataset.

Dataset % of architectures with parallel layers
Contraceptive 61%
Seismic bumps 60%
Page Blocks 65%
Wind 61%
Puma 32 59%
CPU act 64%
Delta elevators 73%
Mammography 61%
Ailerons 61%
Bank marketing 62%
German Credit 59%
Space 49.6%
Cardiography 64%
Average 61%

16

Under review as a conference paper at ICLR 2017

Table 12: The average number of component types per architecture for 100 top-performing archi-
tectures of each dataset.

Dataset Concat FC BatchnormDropout ReLU Sigmoid Tanh Softmax
Contraceptive 0.53 3.54 2.57 0.91 1.71 0.51 0.43 1
Seismic bumps 0.47 3.53 1.75 1.62 1.68 0.64 0.48 1
Page Blocks 0.67 3.46 1.59 0.35 1.22 0.56 0.6 1
Wind 0.57 3.65 2.47 0.3 1.67 0.34 0.52 1
Puma 32 0.55 3.56 1.84 0.94 1.6 0.46 0.57 1
CPU act 0.65 3.95 3.23 0.2 1.91 0.3 0.63 1
Delta elevators 0.64 3.4 1.81 0.49 1.34 0.38 0.59 1
Mammography 0.69 3.6 3 0.22 1.63 0.36 0.49 1
Ailerons 0.62 3.68 2.34 0.69 1.58 0.39 0.55 1
Bank marketing 0.52 3.41 2.23 1.19 1.82 0.53 0.35 1
German Credit 0.5 3.66 2.39 1.1 2 0.42 0.31 1
Space 0.63 3.8 3.32 0.28 2.29 0.35 0.35 1
Cardiography 0.55 3.61 3.29 0.1 2.34 0.26 0.35 1

Input

Batchnorm

Fully
Connected

Output

ReLU

Fully
Connected

Sigmoid

ReLU

Concat

Dropout

Fully
Connected

Figure 4: An example of an architecture with parallel layers.

17

Under review as a conference paper at ICLR 2017

D ACCURACY DISTRIBUTION OF THE GENERATED ARCHITECTURES ACROSS
THE EVALUATED DATASETS

Figure 5: Ailerons Figure 6: Contraceptive

Figure 7: Delta elevators Figure 8: Page blocks

Figure 9: Seismic bumps Figure 10: Bank marketing

18

Under review as a conference paper at ICLR 2017

Figure 11: CPU Figure 12: Mammography

Figure 13: Puma 32NH Figure 14: Wind

19

	Introduction
	Related Work
	Exploration and analysis of DNN architectures
	Automatic DNN parameter tuning

	Problem definition
	Generating multiple DNN architectures
	Meta-learning for architecture ranking
	Experiments and analysis
	Experimental setup
	Analysis
	Evaluating the meta-learning appraoch

	Conclusions and future work
	The meta-features used by our approach
	Full information on the datasets used in the evaluation
	Analysis of the performance parallel layers
	Accuracy distribution of the generated architectures across the evaluated datasets

