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ABSTRACT

We study the important and challenging problem of controllable generation of
long-term sequential behaviors. Solutions to this problem would impact many
applications, such as calibrating behaviors of AI agents in games or predicting
player trajectories in sports. In contrast to the well-studied areas of controllable
generation of images, text, and speech, there are significant challenges that are
unique to or exacerbated by generating long-term behaviors: how should we spec-
ify the factors of variation to control, and how can we ensure that the generated
temporal behavior faithfully demonstrates diverse styles? In this paper, we lever-
age large amounts of raw behavioral data to learn policies that can be calibrated to
generate a diverse range of behavior styles (e.g., aggressive versus passive play in
sports). Inspired by recent work on leveraging programmatic labeling functions,
we present a novel framework that combines imitation learning with data pro-
gramming to learn style-calibratable policies. Our primary technical contribution
is a formal notion of style-consistency as a learning objective, and its integra-
tion with conventional imitation learning approaches. We evaluate our framework
using demonstrations from professional basketball players and agents in the Mu-
JoCo physics environment, and show that our learned policies can be accurately
calibrated to generate interesting behavior styles in both domains.

1 INTRODUCTION

The widespread availability of recorded tracking data is enabling the study of complex behaviors in
many domains, including sports (Chen et al., 2016a; Le et al., 2017; Zhan et al., 2019), video games
(Kurin et al., 2017; Broll et al., 2019), laboratory animals (Eyjolfsdottir et al., 2014; 2017; Johnson
et al., 2016), facial expressions (Suwajanakorn et al., 2017; Taylor et al., 2017), commonplace activ-
ities such as cooking (Nishimura et al., 2019), and driving (Bojarski et al., 2016; Chang et al., 2019).
The tracking data is often obtained from multiple experts and can exhibit very diverse styles (e.g.,
aggressive versus passive play in sports). Our work is motivated by the opportunity to maximally
leverage these datasets by cleanly extracting such styles in addition to modeling the raw behaviors.

Our goal is to train policies that can be controlled, or calibrated, to produce different behavioral
styles inherent in the demonstration data. For example, Figure 1a depicts demonstrations from real
basketball players with variations of many types, including movement speed, desired destinations,
tendencies for long versus short passes, and curvature of movement routes, amongst many others.
A calibratable policy would be able to generate trajectories consistent with various styles, such as
low movement speed as in Figure 1b, or approach the basket as in Figure 1c, or to both styles simul-
taneously as in Figure 1d. Importantly, we aim to train a single policy that can generate behaviors
calibrated across multiple styles. Having such policies would empower many downstream tasks, in-
cluding behavior discovery (Eyjolfsdottir et al., 2014), realistic simulations (Le et al., 2017), virtual
agent design (Broll et al., 2019), and counterfactual behavioral reasoning (Zhan et al., 2019).

We focus on three research questions. The first question is strategic: what systematic form of domain
knowledge can we leverage to quickly and cleanly extract style information from raw behavioral
data? The second question is formulaic: how can we formalize the learning objective to encourage
learning style-calibratable policies? The third question is algorithmic: how do we design practical
learning approaches that reliably optimize the learning objective?
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(a) Expert demonstrations (b) Style: SPEED (c) Style: DESTINATION (d) Both styles

Figure 1: Basketball trajectories from policies that are: (a) the expert; (b) calibrated to move at low
speeds; (c) calibrated to terminate near the basket (within green boundary); and (d) calibrated for
both (b) & (c) simultaneously. Diamonds (�) and dots (•) indicate initial and final positions.

To address these challenges, we present a novel framework inspired by data programming (Ratner
et al., 2016), a paradigm in weak supervision that utilizes automated labeling procedures, called
labeling functions, to learn without ground-truth labels. In our setting, labeling functions enable
domain experts to quickly translate domain knowledge of diverse styles into programmatically gen-
erated style annotations. For instance, it is trivial to write programmatic labeling functions for the
two styles—speed and destination—depicted in Figure 1. Labeling functions also motivate a met-
ric for learning, which we call programmatic style-consistency, to evaluate calibration of policies:
rollouts generated for a specific style should return the same style label when fed to the labeling func-
tion. Finally, our framework is generic and is easily integrated into conventional imitation learning
approaches. To summarize, our contributions are:

• We propose a novel framework for learning policies calibrated to diverse behavior styles.
• Our framework allows users to express styles as labeling functions, which can be quickly

applied to programmatically produce a weak signal of style labels.
• Our framework introduces style-consistency as a metric to evaluate calibration to styles.
• We present an algorithm to learn calibratable policies that maximize style-consistency of

the generated behaviors, and validate it in basketball and simulated physics environments.

2 BACKGROUND: IMITATION LEARNING USING TRAJECTORY VAES

Since our focus is on learning style-calibratable generative policies, for simplicity we develop our
approach with the basic imitation learning paradigm of behavioral cloning using trajectory varia-
tional autoencoders, which we describe here. Interesting future directions include composing our
approach with more advanced imitation learning approaches as well as with reinforcement learning.

Notation. Let S andA denote the environment state and action spaces. At each timestep t, an agent
observes state st ∈ S and executes action at ∈ A using a policy π : S → A. The environment
then transitions to the next state st+1 according to a (typically unknown) dynamics function f :
S ×A → S. For the rest of this paper, we assume f is deterministic; a modification of our approach
for stochastic f is included in Appendix B. A trajectory τ is a sequence of T state-action pairs and
the last state: τ = {(st, at)}Tt=1 ∪ {sT+1}. Let D be a set of N trajectories collected from expert
demonstrations. In our experiments, each trajectory in D has the same length T , but in general this
does not need to be the case.

Learning objective. We begin with the basic imitation learning paradigm of behavioral cloning
(Syed & Schapire, 2008). The goal is to learn a policy that behaves like the pre-collected demon-
strations:

π∗ = arg min
π

Eτ∼D
[
Limitation(τ, π)

]
, (1)

where Limitation is a loss function that quantifies the mismatch between the actions chosen by π and
those in the demonstrations. Since we are primarily interested in probabilistic or generative policies,
we typically use (variations of) negative log-likelihood: L(τ, π) =

∑T
t=1− log π(at|st), where

π(at|st) is the probability of π choosing action at in state st.
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Trajectory Variational Autoencoders. A common model choice for instantiating π is the trajectory
variational autoencoder (TVAE), which is a sequential generative model built on top of variational
autoencoders (Kingma & Welling, 2014), and have been shown to work well in a range of gener-
ative policy learning settings (Wang et al., 2017; Ha & Eck, 2018; Co-Reyes et al., 2018). In its
simplest form, a TVAE introduces a latent variable z (also called a trajectory embedding) with prior
distribution p, an encoder network qφ, and a policy decoder πθ. Its imitation learning objective is:

Ltvae(τ, πθ; qφ) = Eqφ(z|τ)

[
T∑
t=1

− log πθ(at|st, z)

]
+DKL

(
qθ(z|τ)||p(z)

)
. (2)

The main shortcoming of TVAEs and related approaches, which we address in Sections 3 & 4, is
that the resulting policies cannot be easily calibrated to generate specific styles of behavior. For
instance, the goal of the trajectory embedding z is to capture all the styles that exist in the expert
demonstrations, but there is no guarantee that the embeddings cleanly encode the desired styles in
a calibrated way. Previous work has largely relied on unsupervised learning techniques that either
require significant domain knowledge (Le et al., 2017), or have trouble scaling to complex styles
commonly found in real-world applications (Wang et al., 2017; Li et al., 2017).

3 PROGRAMMATIC STYLE-CONSISTENCY

Building upon the basic setup in Section 2, we focus on the setting where the demonstrations D
contain diverse behavior styles. To start, let y ∈ Y denote a single style label (e.g., speed or
destination, as shown in Figure 1). Our goal is to learn a policy π that can be explicitly calibrated to
y, i.e., trajectories generated by π(·|y) should match the demonstrations in D that exhibit style y.

Obtaining style labels can be expensive using conventional annotation methods, and unreliable using
unsupervised approaches. We instead utilize easily programmable labeling functions that automat-
ically produce style labels, described next. We then formalize a notion of style-consistency as a
learning objective, and in Section 4 describe a practical learning approach.

Labeling functions. Introduced in the data programming paradigm (Ratner et al., 2016), labeling
functions programmatically produce weak and noisy labels to learn models on otherwise unlabeled
datasets. A significant benefit is that labeling functions are often simple scripts that can be quickly
applied to the dataset, which is much cheaper than manual annotations and more reliable than unsu-
pervised methods. In our framework, we study behavior styles that can be represented as labeling
functions, which we denote λ, that map trajectories τ to style labels y. A simple example is:

λ(τ) = 1{‖sT+1 − s1‖2 > c}, (3)

which distinguishes between trajectories with large (greater than a threshold c) versus small total
displacement. We experiment with a range of labeling functions, as described in Section 6. Multiple
labeling functions can be provided at once, possibly from multiple users. Many behavior styles used
in previous work can be represented as labeling functions, e.g., agent speed (Wang et al., 2017). We
use trajectory-level labels λ(τ) in our experiments, but in general labeling functions can be applied
on subsequences λ(τt:t+h) to obtain per-timestep labels. We can efficiently annotate datasets using
labeling functions, which we denote as λ(D) = {(τi, λ(τi))}Ni=1. Our goal can now be phrased as:
given λ(D), train a policy π : S × Y 7→ A such that π(·|y) is calibrated to styles y found in λ(D).

Style-consistency. A key insight in our work is that labeling functions naturally induce a metric
for calibration. If a policy π(·|y) is calibrated to λ, we would expect the generated behaviors to be
consistent with the label. So, we expect the following loss to be small:

Ey∼p(y),τ∼π(·|y)

[
Lstyle(λ(τ), y

)]
, (4)

where p(y) is a prior over the style labels, and τ is obtained by executing the style-conditioned policy
in the environment. Lstyle is thus a disagreement loss over labels that is minimized at λ(τ) = y, e.g.,
Lstyle

(
λ(τ), y

)
= 1{λ(τ) 6= y} for categorical labels. We refer to (4) as the style-consistency loss,

and say that π(·|y) is maximally calibrated to λ when (4) is minimized. Our full learning objective
incorporating (4) with (1) is:

π∗ = argmin
π

E(
τ,λ(τ)

)
∼λ(D)

[
Limitation

(
τ, π
(
· | λ(τ)

))]
+ Ey∼p(y),τ∼π(·|y)

[
Lstyle(λ(τ), y)]. (5)
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The simplest choice for the prior distribution p(y) is the marginal distribution of styles in λ(D).
The first term in (5) is a standard imitation learning objective and can be tractably estimated using
λ(D). To enforce style-consistency with the second term, conceptually we need to sample several
y ∼ p(y), then several rollouts τ ∼ π(· | y) from the current policy, and query the labeling function
for each of them. Furthermore, if λ is a non-differentiable function defined over the entire trajectory,
as is the case in (3), then we cannot simply backpropagate the style-consistency loss. In Section 4,
we introduce differentiable approximations to more easily optimize the challenging objective in (5).

Multiple styles. Our notion of style-consistency can be easily extended to simultaneously optimize
for multiple styles. Suppose we have M labeling functions {λi}Mi=1 and corresponding label spaces
{Yi}Mi=1. Let λ denote (λ1, . . . , λM ) and y denote (y1, . . . , yM ). Then style-consistency becomes:

Ey∼p(y),τ∼π(·|y)

[
M∑
i=1

Lstyle
i

(
λi(τ), yi

)]
. (6)

Note that style-consistency is optimized when the generated trajectory agrees with all labeling func-
tions. Although this can be very challenging to achieve, it describes the most desirable outcome, i.e.
π(·|y) is a policy that can be calibrated to all styles simultaneously.

4 LEARNING APPROACH

Algorithm 1 Generic recipe for optimizing (5)
1: Input: demonstrations D, labeling functions λ
2: construct λ(D) by applying λ on trajectories inD
3: optimize (7) to convergence to learn Cλψ∗

4: optimize (8) to convergence to learn π∗

Optimizing (5) is challenging due to the
long-time horizon and non-differentiability
of the labeling functions λ.1 Given unlim-
ited queries to the environment, one could
naively employ model-free reinforcement
learning, e.g., estimating (4) using rollouts
and optimizing using policy gradient ap-
proaches. We instead take a model-based approach, described generically in Algorithm 1, that is
more computationally-efficient and decomposable. The advantages of our approach are that it is
compatible with batch or offline learning, and enables easier diagnosis of deficiencies in the algo-
rithmic framework. To develop our approach, we first introduce a label approximator for λ, and
then show how to optimize through the environmental dynamics using a differentiable model-based
learning approach.

Approximating labeling functions. To deal with non-differentiability of λ, we approximate it with
a differentiable function Cλψ parameterized by ψ:

ψ∗ = arg min
ψ

E(
τ,λ(τ)

)
∼λ(D)

[
Llabel(Cλψ(τ), λ(τ)

)]
. (7)

Here, Llabel is a differentiable loss that approximates Lstyle, such as cross-entropy loss when Lstyle is
the 0/1 loss. In our experiments we use a recurrent neural net to represent Cλψ . We then modify the
style-consistency term in (5) with Cλψ∗ and optimize:

π∗ = argmin
π

E(
τ,λ(τ)

)
∼λ(D)

[
Limitation

(
τ, π
(
· | λ(τ)

))]
+ Ey∼p(y),τ∼π(·|y)

[
Llabel(Cλψ∗(τ), y

)]
. (8)

Optimizing Lstyle over trajectories. The next challenge to be addressed is one of credit assignment
over time steps. For instance, consider the labeling function in (3) that computes the difference
between the first and last states. Our label approximatorCλψ∗ may converge to a solution that ignores
all inputs except for s1 and sT+1. In this case, gradient descent throughCλψ∗ provides no information
about intermediate timesteps. In other words, effective optimization of style-consistency in (8)
requires informative learning signals on all actions taken by the policy.

In general, there are two types of approaches to address this challenge: model-free and model-based.
A model-free solution views this credit assignment challenge as analogous to that faced by RL, and

1This issue is not encountered in previous work on style-dependent imitation learning (Li et al., 2017;
Hausman et al., 2017), since they use purely unsupervised methods such as maximizing mutual information.
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repurposes generic reinforcement learning algorithms. We instead choose a model-based approach
for two reasons: (a) we found it to be compositionally simpler and easier to debug; and (b) we can
use the learned model to obtain hallucinated rollouts of the current policy efficiently during training.

Modeling dynamics for credit assignment. Our model-based approach utilizes a dynamics model
Mϕ to approximate the environment’s dynamics by predicting the change in state given the current
state and action:

ϕ∗ = arg min
ϕ

Eτ∼D
T∑
t=1

Ldynamics(Mϕ(st, at), (st+1 − st)
)
, (9)

where Ldynamics is often L2 or squared-L2 loss (Nagabandi et al., 2018; Luo et al., 2019). This allows
us to generate trajectories by rolling out: st+1 = st + Mϕ

(
st, π(st)

)
. Then optimizing for style-

consistency in (8) would backpropagate through our dynamics model Mϕ and provide informative
learning signals to the policy at every timestep.

We outline our model-based approach in Algorithm 2. Lines 10-12 describe an optional step to fine-
tune the dynamics model by querying the environment for trajectories of the current policy (similar
to Luo et al. (2019)); we found that this can help improve style-consistency in some experiments.

Algorithm 2 Model-based approach for optimizing style-consistency

1: Input: demonstrations D, labeling function λ, label approximator Cλψ , dynamics model Mϕ

2: λ(D)← {
(
τi, λ(τi)

)
}Ni=1

3: for ndynamics iterations do
4: optimize (9) with batch from D . Train dynamics model Mϕ

5: for nlabel iterations do
6: optimize (7) with batch from λ(D) . Train label approximator Cλψ
7: for npolicy iterations do
8: B ← { collect ncollect trajectories with Mϕ and current policy π }
9: optimize (8) with batch from λ(D) and B . Train policy π

10: for nenv iterations do
11: τenv ← collect 1 trajectory from environment with π
12: optimize (9) with τenv . Fine-tune dynamics model Mϕ

5 RELATED WORK

Our work combines ideas from imitation learning and data programming, developing a weakly su-
pervised approach for more explicit and fine-grained calibration. This is related to learning disen-
tangled representations and controllable generative modeling, reviewed below.

Imitation learning of diverse behaviors has focused on unsupervised approaches to infer latent
variables/codes that capture behavior styles (Li et al., 2017; Hausman et al., 2017; Wang et al.,
2017). Similar approaches have also been studied for generating text conditioned on attributes such
as sentiment or tense (Hu et al., 2017). A typical strategy is to maximize the mutual information be-
tween the latent codes and trajectories, in contrast to our notion of programmatic style-consistency.

Disentangled representation learning aims to learn representations where each latent dimension
corresponds to exactly one desired factor of variation (Bengio et al., 2012). Recent studies (Locatello
et al., 2019) have noted that popular techniques (Chen et al., 2016b; Higgins et al., 2017; Kim &
Mnih, 2018; Chen et al., 2018) can be sensitive to hyperparameters and that evaluation metrics can
be correlated with certain model classes and datasets, which suggests that unsupervised learning
approaches may, in general, be unreliable for discovering cleanly calibratable representations.

Conditional generation for images has recently focused on attribute manipulation (Bao et al., 2017;
Creswell et al., 2017; Klys et al., 2018), which aims to enforce that changing a label affects only one
aspect of the image while keeping everything else the same (similar to disentangled representation
learning). We extend these models and compare with our approach in Section 6. Our experimental
results suggest that these algorithms do not necessarily scale well into sequential domains.

Enforcing consistency in generative modeling, such as cycle-consistency in image generation
(Zhu et al., 2017), and self-consistency in hierarchical reinforcement learning (Co-Reyes et al.,
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2018) has proved beneficial. The former minimizes a discriminative disagreement, whereas the
latter minimizes a distributional disagreement between two sets of generated behaviors (e.g., KL-
divergence). From this perspective, our style-consistency notion is more similar to the former;
however we also enforce consistency over multiple time-steps, which is more similar to the latter.

6 EXPERIMENTS

We first briefly describe our experimental setup and choice of baselines, and then discuss our main
experimental results. A full description of the experiments is available in Appendix C.

Data. We validate our framework on two datasets: 1) a collection of professional basketball player
trajectories with the goal of learning a policy that generates realistic player-movement, and 2) a
Cheetah agent running horizontally in MuJoCo (Todorov et al., 2012) with the goal of learning a
policy with calibrated gaits. The former has a known dynamics function: f(st, at) = st + at, where
st and at are the player’s position and velocity on the court respectively; we expect the dynamics
model Mϕ to easily recover this function. The latter has an unknown dynamics function (which we
learn a model of when approximating style-consistency). We obtain Cheetah demonstrations from
a collection of policies trained using pytorch-a2c-ppo-acktr (Kostrikov, 2018) to interface
with the DeepMind Control Suite’s Cheetah domain (Tassa et al., 2018)—see Appendix C for details.

Labeling functions. Labeling functions for Basketball include: 1) average SPEED of the player,
2) DISPLACEMENT from initial to final position, 3) distance from final position to a fixed
DESTINATION on the court (e.g. the basket), 4) mean DIRECTION of travel, and 5) CURVATURE
of the trajectory, which measures the player’s propensity to change directions. For Cheetah, we have
labeling functions for the agent’s 1) SPEED, 2) TORSO HEIGHT, 3) BACK-FOOT HEIGHT, and
4) FRONT-FOOT HEIGHT that can be trivially extracted from the environment.

We threshold the aforementioned labeling functions into categorical labels (leaving real-valued la-
bels for future work) and use (4) for style-consistency with Lstyle as the 0/1 loss. We use cross-
entropy for Llabel and list all other hyperparameters in Appendix C. Whenever we report style-
consistency results, we use 1− Lstyle in (4) so that all results are easily interpreted as accuracies.

Baselines. We compare our approach, CTVAE-style, with 3 baseline policy models:

1. CTVAE: The conditional version of TVAEs (Wang et al., 2017).
2. CTVAE-info: CTVAE with information factorization (Creswell et al., 2017) that implicitly

maximizes style-consistency by removing all information correlated with y from z.
3. CTVAE-mi: CTVAE with mutual information maximization between style labels and tra-

jectories. This is a supervised variant of unsupervised models (Chen et al., 2016b; Li et al.,
2017), and also requires learning a dynamics model for sampling policy rollouts.

Detailed descriptions and model parameters of baselines are in Appendix A and C respectively. All
models build upon TVAEs, which are also conditioned on a latent variable (see Section 2). We
highlight that the underlying model choice is orthogonal to our contributions; our framework is
compatible with any imitation learning algorithm (see Table 13 in Appendix).

6.1 HOW WELL CAN WE CALIBRATE POLICIES FOR INDIVIDUAL STYLES?

We first threshold labeling functions into 3 classes for Basketball and 2 classes for Cheetah; the
marginal distribution p(y) of styles in λ(D) is roughly uniform over these classes. Then we learn a
policy π∗ calibrated to each of these styles. Finally, we generate rollouts from each of the learned
policies to measure style-consistency. Table 1 compares the median style-consistency (over 5 seeds)
of learned policies. For Basketball, CTVAE-style significantly outperforms baselines and achieves
almost perfect style-consistency for 4 of the 5 styles (the best style-consistency over 5 seeds out-
performs all baselines, shown in Tables 8a and 9a in Appendix C). For Cheetah, CTVAE-style
outperforms all baselines, but the absolute performance is lower than for Basketball (mostly due to
the more complex environment dynamics).

We visualize our CTVAE-style policy calibrated for DESTINATION(net) (with style-consistency
of 0.97) in Figure 2. The green boundaries divide the court into 3 regions, one for each label class.
Policy rollouts almost always terminate in the corresponding region of the label class. Note that
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Basketball Cheetah
Model Speed Disp. Dest. Dir. Curve Speed Torso BFoot FFoot
CTVAE 83 72 82 77 61 59 63 68 68
CTVAE-info 84 71 79 72 60 57 63 65 66
CTVAE-mi 86 74 82 77 72 60 65 65 70
CTVAE-style 95 96 97 97 68 79 80 80 77

Table 1: Individual Style Calibration: Style-consistency (×10−2, median over 5 seeds) of poli-
cies evaluated with 4,000 Basketball and 500 Cheetah rollouts. Trained separately for each style,
CTVAE-style policies outperform baselines for all styles in Cheetah and 4/5 styles in Basketball.

(a) Label class 0 (close) (b) Label class 1 (mid) (c) Label class 2 (far)

Figure 2: CTVAE-style
rollouts calibrated for
DESTINATION(net),
0.97 style-consistency.
Diamonds (�) and dots
(•) indicate initial and
final positions. Regions
divided by green lines
represent label classes.

although the policy is calibrated for one style, rollouts still exhibit diverse behaviors (i.e. distribution
of trajectories did not collapse into a single mode), which suggests that there are other styles being
imitated. Section 6.2 examines this further by testing calibration to multiple styles simultaneously.

We also consider cases in which labeling functions can have several classes and non-uniform distri-
butions (i.e. some styles are more/less common than others). We threshold DESTINATION(net)
into 6 classes for Basketball and SPEED into 4 classes for Cheetah and compare the policies in
Table 2. In general, we observe degradation in overall style-consistency accuracies as the num-
ber of classes increase. However, CTVAE-style policies still consistently achieve better style-
consistency than baselines in this setting as well. In the appendix, we visualize all 6 classes
of DESTINATION(net) in Figure 4 and include another experiment with up to 8 classes of
DISPLACEMENT in Table 8c. These results suggest that incorporating programmatic style-
consistency while training via (8) can yield good qualitative and quantitative calibration results.

Basketball - DESTINATION(net) Cheetah - SPEED
Model 2 classes 3 classes 4 classes 6 classes 3 classes 4 classes
CTVAE 87 82 78 74 45 37
CTVAE-info 87 81 75 77 49 39
CTVAE-mi 88 81 74 76 48 37
CTVAE-style 98 97 89 84 59 51

Table 2: Fine-grained Style-consistency: (×10−2, median over 5 seeds) Training on labeling func-
tions with more classes yields increasingly fine-grained calibration of behavior. Although CTVAE-
style degrades as the number of classes increases, it outperforms baselines for all styles.

6.2 CAN WE CALIBRATE POLICIES FOR MULTIPLE STYLES SIMULTANEOUSLY?

We now consider multiple style-consistency as in (6), which measures the total accuracy with all
labeling functions simultaneously. For instance, in addition to terminating close to the net in Figure
2, a user may also want to control the speed at which the agent moves towards the target destination.

Table 3 compares the style-consistency of policies calibrated for up to 5 styles for Basketball and 3
styles for Cheetah. Calibrating for multiple styles simultaneously is a very difficult task for base-
lines, as their style-consistency degrades significantly as the number of styles increases. On the
other hand, CTVAE-style sees a modest decrease in style-consistency but is still significantly better
calibrated (0.75 style-consistency for all 5 styles vs. only 0.30 for the best baseline in Basketball).
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Basketball Cheetah
Model 2 styles 3 styles 4 styles 5 styles 2 styles 3 styles
CTVAE 71 58 50 37 41 28
CTVAE-info 69 58 51 32 41 27
CTVAE-mi 72 56 51 30 40 28
CTVAE-style 93 88 88 75 54 40

Table 3: Multi Style-consistency: (10−2, median over 5 seeds) Simultaneously calibrated to multi-
ple styles, CTVAE-style policies outperform baselines for all styles in Cheetah and in Basketball.

(a) Label class 0 (slow) (b) Label class 1 (mid) (c) Label class 2 (fast)

Figure 3: CTVAE-style
rollouts calibrated for 2
styles: label class 1 of
DESTINATION(net)
(see Figure 2) and each
class for SPEED, with
0.93 style-consistency.
Diamonds (�) and dots
(•) indicate initial and
final positions.

We visualize a CTVAE-style policy calibrated for two styles in Basketball with style-consistency
0.93 in Figure 3. CTVAE-style outperforms baselines in Cheetah as well, but there is still room for
improvement to reach maximal style-consistency in future work.

6.3 WHAT IS THE TRADE-OFF BETWEEN STYLE-CONSISTENCY AND IMITATION QUALITY?
Basketball Cheetah

Model DKL NLD DKL NLD
TVAE 2.5 -7.9 29 -0.60
CTVAE 2.5 -8.0 29 -0.59
CTVAE-info 2.3 -7.9 29 -0.58
CTVAE-mi 2.6 -8.0 29 -0.57
CTVAE-style 2.3 -7.8 30 -0.28

Table 4: KL-divergence and negative log-density
per timestep for TVAE models (lower is better).
CTVAE-style is comparable to baselines for Bas-
ketball, but is slightly worse for Cheetah.

In Table 4, we investigate whether CTVAE-
style’s superior style-consistency is attained at
a significant cost to imitation quality, since we
jointly optimize both in (5). For Basketball,
high style-consistency is achieved without any
degradation in imitation quality. For Chee-
tah, negative log-likelihood is slightly worse;
a followup experiment in Table 12 of the ap-
pendix shows that we can improve imitation
quality with further training, which can some-
times modestly decrease style-consistency.

7 CONCLUSION AND FUTURE WORK

We propose a novel framework for imitating diverse behavior styles while also calibrating to desired
styles. Our framework leverages labeling functions to tractably represent styles and introduces pro-
grammatic style-consistency, a metric that allows for fair comparison between calibrated policies.
Our experiments demonstrate strong empirical calibration results.

We believe that our framework lays the foundation for many directions of future research. First, can
one model more complex styles not easily captured with a single labeling function (e.g. aggressive
vs. passive play in sports) by composing simpler labeling functions (e.g. max speed, distance to
closest opponent, number of fouls committed, etc.), similar to (Ratner et al., 2016; Bach et al.,
2017)? Second, can we use these per-timestep labels to model transient styles, or simplify the credit
assignment problem when learning to calibrate? Third, can we blend our programmatic supervision
with unsupervised learning approaches to arrive at effective semi-supervised solutions? Fourth, can
we use leverage model-free approaches to further optimize self-consistency, e.g., to fine-tune from
our model-based approach? Finally, can we integrate our framework with reinforcement learning to
also optimize for environmental rewards?
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A BASELINE POLICY MODELS

1) Conditional-TVAE (CTVAE). The conditional version of TVAEs optimizes:

Lctvae(τ, πθ; qφ) = Eqφ(z|τ.y)

[
T∑
t=1

− log πθ(at|st, z, y)

]
+DKL

(
qθ(z|τ, y)||p(z)

)
. (10)

2) CTVAE with information factorization (CTVAE-info). (Creswell et al., 2017; Klys et al.,
2018) augment conditional-VAE models with an auxiliary networkAψ(z) which is trained to predict
the label y from z, while the encoder qφ is also trained to minimize the accuracy of Aψ . This model
implicitly maximizes self-consistency by removing the information correlated with y from z, so
that any information pertaining to y that the decoder needs for reconstruction must all come from y.
While this model was previously used for image generation, we extend it into the sequential domain:

max
θ,φ

(
Eqφ(z|τ)

[
min
ψ
Laux(Aψ(z), y

)
+

T∑
t=1

log πθ(at|st, z, y)

]
−DKL

(
qθ(z|τ)||p(z)

))
. (11)

Note that the encoder in (10) and (11) differ in that qφ(z|τ) is no longer conditioned on the label y.

3) CTVAE with mutual information maximization (CTVAE-mi). In addition to (10), we can
also maximize the mutual information between labels and trajectories I(y; τ). This quantity is hard
to maximize directly, so instead we maximize the variational lower bound:

I(y; τ) ≥ Ey∼p(y),τ∼πθ(·|z,y)
[

log rψ(y|τ)
]

+H(y), (12)

where rψ approximates the true posterior p(y|τ). In our setting, the prior over labels is known, so
H(y) is a constant. Thus, the learning objective is:

Lctvae-mi(τ, πθ; qφ) = Lctvae(τ, πθ) + Ey∼p(y),τ∼πθ(·|z,y)
[
− log rψ(y|τ)

]
. (13)

Optimizing (13) also requires collecting rollouts with the current policy, so similarly we also pretrain
and fine-tune a dynamics model Mϕ. This baseline can be interpreted as a supervised analogue of
unsupervised models that maximize mutual information in (Li et al., 2017; Hausman et al., 2017).

B STOCHASTIC DYNAMICS FUNCTION

If the dynamics function f of the environment is stochastic, we modify our approach in Algorithm
2 by changing the form of our dynamics model. We can model the change in state as a Gaussian
distribution and minimize the negative log-likelihood:

ϕ∗µ, ϕ
∗
σ = arg min

ϕµ,ϕµ

Eτ∼D
T∑
t=1

− log p(∆t;µt, σt), (14)

where ∆t = st+1 − st, µt = Mϕµ
(st, at), σt = Mϕσ

(st, at), and Mϕµ
, Mϕσ

are neural networks
that can share weights. We can sample a change in state during rollouts using the reparametrization
trick (Kingma & Welling, 2014), which allows us to backpropagate through the dynamics model
during training.

C EXPERIMENT DETAILS

Dataset details. See Table 5. Basketball trajectories are collected from tracking real players in
the NBA. Figure 5 shows the distribution of basketball labeling functions applied on the training
set. For Cheetah, we train 125 policies using PPO (Schulman et al., 2017) to run forwards at speeds
ranging from 0 to 4 (m/s). We collect 25 trajectories per policy by sampling actions from the policy.
We use (Kostrikov, 2018) to interface with (Tassa et al., 2018). Figure 6 shows the distributions of
Cheetah labeling functions applied on the training set.

Training hyperparameters. See Table 6.
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Model parameters. We model all trajectory embeddings z as a diagonal Gaussian with a standard
normal prior. Encoder qφ and label approximators Cλψ are bi-directional GRUs (Cho et al., 2014)
followed by linear layers. Policy πθ is recurrent for basketball, but not for Cheetah. The Gaussian
log sigma returned by πθ is state-dependent for basketball, but state-independent for Cheetah. For
Cheetah, we made these choices based on prior work in Mujoco for training gait policies. For
Basketball, we observed a lot more variation in the 500k demonstrations so we experimented with
more flexible model classes. See Table 7 for more model details.

|S| |A| T Ntrain Ntest frequency (Hz)
Basketball 2 2 24 520,015 67,320 3
Cheetah 18 6 200 2,500 625 40

Table 5: Dataset parameters for basketball and Cheetah environments.

batch size # batch b ndynamics nlabel npolicy ncollect nenv learning rate
Basketball 128 4,063 10 · b 20 · b 30 · b 128 0 2 · 10−4

Cheetah 16 157 50 · b 20 · b 60 · b 16 1 10−3

Table 6: Hyperparameters for Algorithm 2. b is the number of batches to see all trajectories in the
dataset once. We also use L2 regularization of 10−5 for training the dynamics model Mϕ.

z-dim qφ GRU Cλψ GRU πθ GRU πθ sizes Mϕ sizes
Basketball 4 128 128 128 (128,128) (128,128)
Cheetah 8 200 200 - (200,200) (500,500)

Table 7: Model parameters for basketball and Cheetah environments.
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Model Speed Displacement Destination Direction Curvature
CTVAE 82 83 85 71 72 74 81 82 82 76 77 80 60 61 62
CTVAE-info 84 84 87 69 71 74 78 79 83 71 72 74 60 60 62
CTVAE-mi 84 86 87 71 74 74 80 82 84 75 77 78 58 72 74
CTVAE-style 34 95 97 89 96 97 91 97 98 96 97 98 52 68 83

(a) Style-consistency wrt. single styles of 3 classes (roughly uniform distributions).

Model 2 classes 3 classes 4 classes 6 classes
CTVAE 86 87 87 80 82 83 76 78 79 70 74 77
CTVAE-info 83 87 88 79 81 83 73 75 78 71 77 78
CTVAE-mi 86 88 88 80 81 84 71 74 79 73 76 78
CTVAE-style 97 98 99 68 97 98 35 89 95 67 84 93

(b) Style-consistency wrt. DESTINATION(net) with up to 6 classes (non-uniform distributions).

Model 2 classes 3 classes 4 classes 6 classes 8 classes
CTVAE 91 92 93 79 83 84 76 79 79 68 70 72 64 66 69
CTVAE-info 90 90 92 83 83 85 75 76 77 68 70 72 60 63 67
CTVAE-mi 90 92 93 81 84 86 75 77 80 66 70 72 62 62 67
CTVAE-style 98 99 99 15 98 99 15 96 96 02 92 94 80 90 93

(c) Style-consistency wrt. DISPLACEMENT of up to 8 classes (roughly uniform distributions).

Model 2 styles 3 styles 4 styles 5 styles
CTVAE 67 71 73 58 58 62 49 50 52 27 37 35
CTVAE-info 68 69 70 54 58 59 48 51 54 28 32 35
CTVAE-mi 71 72 73 48 56 61 45 51 52 16 30 31
CTVAE-style 92 93 94 86 88 90 62 88 88 66 75 80

(d) Style-consistency wrt. multiple styles simultaneously.

Table 8: [min, median, max] style-consistency (×10−2, 5 seeds) of policies evaluated with 4,000
basketball rollouts each. CTVAE-style policies significantly outperform baselines in all experiments
and are calibrated at almost maximal style-consistency for 4/5 labeling functions. We note some rare
failure cases with our approach, which we leave as a direction for improvement for future work.

Model Speed Torso Height B-Foot Height F-Foot Height
CTVAE 53 59 62 62 63 70 61 68 73 63 68 72
CTVAE-info 56 57 61 62 63 72 58 65 72 63 66 69
CTVAE-mi 53 60 62 62 65 70 60 65 70 66 70 73
CTVAE-style 68 79 81 79 80 84 77 80 88 74 77 80

(a) Style-consistency wrt. single styles of 2 classes (roughly uniform distributions).

Model 3 classes 4 classes
CTVAE 41 45 49 35 37 41
CTVAE-info 47 49 52 36 39 42
CTVAE-mi 47 48 53 36 37 38
CTVAE-style 59 59 65 42 51 60

(b) Style-consistency wrt. SPEED with varying # of
classes (non-uniform distributions).

Model 2 styles 3 styles
CTVAE 39 41 43 25 28 29
CTVAE-info 39 41 46 25 27 30
CTVAE-mi 34 40 48 27 28 31
CTVAE-style 43 54 60 38 40 52

(c) Style-consistency wrt. multiple styles simultane-
ously.

Table 9: [min, median, max] style-consistency (×10−2, 5 seeds) of policies evaluated with 500
Cheetah rollouts each. CTVAE-style policies consistently outperform all baselines, but we note that
there is still room for improvement (to reach 100% style-consistency).
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Model Speed Displacement Destination Direction Curvature
CTVAE 84 ± 1.0 72 ± 0.9 82 ± 0.6 77 ± 1.0 61 ± 0.8
CTVAE-info 85 ± 1.2 70 ± 1.2 81 ± 1.7 72 ± 1.2 60 ± 0.9
CTVAE-mi 86 ± 1.5 73 ± 1.5 82 ± 1.1 77 ± 1.1 71 ± 3.4
CTVAE-style 81 ± 31.4 94 ± 3.4 94 ± 3.8 97 ± 0.5 67 ± 12.6

(a) Style-consistency wrt. single styles of 3 classes (roughly uniform distributions).

Model 2 classes 3 classes 4 classes 6 classes
CTVAE 87 ± 0.7 82 ± 1.3 77 ± 1.7 75 ± 1.8
CTVAE-info 86 ± 1.9 81 ± 1.6 75 ± 2.9 76 ± 3.2
CTVAE-mi 88 ± 0.4 82 ± 1.8 75 ± 3.4 75 ± 2.0
CTVAE-style 98 ± 0.8 86 ± 14.4 74 ± 26.8 82 ± 13.0

(b) Style-consistency wrt. DESTINATION(net) with up to 6 classes (non-uniform distributions).

Model 2 classes 3 classes 4 classes 6 classes 8 classes
CTVAE 92 ± 0.4 82 ± 2.6 78 ± 1.4 70 ± 1.4 66 ± 1.9
CTVAE-info 91 ± 0.8 84 ± 1.2 76 ± 0.6 70 ± 1.1 64 ± 3.2
CTVAE-mi 92 ± 1.4 83 ± 2.3 77 ± 2.5 68 ± 2.2 64 ± 2.5
CTVAE-style 99 ± 0.3 77 ± 41.2 75 ± 40.0 62 ± 42.9 88 ± 5.8

(c) Style-consistency wrt. DISPLACEMENT of up to 8 classes (roughly uniform distributions).

Model 2 styles 3 styles 4 styles 5 styles
CTVAE 70 ± 2.3 59 ± 1.7 50 ± 1.6 32 ± 3.1
CTVAE-info 69 ± 1.0 57 ± 2.3 50 ± 1.9 32 ± 1.7
CTVAE-mi 72 ± 0.8 52 ± 5.1 51 ± 0.8 26 ± 7.1
CTVAE-style 93 ± 1.2 88 ± 1.6 87 ± 2.5 76 ± 3.3

(d) Style-consistency wrt. multiple styles simultaneously.

Table 10: Mean and standard deviation style-consistency (×10−2, 5 seeds) of policies evaluated
with 4,000 basketball rollouts each. CTVAE-style policies generally outperform baselines. Lower
mean style-consistency (and large standard deviation) for CTVAE-style is often due to failure cases,
as can be seen from the minimum style-consistency values we report in Table 8. Understanding the
causes of these failure cases and improving the algorithm’s stability are possible directions for future
work.

Model Speed Torso Height B-Foot Height F-Foot Height
CTVAE 57 ± 3.9 64 ± 3.1 67 ± 4.2 69 ± 3.7
CTVAE-info 58 ± 2.1 65 ± 4.2 64 ± 5.4 66 ± 2.7
CTVAE-mi 58 ± 3.9 66 ± 3.2 65 ± 3.6 70 ± 2.6
CTVAE-style 77 ± 5.3 81 ± 2.2 82 ± 5.4 77 ± 2.4

(a) Style-consistency wrt. single styles of 2 classes (roughly uniform distributions).

Model 3 classes 4 classes
CTVAE 45 ± 3.2 38 ± 2.9
CTVAE-info 49 ± 1.8 39 ± 2.8
CTVAE-mi 49 ± 2.2 37 ± 1.0
CTVAE-style 61 ± 2.9 51 ± 7.8

(b) Style-consistency wrt. SPEED with varying # of
classes (non-uniform distributions).

Model 2 styles 3 styles
CTVAE 41 ± 1.6 27 ± 1.9
CTVAE-info 42 ± 2.3 28 ± 2.2
CTVAE-mi 41 ± 4.9 29 ± 1.6
CTVAE-style 53 ± 6.1 43 ± 5.8

(c) Style-consistency wrt. multiple styles simultane-
ously.

Table 11: Mean and standard deviation style-consistency (×10−2, 5 seeds) of policies evaluated
with 500 Cheetah rollouts each. CTVAE-style policies consistently outperform all baselines, but we
note that there is still room for improvement (to reach 100% style-consistency).
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Speed Torso Height B-Foot Height F-Foot Height
Model NLD SC NLD SC NLD SC NLD SC
CTVAE-style -0.28 79 -0.24 80 -0.16 80 -0.22 77
CTVAE-style+ -0.49 70 -0.42 83 -0.36 80 -0.42 74

Table 12: We report the median negative log-density per timestep (lower is better) and style-
consistency (higher is better) of CTVAE-style policies for Cheetah (5 seeds). The first row cor-
responds to experiments in Tables 1 and 9a, and the second row corresponds to the same experi-
ments with 50% more training iterations. The KL-divergence in the two sets of experiments are
roughly the same. Although imitation quality improves, style-consistency can sometimes degrade
(e.g. SPEED, FRONT-FOOT HEIGHT), indicating a possible trade-off between imitation quality
and style-consistency.

Style-consistency ↑
Model Min - Median - Max NLD ↓
RNN 79 79 80 81 81 -7.7
RNN-style 81 86 91 95 98 -7.6
CTVAE 81 82 82 82 82 -8.0
CTVAE-style 91 92 97 98 98 -7.8

Table 13: Comparing style-consistency (×10−2) between RNN and CTVAE policy models for
DESTINATION in basketball. The style-consistency for 5 seeds are listed in increasing order. Our
algorithm improves style-consistency for both policy models at the cost of a slight degradation in
imitation quality. In general, CTVAE performs better than RNN in terms of both style-consistency
and imitation quality.

Speed Displacement Destination Direction Curvature
Llabel 3.96 ± 0.33 4.58 ± 0.20 1.61 ± 0.18 3.19 ± 0.25 28.31 ± 0.95

(a) Basketball labeling functions for experiments in section 6.1.

Speed Torso Height B-Foot Height F-Foot Height
Llabel 3.24 ± 0.83 15.87 ± 1.78 17.25 ± 0.73 14.75 ± 0.74

(b) Cheetah labeling functions for experiments in section 6.1.

Table 14: Mean and standard deviation cross-entropy loss (Llabel,×10−2) over 5 seeds of learned
label approximators Cλψ∗ on test trajectories after nlabel training iterations for experiments in section
6.1. Cλψ∗ is only used during training; when computing style-consistency for our quantitative results,
we use original labeling functions λ.

Mϕ test error
Basketball 1.47± 0.59(×10−7)
Cheetah 1.93± 0.08(×10−2)

Table 15: Average mean-squared error of the dynamics model Mϕ per timestep per dimension on
test trajectories after training for ndynamics iterations
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(a) Label class 0 (closest) (b) Label class 1 (c) Label class 2

(d) Label class 3 (e) Label class 4 (f) Label class 5 (farthest)

Figure 4: Rollouts from our policy calibrated to DESTINATION(net) with 6 classes. The 5 green
boundaries divide the court into 6 regions, each corresponding to a label class. The label indicates
the target region of a trajectory’s final position (•). This policy achieves a style-consistency of
0.93, as indicated in Table 8b. Note that the initial position (�) is the same as in Figures 2 and 3
for comparison, but in general we sample an initial position from the prior p(y) to compute style-
consistency.

(a) Speed (b) Displacement (c) Destination (d) Direction (e) Curvature

Figure 5: Histogram of basketball labeling functions applied on the training set (before applying
thresholds). Basketball trajectories are collected from tracking real players in the NBA.

(a) Speed (b) Torso Height (c) Back-Foot Height (d) Front-Foot Height

Figure 6: Histogram of Cheetah labeling functions applied on the training set (before applying
thresholds). Note that SPEED is the most diverse behavior because we pre-trained the policies to
achieve various speeds when collecting demonstrations, similar to (Wang et al., 2017). For more
diversity with respect to other behaviors, we can also incorporate a target behavior as part of the
reward when pre-training Cheetah policies.
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