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ABSTRACT

The recently presented idea to learn heuristics for combinatorial optimization
problems is promising as it can save costly development. However, to push this
idea towards practical implementation, we need better models and better ways
of training. We contribute in both directions: we propose a model based on at-
tention layers with benefits over the Pointer Network and we show how to train
this model using REINFORCE with a simple baseline based on a deterministic
greedy rollout, which we find is more efficient than using a value function. We
significantly improve over recent learned heuristics for the Travelling Salesman
Problem (TSP), getting close to optimal results for problems up to 100 nodes.
With the same hyperparameters, we learn strong heuristics for two variants of the
Vehicle Routing Problem (VRP), the Orienteering Problem (OP) and (a stochas-
tic variant of) the Prize Collecting TSP (PCTSP), outperforming a wide range of
baselines and getting results close to highly optimized and specialized algorithms.

1 INTRODUCTION

Imagine yourself travelling to a scientific conference. The field is popular, and surely you do not
want to miss out on anything. You have selected several posters you want to visit, and naturally you
must return to the place where you are now: the coffee corner. In which order should you visit the
posters, to minimize your time walking around? This is the Travelling Scientist Problem (TSP).

You realize that your problem is equivalent to the Travelling Salesman Problem (conveniently also
TSP). This seems discouraging as you know the problem is (NP-)hard (Garey & Johnson, 1979).
Fortunately, complexity theory analyzes the worst case, and your Bayesian view considers this un-
likely. In particular, you have a strong prior: the posters will probably be laid out regularly. You
want a special algorithm that solves not any, but this type of problem instance. You have some
months left to prepare. As a machine learner, you wonder whether your algorithm can be learned?

Motivation Machine learning algorithms have replaced humans as the engineers of algorithms to
solve various tasks. A decade ago, computer vision algorithms used hand-crafted features but today
they are learned end-to-end by Deep Neural Networks (DNNs). DNNs have outperformed classic
approaches in speech recognition, machine translation, image captioning and other problems, by
learning from data (LeCun et al., 2015). While DNNs are mainly used to make predictions, Rein-
forcement Learning (RL) has enabled algorithms to learn to make decisions, either by interacting
with an environment, e.g. to learn to play Atari games (Mnih et al., 2015), or by inducing knowledge
through look-ahead search: this was used to master the game of Go (Silver et al., 2017).

The world is not a game, and we desire to train models that make decisions to solve real problems.
These models must learn to select good solutions for a problem from a combinatorially large set
of potential solutions. Classically, approaches to this problem of combinatorial optimization can
be divided into exact methods, that guarantee finding optimal solutions, and heuristics, that trade
off optimality for computational cost, although exact methods can use heuristics internally and vice
versa. Heuristics are typically expressed in the form of rules, which can be interpreted as policies to
make decisions. We believe that these policies can be parameterized using DNNs, and be trained to
obtain new and stronger algorithms for many different combinatorial optimization problems, similar
to the way DNNs have boosted performance in the applications mentioned before. In this paper, we
focus on routing problems: an important class of practical combinatorial optimization problems.
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The promising idea to learn heuristics has been tested on TSP (Bello et al., 2016). In order to
push this idea, we need better models and better ways of training. Therefore, we propose to use a
powerful model based on attention and we propose to train this model using REINFORCE with a
simple but effective greedy rollout baseline. The goal of our method is not to outperform a non-
learned, specialized TSP algorithm such as Concorde (Applegate et al., 2006). Rather, we show
the flexibility of our approach on multiple (routing) problems of reasonable size, with a single set
of hyperparameters. This is important progress towards the situation where we can learn strong
heuristics to solve a wide range of different practical problems for which no good heuristics exist.

2 RELATED WORK

The application of Neural Networks (NNs) for optimizing decisions in combinatorial optimization
problems dates back to Hopfield & Tank (1985), who applied a Hopfield-network for solving small
TSP instances. NNs have been applied to many related problems (Smith, 1999), although in most
cases in an online manner, starting ‘from scratch’ and ‘learning’ a solution for every instance. More
recently, (D)NNs have also been used offline to learn about an entire class of problem instances.

Vinyals et al. (2015) introduce the Pointer Network (PN) as a model that uses attention to output
a permutation of the input, and train this model offline to solve the (Euclidean) TSP, supervised
by example solutions. Upon test time, their beam search procedure filters invalid tours. Bello
et al. (2016) introduce an Actor-Critic algorithm to train the PN without supervised solutions. They
consider each instance as a training sample and use the cost (tour length) of a sampled solution for
an unbiased Monte-Carlo estimate of the policy gradient. They introduce extra model depth in the
decoder by an additional glimpse (Vinyals et al., 2016) at the embeddings, masking nodes already
visited. For small instances (n = 20), they get close to the results by Vinyals et al. (2015), they
improve for n = 50 and additionally include results for n = 100. Nazari et al. (2018) replace
the LSTM encoder of the PN by element-wise projections, such that the updated embeddings after
state-changes can be effectively computed. They apply this model on the Vehicle Routing Problem
(VRP) with split deliveries and a stochastic variant.

Dai et al. (2017) do not use a separate encoder and decoder, but a single model based on graph
embeddings. They train the model to output the order in which nodes are inserted into a partial tour,
using a helper function to insert at the best possible location. Their 1-step DQN (Mnih et al., 2015)
training method trains the algorithm per step and incremental rewards provided to the agent at every
step effectively encourage greedy behavior. As mentioned in their appendix, they use the negative
of the reward, which combined with discounting encourages the agent to insert the farthest nodes
first, which is known to be an effective heuristic (Rosenkrantz et al., 2009).

Nowak et al. (2017) train a Graph Neural Network in a supervised manner to directly output a tour
as an adjacency matrix, which is converted into a feasible solution by a beam search. The model
is non-autoregressive, so cannot condition its output on the partial tour and the authors report an
optimality gap of 2.7% for n = 20, worse than autoregressive approaches mentioned in this section.
Kaempfer & Wolf (2018) train a model based on the Transformer architecture (Vaswani et al., 2017)
that outputs a fractional solution to the multiple TSP (mTSP). The result can be seen as a solution to
the linear relaxation of the problem and they use a beam search to obtain a feasible integer solution.

Independently of our work, Deudon et al. (2018) presented a model for TSP using attention in the OR
community. They show performance can improve using 2OPT local search, but do not show benefit
of their model in direct comparison to the PN. We use a different decoder and improved training
algorithm, both contributing to significantly improved results, without 2OPT and additionally show
application to different problems. For a full discussion of the differences, we refer to Appendix B.4.

3 ATTENTION MODEL

We define the Attention Model in terms of the TSP. For other problems, the model is the same but the
input, mask and decoder context need to be defined accordingly, which is discussed in the Appendix.
We define a problem instance s as a graph with n nodes, where node i ∈ {1, . . . , n} is represented
by features xi. For TSP, xi is the coordinate of node i and the graph is fully connected (with self-
connections) but in general, the model can be considered a Graph Attention Network (Velickovic
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et al., 2018) and take graph structure into account by a masking procedure (see Appendix A). We
define a solution (tour) π = (π1, . . . , πn) as a permutation of the nodes, so πt ∈ {1, . . . n} and
πt 6= πt′ ∀t 6= t′. Our attention based encoder-decoder model defines a stochastic policy p(π|s) for
selecting a solution π given a problem instance s. It is factorized and parameterized by θ as

pθ(π|s) =

n∏
t=1

pθ(πt|s,π1:t−1). (1)

The encoder produces embeddings of all input nodes. The decoder produces the sequence π of input
nodes, one node at a time. It takes as input the encoder embeddings and a problem specific mask and
context. For TSP, when a partial tour has been constructed, it cannot be changed and the remaining
problem is to find a path from the last node, through all unvisited nodes, to the first node. The order
and coordinates of other nodes already visited are irrelevant. To know the first and last node, the
decoder context consists (next to the graph embedding) of embeddings of the first and last node.
Similar to Bello et al. (2016), the decoder observes a mask to know which nodes have been visited.

3.1 ENCODER

Figure 1: Attention based encoder. Input nodes
are embedded and processed by N sequential
layers, each consisting of a multi-head attention
(MHA) and node-wise feed-forward (FF) sub-
layer. The graph embedding is computed as the
mean of node embeddings. Best viewed in color.

The encoder that we use (Figure 1) is similar
to the encoder used in the Transformer archi-
tecture by Vaswani et al. (2017), but we do
not use positional encoding such that the re-
sulting node embeddings are invariant to the in-
put order. From the dx-dimensional input fea-
tures xi (for TSP dx = 2), the encoder com-
putes initial dh-dimensional node embeddings
h
(0)
i (we use dh = 128) through a learned

linear projection with parameters W x and bx:
h
(0)
i = W xxi + bx. The embeddings are up-

dated using N attention layers, each consisting
of two sublayers. We denote with h

(`)
i the node

embeddings produced by layer ` ∈ {1, .., N}. The encoder computes an aggregated embedding
h̄(N) of the input graph as the mean of the final node embeddings h

(N)
i : h̄(N) = 1

n

∑n
i=1 h

(N)
i .

Both the node embeddings h(N)
i and the graph embedding h̄(N) are used as input to the decoder.

Attention layer Following the Transformer architecture (Vaswani et al., 2017), each attention
layer consist of two sublayers: a multi-head attention (MHA) layer that executes message passing
between the nodes and a node-wise fully connected feed-forward (FF) layer. Each sublayer adds a
skip-connection (He et al., 2016) and batch normalization (BN) (Ioffe & Szegedy, 2015) (which we
found to work better than layer normalization (Ba et al., 2016)):

ĥi = BN`
(
h
(`−1)
i + MHA`i

(
h
(`−1)
1 , . . . ,h(`−1)

n

))
(2)

h
(`)
i = BN`

(
ĥi + FF`(ĥi)

)
. (3)

The layer index ` indicates that the layers do not share parameters. The MHA sublayer uses M =
8 heads with dimensionality dh

M = 16, and the FF sublayer has one hidden (sub)sublayer with
dimension 512 and ReLu activation. See Appendix A for details.

3.2 DECODER

Decoding happens sequentially, and at timestep t ∈ {1, . . . n}, the decoder outputs the node πt based
on the embeddings from the encoder and the outputs πt′ generated at time t′ < t. During decoding,
we augment the graph with a special context node (c) to represent the decoding context. The decoder
computes an attention (sub)layer on top of the encoder, but with messages only to the context node
for efficiency.1 The final probabilities are computed using a single-head attention mechanism. See
Figure 2 for an illustration of the decoding process.

1n× n attention between all nodes is expensive to compute in every step of the decoding process.

3



Published as a conference paper at ICLR 2019

Figure 2: Attention based decoder for the TSP problem. The decoder takes as input the graph
embedding and node embeddings. At each time step t, the context consist of the graph embedding
and the embeddings of the first and last (previously output) node of the partial tour, where learned
placeholders are used if t = 1. Nodes that cannot be visited (since they are already visited) are
masked. The example shows how a tour π = (3, 1, 2, 4) is constructed. Best viewed in color.

Context embedding The context of the decoder at time t comes from the encoder and the output
up to time t. As mentioned, for the TSP it consists of the embedding of the graph, the previous (last)
node πt−1 and the first node π1. For t = 1 we use learned dh-dimensional parameters vl and vf as
input placeholders:

h
(N)
(c) =

{[
h̄(N),h

(N)
πt−1 ,h

(N)
π1

]
t > 1[

h̄(N),vl,vf
]

t = 1.
(4)

Here [·, ·, ·] is the horizontal concatenation operator and we write the (3 · dh)-dimensional result
vector as h(N)

(c) to indicate we interpret it as the embedding of the special context node (c) and use

the superscript (N) to align with the node embeddings h(N)
i . We could project the embedding back

to dh dimensions, but we absorb this transformation in the parameter WQ in equation 5.

Now we compute a new context node embedding h
(N+1)
(c) using the (M -head) attention mechanism

described in Appendix A. The keys and values come from the node embeddings h(N)
i , but we only

compute a single query q(c) (per head) from the context node (we omit the (N) for readability):

q(c) = WQh(c) ki = WKhi, vi = WV hi. (5)

We compute the compatibility of the query with all nodes, and mask (set u(c)j = −∞) nodes which
cannot be visited at time t. For TSP, this simply means we mask the nodes already visited:

u(c)j =

{
qT
(c)kj√
dk

if j 6= πt′ ∀t′ < t

−∞ otherwise.
(6)

Here dk = dh
M is the query/key dimensionality (see Appendix A). Again, we compute u(c)j and

vi for M = 8 heads and compute the final multi-head attention value for the context node using
equations 12–14 from Appendix A, but with (c) instead of i. This mechanism is similar to our
encoder, but does not use skip-connections, batch normalization or the feed-forward sublayer for
maximal efficiency. The result h(N+1)

(c) is similar to the glimpse described by Bello et al. (2016).

Calculation of log-probabilities To compute output probabilities pθ(πt|s,π1:t−1) in equation 1,
we add one final decoder layer with a single attention head (M = 1 so dk = dh). For this layer, we
only compute the compatibilities u(c)j using equation 6, but following Bello et al. (2016) we clip
the result (before masking!) within [−C,C] (C = 10) using tanh:

u(c)j =

C · tanh

(
qT
(c)kj√
dk

)
if j 6= πt′ ∀t′ < t

−∞ otherwise.
(7)

We interpret these compatibilities as unnormalized log-probabilities (logits) and compute the final
output probability vector p using a softmax (similar to equation 12 in Appendix A):

pi = pθ(πt = i|s,π1:t−1) =
eu(c)i∑
j e
u(c)j

. (8)
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4 REINFORCE WITH GREEDY ROLLOUT BASELINE

Section 3 defined our model that given an instance s defines a probability distribution pθ(π|s), from
which we can sample to obtain a solution (tour) π|s. In order to train our model, we define the loss
L(θ|s) = Epθ(π|s) [L(π)]: the expectation of the cost L(π) (tour length for TSP). We optimize L
by gradient descent, using the REINFORCE (Williams, 1992) gradient estimator with baseline b(s):

∇L(θ|s) = Epθ(π|s) [(L(π)− b(s))∇ log pθ(π|s)] . (9)

A good baseline b(s) reduces gradient variance and therefore increases speed of learning. A simple
example is an exponential moving average b(s) = M with decay β. Here M = L(π) in the first
iteration and gets updated asM ← βM+(1−β)L(π) in subsequent iterations. A popular alternative
is the use of a learned value function (critic) v̂(s,w), where the parameters w are learned from the
observations (s, L(π)). However, getting such actor-critic algorithms to work is non-trivial.

We propose to use a rollout baseline in a way that is similar to self-critical training by Rennie et al.
(2017), but with periodic updates of the baseline policy. It is defined as follows: b(s) is the cost of a
solution from a deterministic greedy rollout of the policy defined by the best model so far.

Motivation The goal of a baseline is to estimate the difficulty of the instance s, such that it can
relate to the cost L(π) to estimate the advantage of the solution π selected by the model. We make
the following key observation: The difficulty of an instance can (on average) be estimated by the
performance of an algorithm applied to it. This follows from the assumption that (on average) an
algorithm will have a higher cost on instances that are more difficult. Therefore we form a baseline
by applying (rolling out) the algorithm defined by our model during training. To eliminate variance
we force the result to be deterministic by selecting greedily the action with maximum probability.

Determining the baseline policy As the model changes during training, we stabilize the baseline
by freezing the greedy rollout policy pθBL for a fixed number of steps (every epoch), similar to freez-
ing of the target Q-network in DQN (Mnih et al., 2015). A stronger algorithm defines a stronger
baseline, so we compare (with greedy decoding) the current training policy with the baseline policy
at the end of every epoch, and replace the parameters θBL of the baseline policy only if the improve-
ment is significant according to a paired t-test (α = 5%), on 10000 separate (evaluation) instances.
If the baseline policy is updated, we sample new evaluation instances to prevent overfitting.

Analysis With the greedy rollout as baseline b(s), the function L(π) − b(s) is negative if the
sampled solution π is better than the greedy rollout, causing actions to be reinforced, and vice
versa. This way the model is trained to improve over its (greedy) self. We see similarities with self-
play improvement (Silver et al., 2017): sampling replaces tree search for exploration and the model
is rewarded if it yields improvement (‘wins’) compared to the best model. Similar to AlphaGo, the
evaluation at the end of each epoch ensures that we are always challenged by the best model.

Algorithm We use Adam (Kingma & Ba, 2015) as optimizer resulting in Algorithm 1.

Algorithm 1 REINFORCE with Rollout Baseline
1: Input: number of epochs E, steps per epoch T , batch size B,

significance α
2: Init θ, θBL ← θ
3: for epoch = 1, . . . , E do
4: for step = 1, . . . , T do
5: si ← RandomInstance() ∀i ∈ {1, . . . , B}
6: πi ← SampleRollout(si, pθ) ∀i ∈ {1, . . . , B}
7: πBL

i ← GreedyRollout(si, pθBL ) ∀i ∈ {1, . . . , B}
8: ∇L ←

∑B
i=1

(
L(πi)− L(πBL

i )
)
∇θ log pθ(πi)

9: θ ← Adam(θ,∇L)
10: end for
11: if OneSidedPairedTTest(pθ, pθBL ) < α then
12: θBL ← θ
13: end if
14: end for

Efficiency Each rollout constitutes an addi-
tional forward pass, increasing computation by
50%. However, as the baseline policy is fixed
for an epoch, we can sample the data and com-
pute baselines per epoch using larger batch
sizes, allowed by the reduced memory require-
ment as the computations can run in pure in-
ference mode. Empirically we find that it adds
only 25% (see Appendix B.5), taking up 20%
of total time. If desired, the baseline rollout can
be computed in parallel such that there is no in-
crease in time per iteration, as an easy way to
benefit from an additional GPU.
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5 EXPERIMENTS

We focus on routing problems: we consider the TSP, two variants of the VRP, the Orienteering
Problem and the (Stochastic) Prize Collecting TSP. These provide a range of different challenges,
constraints and objectives and are traditionally solved by different algorithms. For the Attention
Model (AM), we adjust the input, mask, decoder context and objective function for each problem
(see Appendix for details and data generation) and train on problem instances of n = 20, 50 and 100
nodes. For all problems, we use the same hyperparameters: those we found to work well on TSP.

Hyperparameters We initialize parameters Uniform(−1/
√
d, 1/
√
d), with d the input dimension.

Every epoch we process 2500 batches of 512 instances (except for VRP with n = 100, where we
use 2500 × 256 for memory constraints). For TSP, an epoch takes 5:30 minutes for n = 20, 16:20
for n = 50 (single GPU 1080Ti) and 27:30 for n = 100 (on 2 1080Ti’s). We train for 100 epochs
using training data generated on the fly. We found training to be stable and results to be robust
against different seeds, where only in one case (PCTSP with n = 20) we had to restart training with
a different seed because the run diverged. We use N = 3 layers in the encoder, which we found
is a good trade-off between quality of the results and computational complexity. We use a constant
learning rate η = 10−4. Training with a higher learning rate η = 10−3 is possible and speeds up
initial learning, but requires decay (0.96 per epoch) to converge and may be a bit more unstable.
See Appendix B.5. With the rollout baseline, we use an exponential baseline (β = 0.8) during the
first epoch, to stabilize initial learning, although in many cases learning also succeeds without this
‘warmup’. Our code in PyTorch (Paszke et al., 2017) is publicly available.2

Decoding strategy and baselines For each problem, we report performance on 10000 test in-
stances. At test time we use greedy decoding, where we select the best action (according to the
model) at each step, or sampling, where we sample 1280 solutions (in < 1s on a single GPU) and
report the best. More sampling improves solution quality at increased computation. In Table 1 we
compare greedy decoding against baselines that also construct a single solution, and compare sam-
pling against baselines that also consider multiple solutions, either via sampling or (local) search.
For each problem, we also report the ‘best possible solution’: either optimal via Gurobi (2018)
(intractable for n > 20 except for TSP) or a problem specific state-of-the-art algorithm.

Run times Run times are important but hard to compare: they can vary by two orders of magnitude
as a result of implementation (Python vs C++) and hardware (GPU vs CPU). We take a practical view
and report the time it takes to solve the test set of 10000 instances, either on a single GPU (1080Ti)
or 32 instances in parallel on a 32 virtual CPU system (2×Xeon E5-2630). This is conservative: our
model is parallelizable while most of the baselines are single thread CPU implementations which
cannot parallelize when running individually. Also we note that after training our run time can
likely be reduced by model compression (Hinton et al., 2015). In Table 1 we do not report running
times for the results which were reported by others as they are not directly comparable but we note
that in general our model and implementation is fast: for instance Bello et al. (2016) report 10.3s
for sampling 1280 TSP solutions (K80 GPU) which we do in less than one second (on a 1080Ti).
For most algorithms it is possible to trade off runtime for performance. As reporting full trade-off
curves is impractical we tried to pick reasonable spots, reporting the fastest if results were similar or
reporting results with different time limits (for example we use Gurobi with time limits as heuristic).

5.1 PROBLEMS

Travelling Salesman Problem (TSP) For the TSP, we report optimal results by Gurobi, as well
as by Concorde (Applegate et al., 2006) (faster than Gurobi as it is specialized for TSP) and LKH3
(Helsgaun, 2017), a state-of-the-art heuristic solver that empirically also finds optimal solutions in
time comparable to Gurobi. We compare against Nearest, Random and Farthest Insertion, as well
as Nearest Neighbor, which is the only non-learned baseline algorithm that also constructs a tour di-
rectly in order (i.e. is structurally similar to our model). For details, see Appendix B.3. Additionally
we compare against the learned heuristics in Section 2, most importantly Bello et al. (2016), as well
as OR Tools reported by Bello et al. (2016) and Christofides + 2OPT local search reported by Vinyals

2https://github.com/wouterkool/attention-learn-to-route
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Table 1: Attention Model (AM) vs baselines. The gap % is w.r.t. the best value across all methods.

n = 20 n = 50 n = 100
Method Obj. Gap Time Obj. Gap Time Obj. Gap Time

T
SP

Concorde 3.84 0.00% (1m) 5.70 0.00% (2m) 7.76 0.00% (3m)
LKH3 3.84 0.00% (18s) 5.70 0.00% (5m) 7.76 0.00% (21m)
Gurobi 3.84 0.00% (7s) 5.70 0.00% (2m) 7.76 0.00% (17m)
Gurobi (1s) 3.84 0.00% (8s) 5.70 0.00% (2m) -

Nearest Insertion 4.33 12.91% (1s) 6.78 19.03% (2s) 9.46 21.82% (6s)
Random Insertion 4.00 4.36% (0s) 6.13 7.65% (1s) 8.52 9.69% (3s)
Farthest Insertion 3.93 2.36% (1s) 6.01 5.53% (2s) 8.35 7.59% (7s)
Nearest Neighbor 4.50 17.23% (0s) 7.00 22.94% (0s) 9.68 24.73% (0s)
Vinyals et al. (gr.) 3.88 1.15% 7.66 34.48% -
Bello et al. (gr.) 3.89 1.42% 5.95 4.46% 8.30 6.90%
Dai et al. 3.89 1.42% 5.99 5.16% 8.31 7.03%
Nowak et al. 3.93 2.46% - -
EAN (greedy) 3.86 0.66% (2m) 5.92 3.98% (5m) 8.42 8.41% (8m)
AM (greedy) 3.85 0.34% (0s) 5.80 1.76% (2s) 8.12 4.53% (6s)

OR Tools 3.85 0.37% 5.80 1.83% 7.99 2.90%
Chr.f. + 2OPT 3.85 0.37% 5.79 1.65% -
Bello et al. (s.) - 5.75 0.95% 8.00 3.03%
EAN (gr. + 2OPT) 3.85 0.42% (4m) 5.85 2.77% (26m) 8.17 5.21% (3h)
EAN (sampling) 3.84 0.11% (5m) 5.77 1.28% (17m) 8.75 12.70% (56m)
EAN (s. + 2OPT) 3.84 0.09% (6m) 5.75 1.00% (32m) 8.12 4.64% (5h)
AM (sampling) 3.84 0.08% (5m) 5.73 0.52% (24m) 7.94 2.26% (1h)

C
V

R
P

Gurobi 6.10 0.00% - -
LKH3 6.14 0.58% (2h) 10.38 0.00% (7h) 15.65 0.00% (13h)

RL (greedy) 6.59 8.03% 11.39 9.78% 17.23 10.12%
AM (greedy) 6.40 4.97% (1s) 10.98 5.86% (3s) 16.80 7.34% (8s)

RL (beam 10) 6.40 4.92% 11.15 7.46% 16.96 8.39%
Random CW 6.81 11.64% 12.25 18.07% 18.96 21.18%
Random Sweep 7.08 16.07% 12.96 24.91% 20.33 29.93%
OR Tools 6.43 5.41% 11.31 9.01% 17.16 9.67%
AM (sampling) 6.25 2.49% (6m) 10.62 2.40% (28m) 16.23 3.72% (2h)

SD
V

R
P RL (greedy) 6.51 4.19% 11.32 6.88% 17.12 5.23%

AM (greedy) 6.39 2.34% (1s) 10.92 3.08% (4s) 16.83 3.42% (11s)

RL (beam 10) 6.34 1.47% 11.08 4.61% 16.86 3.63%
AM (sampling) 6.25 0.00% (9m) 10.59 0.00% (42m) 16.27 0.00% (3h)

O
P

(d
is

ta
nc

e)

Gurobi 5.39 0.00% (16m) - -
Gurobi (1s) 4.62 14.22% (4m) 1.29 92.03% (6m) 0.58 98.25% (7m)
Gurobi (10s) 5.37 0.33% (12m) 10.96 32.20% (51m) 1.34 95.97% (53m)
Gurobi (30s) 5.38 0.05% (14m) 13.57 16.09% (2h) 3.23 90.28% (3h)
Compass 5.37 0.36% (2m) 16.17 0.00% (5m) 33.19 0.00% (15m)

Tsili (greedy) 4.08 24.25% (4s) 12.46 22.94% (4s) 25.69 22.59% (5s)
AM (greedy) 5.19 3.64% (0s) 15.64 3.23% (1s) 31.62 4.75% (5s)

GA (Python) 5.12 4.88% (10m) 10.90 32.59% (1h) 14.91 55.08% (5h)
OR Tools (10s) 4.09 24.05% (52m) - -
Tsili (sampling) 5.30 1.62% (28s) 15.50 4.14% (2m) 30.52 8.05% (6m)
AM (sampling) 5.30 1.56% (4m) 16.07 0.60% (16m) 32.68 1.55% (53m)

PC
T

SP

Gurobi 3.13 0.00% (2m) - -
Gurobi (1s) 3.14 0.07% (1m) - -
Gurobi (10s) 3.13 0.00% (2m) 4.54 1.36% (32m) -
Gurobi (30s) 3.13 0.00% (2m) 4.48 0.03% (54m) -

AM (greedy) 3.18 1.62% (0s) 4.60 2.66% (2s) 6.25 4.46% (5s)

ILS (C++) 3.16 0.77% (16m) 4.50 0.36% (2h) 5.98 0.00% (12h)
OR Tools (10s) 3.14 0.05% (52m) 4.51 0.70% (52m) 6.35 6.21% (52m)
OR Tools (60s) 3.13 0.01% (5h) 4.48 0.00% (5h) 6.07 1.56% (5h)
ILS (Python 10x) 5.21 66.19% (4m) 12.51 179.05% (3m) 23.98 300.95% (3m)
AM (sampling) 3.15 0.45% (5m) 4.52 0.74% (19m) 6.08 1.67% (1h)

SP
C

T
SP REOPT (all) 3.34 2.38% (17m) 4.68 1.04% (2h) 6.22 1.10% (12h)

REOPT (half) 3.31 1.38% (25m) 4.64 0.00% (3h) 6.16 0.00% (16h)
REOPT (first) 3.31 1.60% (1h) 4.66 0.44% (22h) -
AM (greedy) 3.26 0.00% (0s) 4.65 0.33% (2s) 6.32 2.69% (5s)
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et al. (2015). Results for Dai et al. (2017) are (optimistically) computed from the optimality gaps
they report on 15-20, 40-50 and 50-100 node graphs, respectively. Using a single greedy construc-
tion we outperform traditional baselines and we are able to achieve significantly closer to optimal
results than previous learned heuristics (from around 1.5% to 0.3% above optimal for n = 20). Nat-
urally, the difference with Bello et al. (2016) gets diluted when sampling many solutions (as with
many samples even a random policy performs well), but we still obtain significantly better results,
without tuning the softmax temperature. For completeness, we also report results from running the
Encode-Attend-Navigate (EAN) code3 which is concurrent work by Deudon et al. (2018) (for details
see Appendix B.4). Our model outperforms EAN, even if EAN is improved with 2OPT local search.
Appendix B.5 presents the results visually, including generalization results for different n.

Vehicle Routing Problem (VRP) In the Capacitated VRP (CVRP) (Toth & Vigo, 2014), each
node has a demand and multiple routes should be constructed (starting and ending at the depot),
such that the total demand of the nodes in each route does not exceed the vehicle capacity. We also
consider the Split Delivery VRP (SDVRP), which allows to split customer demands over multiple
routes. We implement the datasets described by Nazari et al. (2018) and compare against their
Reinforcement Learning (RL) framework and the strongest baselines they report. Comparing greedy
decoding, we obtain significantly better results. We cannot directly compare our sampling (1280
samples) to their beam search with size 10 (they do not report sampling or larger beam sizes), but
note that our greedy method also outperforms their beam search in most (larger) cases, getting (in<1
second/instance) much closer to LKH3 (Helsgaun, 2017), a state-of-the-art algorithm which found
best known solutions to CVRP benchmarks. See Appendix C.4 for greedy example solution plots.

Orienteering Problem (OP) The OP (Golden et al., 1987) is an important problem used to model
many real world problems. Each node has an associated prize, and the goal is to construct a single
tour (starting and ending at the depot) that maximizes the sum of prizes of nodes visited while being
shorter than a maximum (given) length. We consider the prize distributions proposed in Fischetti
et al. (1998): constant, uniform (in Appendix D.4), and increasing with the distance to the depot,
which we report here as this is the hardest problem. As ‘best possible solution’ we report Gurobi (in-
tractable for n > 20) and Compass, the recent state-of-the-art Genetic Algorithm (GA) by Kobeaga
et al. (2018), which is only 2% better than sampling 1280 solutions with our method (objective is
maximization). We outperform a Python GA4 (which seems not to scale), as well the construction
phase of the heuristic by Tsiligirides (1984) (comparing greedy or 1280 samples) which is struc-
turally similar to the one learned by our model. OR Tools fails to find feasible solutions in a few
percent of the cases for n > 20.

Prize Collecting TSP (PCTSP) In the PCTSP (Balas, 1989), each node has not only an associated
prize, but also an associated penalty. The goal is to collect at least a minimum total prize, while
minimizing the total tour length plus the sum of penalties of unvisited nodes. This problem is
difficult as an algorithm has to trade off the penalty for not visiting a node with the marginal cost/tour
length of visiting (which depends on the other nodes visited), while also satisfying the minimum total
prize constraint. We compare against OR Tools with 10 or 60 seconds of local search, as well as open
source C++5 and Python6 implementations of Iterated Local Search (ILS). Although the Attention
Model does not find better solutions than OR Tools with 60s of local search, it finds almost equally
good results in significantly less time. The results are also within 2% of the C++ ILS algorithm (but
obtained much faster), which was the best open-source algorithm for PCTSP we could find.

Stochastic PCTSP (SPCTSP) The Stochastic variant of the PCTSP (SPCTSP) we consider shows
how our model can deal with uncertainty naturally. In the SPCTSP, the expected node prize is
known upfront, but the real collected prize only becomes known upon visitation. With penalties, this
problem is a generalization of the stochastic k-TSP (Ene et al., 2018). Since our model constructs
a tour one node at the time, we only need to use the real prizes to compute the remaining prize
constraint. By contrast, any algorithm that selects a fixed tour may fail to satisfy the prize constraint
so an algorithm must be adaptive. As a baseline, we implement an algorithm that plans a tour,

3https://github.com/MichelDeudon/encode-attend-navigate
4https://github.com/mc-ride/orienteering
5https://github.com/jordanamecler/PCTSP
6https://github.com/rafael2reis/salesman
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executes part of it and then re-optimizes using the C++ ILS algorithm. We either execute all node
visits (so planning additional nodes if the result does not satisfy the prize constraint), half of the
planned node visits (for O(log n) replanning iterations) or only the first node visit, for maximum
adaptivity. We observe that our model outperforms all baselines for n = 20. We think that failure
to account for uncertainty (by the baselines) in the prize might result in the need to visit one or two
additional nodes, which is relatively costly for small instances but relatively cheap for larger n. Still,
our method is beneficial as it provides competitive solutions at a fraction of the computational cost,
which is important in online settings.

5.2 ATTENTION MODEL VS. POINTER NETWORK AND DIFFERENT BASELINES

Figure 3: Held-out validation set optimality
gap as a function of the number of epochs for
the Attention Model (AM) and Pointer Net-
work (PN) with different baselines (two dif-
ferent seeds).

Figure 3 compares the performance of the TSP20
Attention Model (AM) and our implementation of
the Pointer Network (PN) during training. We use
a validation set of size 10000 with greedy decod-
ing, and compare to using an exponential (β = 0.8)
and a critic (see Appendix B.1) baseline. We used
two random seeds and a decaying learning rate of
η = 10−3 × 0.96epoch. This performs best for the
PN, while for the AM results are similar to using
η = 10−4 (see Appendix B.5). This clearly illus-
trates how the improvement we obtain is the result
of both the AM and the rollout baseline: the AM
outperforms the PN using any baseline and the roll-
out baseline improves the quality and convergence
speed for both AM and PN. For the PN with critic
baseline, we are unable to reproduce the 1.5% reported by Bello et al. (2016) (also when using an
LSTM based critic), but our reproduction is closer than others have reported (Dai et al., 2017; Nazari
et al., 2018). In Table 1 we compare against the original results. Compared to the rollout baseline,
the exponential baseline is around 20% faster per epoch, whereas the critic baseline is around 13%
slower (see Appendix B.5), so the picture does not change significantly if time is used as x-axis.

6 DISCUSSION

In this work we have introduced a model and training method which both contribute to significantly
improved results on learned heuristics for TSP and additionally learned strong (single construc-
tion) heuristics for multiple routing problems, which are traditionally solved by problem-specific
approaches. We believe that our method is a powerful starting point for learning heuristics for other
combinatorial optimization problems defined on graphs, if their solutions can be described as se-
quential decisions. In practice, operational constraints often lead to many variants of problems for
which no good (human-designed) heuristics are available such that the ability to learn heuristics
could be of great practical value.

Compared to previous works, by using attention instead of recurrence (LSTMs) we introduce invari-
ance to the input order of the nodes, increasing learning efficiency. Also this enables paralleliza-
tion, for increased computational efficiency. The multi-head attention mechanism can be seen as
a message passing algorithm that allows nodes to communicate relevant information over different
channels, such that the node embeddings from the encoder can learn to include valuable information
about the node in the context of the graph. This information is important in our setting where deci-
sions relate directly to the nodes in a graph. Being a graph based method, our model has increased
scaling potential (compared to LSTMs) as it can be applied on a sparse graph and operate locally.

Scaling to larger problem instances is an important direction for future research, where we think we
have made an important first step by using a graph based method, which can be sparsified for im-
proved computational efficiency. Another challenge is that many problems of practical importance
have feasibility constraints that cannot be satisfied by a simple masking procedure, and we think it is
promising to investigate if these problems can be addressed by a combination of heuristic learning
and backtracking. This would unleash the potential of our method, already highly competitive to the
popular Google OR Tools project, to an even larger class of difficult practical problems.
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A ATTENTION MODEL DETAILS

Figure 4: Illustration of weighted message passing using a dot-attention mechanism. Only compu-
tation of messages received by node 1 are shown for clarity. Best viewed in color.

Attention mechanism We interpret the attention mechanism by Vaswani et al. (2017) as a
weighted message passing algorithm between nodes in a graph. The weight of the message value
that a node receives from a neighbor depends on the compatibility of its query with the key of the
neighbor, as illustrated in Figure 4. Formally, we define dimensions dk and dv and compute the key
ki ∈ Rdk , value vi ∈ Rdv and query qi ∈ Rdk for each node by projecting the embedding hi:

qi = WQhi, ki = WKhi, vi = WV hi. (10)
Here parameters WQ and WK are (dk× dh) matrices and WV has size (dv× dh). From the queries
and keys, we compute the compatibility uij ∈ R of the query qi of node i with the key kj of node
j as the (scaled, see Vaswani et al. (2017)) dot-product:

uij =

{
qT
i kj√
dk

if i adjacent to j
−∞ otherwise.

(11)

In a general graph, defining the compatibility of non-adjacent nodes as −∞ prevents message pass-
ing between these nodes. From the compatibilities uij , we compute the attention weights aij ∈ [0, 1]
using a softmax:

aij =
euij∑
j′ e

uij′
. (12)

Finally, the vector h′i that is received by node i is the convex combination of messages vj :

h′i =
∑
j

aijvj . (13)

Multi-head attention As was noted by Vaswani et al. (2017) and Velickovic et al. (2018), it is
beneficial to have multiple attention heads. This allows nodes to receive different types of messages
from different neighbors. Especially, we compute the value in equation 13 M = 8 times with
different parameters, using dk = dv = dh

M = 16. We denote the result vectors by h′im for m ∈
1, . . . ,M . These are projected back to a single dh-dimensional vector using (dh × dv) parameter
matrices WO

m . The final multi-head attention value for node i is a function of h1, . . . ,hn through
h′im:

MHAi(h1, . . . ,hn) =

M∑
m=1

WO
mh′im. (14)

Feed-forward sublayer The feed-forward sublayer computes node-wise projections using a hid-
den (sub)sublayer with dimension dff = 512 and a ReLu activation:

FF(ĥi) = W ff,1 · ReLu(W ff,0ĥi + bff,0) + bff,1. (15)

Batch normalization We use batch normalization with learnable dh-dimensional affine parame-
ters wbn and bbn:

BN(hi) = wbn � BN(hi) + bbn. (16)
Here� denotes the element-wise product and BN refers to batch normalization without affine trans-
formation.
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B TRAVELLING SALESMAN PROBLEM

B.1 CRITIC ARCHITECTURE

The critic network architecture uses 3 attention layers similar to our encoder, after which the node
embeddings are averaged and processed by an MLP with one hidden layer with 128 neurons and
ReLu activation and a single output. We used the same learning rate as for the AM/PN in all exper-
iments.

B.2 INSTANCE GENERATION

For all TSP instances, the n node locations are sampled uniformly at random in the unit square.
This distribution is chosen to be neither easy nor artificially hard and to be able to compare to other
learned heuristics.

B.3 DETAILS OF BASELINES

This section describes details of the heuristics implemented for the TSP. All of the heuristics con-
struct a single tour in a single pass, by extending a partial solution one node at the time.

Nearest neighbor The nearest neighbor heuristic represents the partial solution as a path with a
start and end node. The initial path is formed by a single node, selected randomly, which becomes
the start node but also the end node of the initial path. In each iteration, the next node is selected as
the node nearest to the end node of the partial path. This node is added to the path and becomes the
new end node. Finally, after all nodes are added this way, the end node is connected with the start
node to form a tour. In our implementation, for deterministic results we always start with the first
node in the input, which can be considered random as the instances are generated randomly.

Farthest/nearest/random insertion The insertion heuristics represent a partial solution as a tour,
and extends it by inserting nodes one node at the time. In our implementation, we always insert
the node using the cheapest insertion cost. This means that when node i is inserted, the place of
insertion (between adjacent nodes j and k in the tour) is selected such that it minimizes the insertion
costs dji + dik − djk, where dji, dik and djk represent the distances from node j to i, i to k and j
to k, respectively.

The different variants of the insertion heuristic vary in the way in which the node which is inserted
is selected. Let S be the set of nodes in the partial tour. Nearest insertion inserts the node i that is
nearest to (any node in) the tour:

i∗ = arg min
i 6∈S

min
j∈S

dij . (17)

Farthest insertion inserts the node i such that the distance to the tour (i.e. the distance from i to the
nearest node j in the tour) is maximized:

i∗ = arg max
i 6∈S

min
j∈S

dij . (18)

Random insertion inserts a random node. Similar to nearest neighbor, we consider the input order
random so we simply insert the nodes in this order.

B.4 COMPARISON TO CONCURRENT WORK

Independently of our work, Deudon et al. (2018) also developed a model for TSP based on the
Transformer (Vaswani et al., 2017). There are important differences to this paper:

• As ‘context’ for the decoder, Deudon et al. (2018) use the embeddings of the last K = 3
visited nodes. We use only the last (e.g. K = 1) node but add the first visited node (as well
as the graph embedding), since the first node is important (it is the destination) while the
order of the other nodes is irrelevant as we explain in Section 3.
• Deudon et al. (2018) use a critic as baseline (which also uses the Transformer architecture).

We also experiment with using a critic (based on the Transformer architecture), but found
that using a rollout baseline is much more effective (see Section 5).
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• Deudon et al. (2018) report results with sampling 128 solutions, with and without 2OPT
local search. We report results without 2OPT, using either a single greedy solution or
sampling 1280 solutions and additionally show how this directly improves performance
compared to Bello et al. (2016).
• By adding 2OPT on top of the best sampled solution, Deudon et al. (2018) show that

the model does not produce a local optimum and results can improve by using a ‘hybrid’
approach of a learned algorithm with local search. This is a nice example of combining
learned and traditional heuristics, but it is not compared against using the Pointer Network
(Bello et al., 2016) with 2OPT.
• The model of Deudon et al. (2018) uses a higher dimensionality internally in the decoder

(for details see their paper). Training is done with 20000 steps with a batch size of 256.
• Deudon et al. (2018) apply Principal Component Analysis (PCA) on the input coordinates

to eliminate rotation symmetry whereas we directly input node coordinates.
• Additionally to TSP, we also consider two variants of VRP, the OP with different prize

distributions and the (stochastic) PCTSP.

We want to emphasize that this is independent work, but for completeness we include a full emperi-
cal comparison of performance. Since the results presented in the paper by Deudon et al. (2018) are
not directly comparable, we ran their code7 and report results under the same circumstances: using
greedy decoding and sampling 1280 solutions on our test dataset (which has exactly the same gen-
erative procedure, e.g. uniform in the unit square). Additionally, we include results of their model
with 2OPT, showing that (even without 2OPT) final performance of our model is better. We use
the hyperparameters in their code, but increase the batch size to 512 and number of training steps
to 100 × 2500 = 250000 for a fair comparison (this increased the performance of their model).
As training with n = 100 gave out-of-memory errors, we train only on n = 20 and n = 50 and
(following Deudon et al. (2018)) report results for n = 100 using the model trained for n = 50. The
training time as well as test run times are comparable.

B.5 EXTENDED RESULTS

Hyperparameters We found in general that using a larger learning rate of 10−3 works better with
decay but may be unstable in some cases. A smaller learning rate 10−4 is more stable and does not
require decay. This is illustrated in Figure 6, which shows validation results over time using both
10−3 and 10−4 with and without decay for TSP20 and TSP50 (2 seeds). As can be seen, without
decay the method has not yet fully converged after 100 epochs and results may improve even further
with longer training.

Table 2 shows the results in absolute terms as well as the relative optimality gap compared to Gurobi,
for all runs using seeds 1234 and 1235 with the two different learning rate schedules. We did not
run final experiments for n = 100 with the larger learning rate as we found training with the smaller
learning rate to be more stable. It can be seen that in most cases the end results with different
learning rate schedules are similar, except for the larger models (N = 5, N = 8) where some of the
runs diverged using the larger learning rate. Experiments with different number of layers N show
that N = 3 and N = 5 achieve best performance, and we find N = 3 is a good trade-off between
quality of the results and computational complexity (runtime) of the model.

Generalization We test generalization performance on different n than trained for, which we plot
in Figure 5 in terms of the relative optimality gap compared to Gurobi. The train sizes are indicated
with vertical marker bars. The models generalize when tested on different sizes, although quality
degrades as the difference becomes bigger, which can be expected as there is no free lunch (Wolpert
& Macready, 1997). Since the architectures are the same, these differences mean the models learn
to specialize on the problem sizes trained for. We can make a strong overall algorithm by selecting
the trained model with highest validation performance for each instance size n (marked in Figure 5
by the red bar). For reference, we also include the baselines, where for the methods that perform
search or sampling we do not connect the dots to prevent cluttering and to make the distinction with
methods that consider only a single solution clear.

7https://github.com/MichelDeudon/encode-attend-navigate
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Table 2: Epoch durations and results and with different seeds and learning rate schedules for TSP.

epoch η = 10−4 η = 10−3 × 0.96epoch

time seed = 1234 seed = 1235 seed = 1234 seed = 1235

TSP20 5:30 3.85 (0.34%) 3.85 (0.29%) 3.85 (0.33%) 3.85 (0.32%)
TSP50 16:20 5.80 (1.76%) 5.79 (1.66%) 5.81 (2.02%) 5.81 (2.00%)
TSP100 (2GPUs) 27:30 8.12 (4.53%) 8.10 (4.34%) - -

N = 0 3:10 4.24 (10.50%) 4.26 (10.95%) 4.25 (10.79%) 4.24 (10.55%)
N = 1 3:50 3.87 (0.97%) 3.87 (1.01%) 3.87 (0.90%) 3.87 (0.89%)
N = 2 5:00 3.85 (0.40%) 3.85 (0.44%) 3.85 (0.38%) 3.85 (0.39%)
N = 3 5:30 3.85 (0.34%) 3.85 (0.29%) 3.85 (0.33%) 3.85 (0.32%)
N = 5 7:00 3.85 (0.25%) 3.85 (0.28%) 3.85 (0.30%) 10.43 (171.82%)
N = 8 10:10 3.85 (0.28%) 3.85 (0.33%) 10.43 (171.82%) 10.43 (171.82%)

AM / Exponential 4:20 3.87 (0.95%) 3.87 (0.93%) 3.87 (0.90%) 3.87 (0.87%)
AM / Critic 6:10 3.87 (0.96%) 3.87 (0.97%) 3.87 (0.88%) 3.87 (0.88%)
AM / Rollout 5:30 3.85 (0.34%) 3.85 (0.29%) 3.85 (0.33%) 3.85 (0.32%)

PN / Exponential 5:10 3.95 (2.94%) 3.94 (2.80%) 3.92 (2.09%) 3.93 (2.37%)
PN / Critic 7:30 3.95 (3.00%) 3.95 (2.93%) 3.91 (2.01%) 3.94 (2.84%)
PN / Rollout 6:40 3.93 (2.46%) 3.93 (2.36%) 3.90 (1.63%) 3.90 (1.78%)

Figure 5: Optimality gap of different methods as a function of problem size n ∈
{5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 125}. General baselines are drawn using dashed lines
while learned algorithms are drawn with a solid line. Algorithms (general and learned) that per-
form search or sampling are plotted without connecting lines for clarity. The *, **, *** and ****
indicate that values are reported from Bello et al. (2016), Vinyals et al. (2015), Dai et al. (2017) and
Nowak et al. (2017) respectively. Best viewed in color.

(a) TSP20, four schedules for η (2 seeds) (b) TSP50, four schedules for η (2 seeds)

Figure 6: Validation set optimality gap as a function of the number of epochs for different η.
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C VEHICLE ROUTING PROBLEM

The Capacitated Vehicle Routing Problem (CVRP) is a generalization of the TSP in which case there
is a depot and multiple routes should be created, each starting and ending at the depot. In our graph
based formulation, we add a special depot node with index 0 and coordinates x0. A vehicle (route)
has capacity D > 0 and each (regular) node i ∈ {1, . . . n} has a demand 0 < δi ≤ D. Each route
starts and ends at the depot and the total demand in each route should not exceed the capacity, so∑
i∈Rj

δi ≤ D, where Rj is the set of node indices assigned to route j. Without loss of generality,

we assume a normalized D̂ = 1 as we can use normalized demands δ̂i = δi
D .

The Split Delivery VRP (SDVRP) is a generalization of CVRP in which every node can be visited
multiple times, and only a subset of the demand has to be delivered at each visit. Instances for both
CVRP and SDVRP are specified in the same way: an instance with size n as a depot location x0, n
node locations xi, i = 1 . . . n and (normalized) demands 0 < δ̂i ≤ 1, i = 1 . . . n.

C.1 INSTANCE GENERATION

We follow Nazari et al. (2018) in the generation of instances for n = 20, 50, 100, but normalize the
demands by the capacities. The depot location as well as n node locations are sampled uniformly at
random in the unit square. The demands are defined as δ̂i = δi

Dn where δi is discrete and sampled
uniformly from {1, . . . , 9} and D20 = 30, D50 = 40 and D100 = 50.

C.2 ATTENTION MODEL FOR THE VRP

Encoder In order to allow our Attention Model to distinguish the depot node from the regular
nodes, we use separate parameters W x

0 and bx
0 to compute the initial embedding h

(0)
0 of the depot

node. Additionally, we provide the normalized demand δi as input feature (and adjust the size of
parameter W x accordingly):

h
(0)
i =

{
W x

0xi + bx
0 i = 0

W x
[
xi, δ̂i

]
+ bx i = 1, . . . , n.

(19)

Capacity constraints To facilitate the capacity constraints, we keep track of the remaining de-
mands δ̂i,t for the nodes i ∈ {1, . . . n} and remaining vehicle capacity D̂t at time t. At t = 1, these
are initialized as δ̂i,t = δ̂i and D̂t = 1, after which they are updated as follows (recall that πt is the
index of the node selected at decoding step t):

δ̂i,t+1 =

{
max(0, δ̂i,t − D̂t) πt = i

δ̂i,t πt 6= i
(20)

D̂t+1 =

{
max(D̂t − δ̂πt,t, 0) πt 6= 0

1 πt = 0.
(21)

If we do not allow split deliveries, δ̂i,t will be either 0 or δ̂i for all t.

Decoder context The context for the decoder for the VRP at time t is the current/last location
πt−1 and the remaining capacity D̂t. Compared to TSP, we do not need placeholders if t = 1 as the
route starts at the depot and we do not need to provide information about the first node as the route
should end at the depot:

h
(N)
(c) =


[
h̄(N),h

(N)
πt−1 , D̂t

]
t > 1[

h̄(N),h
(N)
0 , D̂t

]
t = 1.

(22)

Masking The depot can be visited multiple times, but we do not allow it to be visited at two
subsequent timesteps. Therefore, in both layers of the decoder, we change the masking for the depot
j = 0 and define u(c)0 = −∞ if (and only if) t = 1 or πt−1 = 0. The masking for the nodes

17
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depends on whether we allow split deliveries. Without split deliveries, we do not allow nodes to
be visited if their remaining demand is 0 (if the node was already visited) or exceeds the remaining
capacity, so for j 6= 0 we define u(c)j = −∞ if (and only if) δ̂i,t = 0 or δ̂i,t > D̂t. With split
deliveries, we only forbid delivery when the remaining demand is 0, so we define u(c)j = −∞ if
(and only if) δ̂i,t = 0.

Split deliveries Without split deliveries, the remaining demand δ̂i,t is either 0 or δ̂i, corresponding
to whether the node has been visited or not, and this information is conveyed to the model via the
masking of the nodes already visited. However, when split deliveries are allowed, the remaining
demand δ̂i,t can take any value 0 ≤ δ̂i,t ≤ δ̂i. This information cannot be included in the context
node as it corresponds to individual nodes. Therefore we include it in the computation of the keys
and values in both the attention layer (glimpse) and the output layer of the decoder, such that we
compute queries, keys and values using:

q(c) = WQh(c) ki = WKhi +WK
d δ̂i,t, vi = WV hi +WV

d δ̂i,t. (23)

Here we WK
d and WV

d are (dk × 1) parameter matrices and we define δ̂i,t = 0 for the depot
i = 0. Summing the projection of both hi and δ̂i,t is equivalent to projecting the concatenation
[hi, δ̂i,t] with a single ((dh + 1) × dk) matrix WK . However, using this formulation we only need
to compute the first term once (instead for every t) and by the weight initialization this puts more
importance on δ̂i,t initially (which is otherwise just 1 of dh + 1 = 129 input values).

Training For the VRP, the length of the output of the model depends on the number of times the
depot is visited. In general, the depot is visited multiple times, and in the case of SDVRP also some
regular nodes are visited twice. Therefore the length of the solution is larger than n, which requires
more memory such that we find it necessary to limit the batch size B to 256 for n = 100 (on 2
GPUs). To keep training times tractable and the total number of parameter updates equal, we still
process 2500 batches per epoch, for a total of 0.64M training instances per epoch.

C.3 DETAILS OF BASELINES

For LKH38 by Helsgaun (2017) we build and run their code with the SPECIAL parameter as spec-
ified in their CVRP runscript9. We perform 1 run with a maximum of 10000 trials, as we found
performing 10 runs only marginally improves the quality of the results while taking much more
time.

C.4 EXAMPLE SOLUTIONS

Figure 7 shows example solutions for the CVRP with n = 100 that were obtained by a single
construction using the model with greedy decoding. These visualizations give insight in the heuristic
that the model has learned. In general we see that the model constructs the routes from the bottom to
the top, starting below the depot. Most routes are densely packed, except for the last route that has
to serve some remaining (close to each other) customers. In most cases, the node in the route that is
farthest from the depot is somewhere in the middle of the route, such that customers are served on
the way to and from the farthest nodes. In some cases, we see that the order of stops within some
individual routes is suboptimal, which means that the method will likely benefit from simple further
optimizations on top, such as a beam search, a post-processing procedure based on local search (e.g.
2OPT) or solving the individual routes using a TSP solver.

8http://akira.ruc.dk/˜keld/research/LKH-3/
9run CVRP in http://akira.ruc.dk/˜keld/research/LKH-3/BENCHMARKS/CVRP.tgz
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(a) (b)

(c) (d)

(e) (f)

Figure 7: Example greedy solutions for the CVRP (n = 100). Edges from and to depot omitted
for clarity. Legend order/coloring and arcs indicate the order in which the solution was generated.
Legends indicate the number of stops, the used and available capacity and the distance per route.
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D ORIENTEERING PROBLEM

In the Orienteering Problem (OP) each node has a prize ρi and the goal is to maximize the total
prize of nodes visited, while keeping the total length of the route below a maximum length T . This
problem is different from the TSP and the VRP because visiting each node is optional. Similar to the
VRP, we add a special depot node with index 0 and coordinates x0. If the model selects the depot,
we consider the route to be finished. In order to prevent infeasible solutions, we only allow to visit
a node if after visiting that node a return to the depot is still possible within the maximum length
constraint. Note that it is always suboptimal to visit the depot if additional nodes can be visited, but
we do not enforce this knowledge.

D.1 INSTANCE GENERATION

The depot location as well as n node locations are sampled uniformly at random in the unit square.
For the distribution of the prizes, we consider three different variants described by Fischetti et al.
(1998), but we normalize the prizes ρi such that the normalized prizes ρ̂i are between 0 and 1.

Constant ρi = ρ̂i = 1. Every node has the same prize so the goal becomes to visit as many nodes
as possible within the length constraint.

Uniform ρi ∼ DiscreteUniform(1, 100), ρ̂i = ρi
100 . Every node has a prize that is (discretized)

uniform.

Distance ρi = 1+
⌊
99 · d0i

maxn
j=1 d0j

⌋
, ρ̂i = ρi

100 , where d0i is the distance from the depot to node i.
Every node has a (discretized) prize that is proportional to the distance to the depot. This is designed
to be challenging as the largest prizes are furthest away from the depot (Fischetti et al., 1998).

The maximum length Tn for instances with n nodes (and a depot) is chosen to be (on average)
approximately half of the length of the average TSP tour for uniform TSP instances with n nodes10.
This idea is that this way approximately (a little more than) half of the nodes can be visited, which
results in the most difficult problem instances (Vansteenwegen et al., 2011). This is because the
number of possible node selections

(
n
k

)
is maximized if k = n

2 and additionally determining the
actual path is harder with more nodes selected. We set fixed maximum lengths T 20 = 2, T 50 = 3
and T 100 = 4 instead of adjusting the constraint per instance, such that for some instances more or
less nodes can be visited. Note that Tn has the same unit as the node coordinates xi, so we do not
normalize them.

D.2 ATTENTION MODEL FOR THE OP

Encoder Similar to the VRP, we use separate parameters for the depot node embedding. Addi-
tionally, we provide the node prize ρ̂i as input feature:

h
(0)
i =

{
W x

0xi + bx
0 i = 0

W x [xi, ρ̂i] + bx i = 1, . . . , n.
(24)

Max length constraint In order to satisfy the max length constraint, we keep track of the remain-
ing max length Tt at time t. Starting at t = 1, T1 = T . Then for t > 0, T is updated as

Tt+1 = Tt − dπt−1,πt
. (25)

Here dπt−1,πt
is the distance from node πt−1 to πt and we conveniently define π0 = 0 as we start at

the depot.

Decoder context The context for the decoder for the OP at time t is the current/last location πt−1
and the remaining max length Tt. Similar to VRP, we do not need placeholders if t = 1 as the route
starts at the depot and we do not need to provide information about the first node as the route should

10The average length of the optimal TSP tour is 3.84, 5.70 and 7.76 for n = 20, 50, 100.
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end at the depot. We do not need to provide information on the prizes gathered as this is irrelevant
for the remaining decisions. The context is defined as:

h
(N)
(c) =


[
h̄(N),h

(N)
πt−1 , Tt

]
t > 1[

h̄(N),h
(N)
0 , Tt

]
t = 1.

(26)

Masking In the OP, the depot node can always be visited so is never masked. Regular nodes are
masked (i.e. cannot be visited) if either they are already visited or if they cannot be visited within
the remaining length constraint:

u(c)j = −∞⇔ ∃t′ < t : πt′ = j or dπt−1,j + dj0 > Tt (27)

D.3 DETAILS OF BASELINES

For Compass11 by Kobeaga et al. (2018), we compile their code and run it with default parameters,
only adding --op --op-ea4op to indicate that the Genetic Algorithm for the Orienteering Prob-
lem should be used. As Compass uses integer coordinates and prizes, we multiply all floats by 107

and round to integers. We run the Python Genetic Algorithm12 with default parameters.

Tsiligirides Tsiligirides (1984) describes a heuristic procedure for solving the OP. It consists of
sampling 3000 tours through a randomized construction procedure and applies local search on top.
The randomized construction part of the heuristic is structurally exactly the same as the heuristic
learned by our model, but with a manually engineered function to define the node probabilities.
We implement the construction part of the heuristic and compare it to our model (either greedy or
sampling 1280 solutions), without the local search (as this can also be applied on top of our model).
The final heuristic used by Tsiligirides (1984) uses a formula with multiple terms to define the
probability that a node should be selected, but by tuning the weights the form with only one simple
term works best, showing the difficulty of manually defining a good probability distribution. In our
terms, the heuristic defines a score si for each node at time t as the prize divided by the distance
from the current node πt−1, raised to the 4th power:

si =

(
ρ̂i

dπt−1,i

)4

. (28)

Let S be the set with the min(4, n − (t − 1)) unvisited nodes with maximum score si. Then the
node probabilities pi at time t are defined as

pi = pθ(πt = i|s,π1:t−1) =

{
si∑

j∈S sj
if i ∈ S

0 otherwise.
(29)

OR Tools For the Google OR Tools implementation, we modify the formulation for the CVRP13:

• We replace the Manhattan distance by the Euclidian distance.
• We set the number of vehicles to 1.
• For each individual node i, we add a Disjunction constraint with {i} as the set of nodes,

and a penalty equal to the prize ρ̂i. This allows OR tools to skip node i at a cost ρ̂i.
• We replace the capacity constraint by a maximum distance. constraint
• We remove the objective to minimize the length.

We multiply all float inputs by 107 and round to integers. Note that OR Tools computes penalties for
skipped nodes rather than gains for nodes that are visited. The problem is equivalent, but in order
to compare the objective value against our method, we need to add the constant sum of all penalties∑
i ρ̂i to the OR Tools objective.
11https://github.com/bcamath-ds/compass
12https://github.com/mc-ride/orienteering
13https://github.com/google/or-tools/blob/master/examples/python/cvrp.py
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D.4 EXTENDED RESULTS Table 3: Additional results for the OP

Method 20 50 100

O
P

(c
on

st
an

t)

Gurobi 10.57 (4m) - -
Compass 10.56 (55s) 29.58 (3m) 59.35 (8m)

Tsili (greedy) 8.82 (5s) 23.89 (4s) 47.65 (5s)
AM (greedy) 10.27 (0s) 28.31 (2s) 55.81 (5s)

GA (Python) 9.72 (10m) 18.52 (1h) 25.68 (5h)
OR Tools (10s) 8.54 (52m) - -
Tsili (sampling) 10.48 (28s) 28.26 (2m) 54.27 (6m)
AM (sampling) 10.49 (4m) 29.36 (17m) 58.33 (56m)

O
P

(u
ni

fo
rm

)

Gurobi 5.85 (7m) - -
Compass 5.84 (1m) 16.46 (5m) 33.30 (14m)

Tsili (greedy) 4.85 (4s) 12.80 (4s) 25.48 (5s)
AM (greedy) 5.60 (0s) 15.62 (2s) 31.03 (5s)

GA (Python) 5.53 (10m) 10.81 (1h) 14.89 (5h)
OR Tools (10s) 4.69 (52m) - -
Tsili (sampling) 5.70 (26s) 15.28 (2m) 29.54 (5m)
AM (sampling) 5.76 (4m) 16.25 (16m) 32.41 (51m)

Table 3 displays the results for the OP with constant
and uniform prize distributions. The results are sim-
ilar to the results for the prize distribution based on
the distance to the depot, although by the calculation
time for Gurobi it is confirmed that indeed constant
and uniform prize distributions are easier.

E PRIZE COLLECTING TSP

In the Prize Collecting TSP (PCTSP) each node has
a prize ρi and an associated penalty βi. The goal is to
minimize the total length of the tour plus the sum of
penalties for nodes which are not visited, while col-
lecting at least a given minimum total prize. W.l.o.g.
we assume the minimum total prize is equal to 1 (as
prizes can be normalized). This problem is related to the OP but inverts the goal (minimizing tour
length given a minimum total prize to collect instead of maximizing total prize given a maximum
tour length) and additionally adds penalties. Again, we add a special depot node with index 0 and
coordinates x0 and if the model selects the depot, the route is finished. In the PCTSP, it can be
beneficial to visit additional nodes, even if the minimum total prize constraint is already satisfied, in
order to avoid penalties.

E.1 INSTANCE GENERATION

The depot location as well as n node locations are sampled uniformly at random in the unit square.
Similar to the OP, we select the distribution for the prizes and penalties with the idea that for difficult
instances approximately half of the nodes should be visited. Additionally, neither the prize nor the
penalty should dominate the node selection process.

Prizes We consider uniformly distributed prizes. If we sample prizes ρi ∼ Uniform(0, 1), then
E(ρi) = 1

2 , and the expected total prize of any subset of n
2 nodes (i.e. half of the nodes) would be

n
4 . Therefore, if S is the set of nodes that is visited, we require that

∑
i∈S ρi ≥

n
4 , or equivalently∑

i∈S ρ̂i ≥ 1 where ρ̂i = ρi· 4n is the normalized prize. Note that it can be the case that
∑n
i=1 ρ̂i < 1,

in which case the prize constraint may be violated but it is only allowed to return to the depot after
all nodes have been visited.

Penalties If penalties are too small, then node selection is determined almost entirely by the min-
imum total prize constraint. If penalties are too large, we will always visit all nodes, making the
minimum total prize constraint obsolete. We argue that in order for the penalties to be meaning-
ful, they should contribute a term in the objective approximately equal to the total length of the
tour. If Ln is the expected TSP tour length with n nodes, we try to achieve this by sampling
βi ∼ Uniform(0, 2 · L

n

n ) such that E(βi) = Ln

n and the expected total penalty for a subset of n
2

nodes is Ln

2 . Following the numbers we use for the OP, we roughly define Ln

2 ≈ Kn = 2, 3, 4 for
n = 20, 50, 10014. This means that we should sample βi ∼ Uniform(0, 4 · K

n

n ), but empirically
we find that β̂i ∼ Uniform(0, 3 · K

n

n ) works better, which means that the prizes and penalties are
balanced as the minimum total prize constraint is sometimes binding and sometimes not.

14The average length of the optimal TSP tour is 3.84, 5.70 and 7.76 for n = 20, 50, 100.
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E.2 ATTENTION MODEL FOR THE PCTSP

Encoder Again, we use separate parameters for the depot node embedding. Additionally, we
provide the node prize ρ̂i and the penalty β̂i as input features:

h
(0)
i =

{
W x

0xi + bx
0 i = 0

W x
[
xi, ρ̂i, β̂i

]
+ bx i = 1, . . . , n.

(30)

Minimum prize constraint In order to satisfy the minimum total prize constraint, we keep track
of the remaining total prize Pt to collect at time t. At t = 1, P1 = 1 (as we normalized prizes).
Then for t > 0, P is updated as

Pt+1 = max(0, Pt − ρ̂πt). (31)

If the constraint is satisfied after visiting πt is visited at time t, then Pt+1 will be 0.

Decoder context The context for the decoder for the PCTSP at time t is the current/last location
πt−1 and the remaining prize to collect Pt. Again, we do not need placeholders if t = 1 as the route
starts at the depot and we do not need to provide information about the first node as the route should
end at the depot. The information about the prizes collected is implicitly provided to the model in
the form of Pt and we do not need to provide any information about the penalties as this is irrelevant
for the remaining decisions:

h
(N)
(c) =


[
h̄(N),h

(N)
πt−1 , Pt

]
t > 1[

h̄(N),h
(N)
0 , Pt

]
t = 1.

(32)

Masking In the PCTSP, the depot node cannot be visited if the remaining prize to collect Pt is
larger than 0 and not yet all nodes have been visited (so t ≤ n):

u(c)0 = −∞⇔ Pt > 0 and t ≤ n. (33)

Regular nodes are masked (i.e. cannot be visited) only if they are already visited:

u(c)j = −∞⇔ ∃t′ < t : πt′ = j. (34)

E.3 DETAILS OF BASELINES

For the C++ Iterated Local Search (ILS) algorithm15, we perform 1 run as this takes already 2
minutes per instance (single thread) on average. For the Python ILS algorithm16 we perform 10 runs
as this algorithm is fast. This improved results somewhat for n = 20.

OR Tools For the Google OR Tools implementation, we modify the formulation for the CVRP17:

• We replace the Manhattan distance by the Euclidian distance.

• We set the number of vehicles to 1.

• For each individual node i, we add a Disjunction constraint with {i} as the set of nodes,
and a penalty equal to the penalty β̂i. This allows OR tools to skip node i at a cost β̂i.

• We replace the capacity constraint by a minimum total prize constraint by adding the prizes
as a Dimension.

We multiply all float inputs by 107 and round to integers. Note that we keep the total length objective
from the CVRP and add the Disjunction constraint with penalties to obtain the right objective.

15https://github.com/jordanamecler/PCTSP
16https://github.com/rafael2reis/salesman
17https://github.com/google/or-tools/blob/master/examples/python/cvrp.py
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F STOCHASTIC PCTSP (SPCTSP)

For the SPCTSP, we assume that the real prize collected ρ̂∗i at each node only becomes known when
visiting the node, and ρ̂i = E [ρ̂∗i ] is the expected prize. We assume the real prizes follow a uniform
distribution, so ρ̂∗i ∼ Uniform(0, 2ρ̂i).

F.1 ATTENTION MODEL FOR THE SPCTSP

In order to apply the Attention Model to the Stochastic PCTSP, the only change we need is that we
use the real ρ̂∗i to update the remaining prize to collect Pt in equation 31:

Pt+1 = max(0, Pt − ρ̂∗πt
). (35)

We could theoretically use the model trained for PCTSP without retraining, but we choose to retrain.
This way the model could (for example) learn that if it needs to gather a remaining (normalized)
prize of 0.1, it might prefer to visit a node with expected prize 0.2 over a node with expected prize
0.1 as the first real prize will be≥ 0.1 with probability 75% (uniform prizes) whereas the latter only
with 50% and thus has a probability of 50% to not satisfy the constraint.

F.2 ROLLOUT BASELINE IN THE STOCHASTIC SETTING

Instead of sampling the real prizes online, we already sample them when creating the dataset but
keep them hidden to the algorithm. This way, when using a rollout baseline, both the greedy rollout
baseline as well as the sample (rollout) from the model use the same real prizes, such that any
difference between the two is not a result of stochasticity. This can be seen as a variant of using
Common Random Numbers for variance reduction (Glasserman & Yao, 1992).

F.3 DETAILS OF BASELINES

For the SPCTSP, it is not possible to formulate an exact model that constructs a tour offline (as any
tour can be infeasible with nonzero probability) and an algorithm that computes the optimal decision
online should take into account an infinite number of scenarios. As a baseline we implement a
strategy that:

1. Plans a tour using the expected prizes ρ̂i
2. Executes part of the tour (not returning to the depot), observing the real prizes ρ̂∗i
3. Computes the remaining total prize that needs to be collected
4. Computes a new tour (again using expected prizes ρ̂i), starting from the last node that was

visited, through nodes that have not yet been visited and ending at the depot
5. Repeats the steps (2) - (4) above until the minimum total prize has been collected or all

nodes have been visited
6. Returns to the depot

Planning of the tours using deterministic prizes means we need to solve a (deterministic) PCTSP,
for which we use the ILS C++ algorithm as this was the strongest algorithm for PCTSP (for large
n). Note that in (4), we have a variant of the PCTSP where we do not have a single depot, but rather
separate start and end points, whereas the ILS C++ implementation assumes starting and ending at
a single depot. However, as the ILS C++ implementation uses a distance matrix, we can effectively
plan with a start and end node by defining the distance from the ‘depot’ to node j as the distance
from the start node (the last visited node) to node j, whereas we leave the distance from node j to the
depot/end node unchanged (so the distance matrix becomes asymmetrical). Additionally, we remove
all nodes (rows/columns in the distance matrix) that have already been visited from the problem.

We consider three variants that differ in the number of nodes that are visited before replanning the
tour, for a tradeoff between adaptivity and run time:

1. All nodes in the planned tour are visited (except the final return to the depot). We only need
to replan and visit additional nodes if the constraint is not satisfied, otherwise we return to
the depot.
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2. Half of the nodes in the planned tour are visited, where we visit k nodes if there are 2k+ 1
nodes (excluding the return to the depot), so we round down if an odd number of visits is
planned. This way, we will have O(log n) replanning iterations, while being more adaptive
when we are closer to satisfying the total prize constraint. This is a trade-off of adaptivity
vs computation time.

3. Only the first node is visited, after which we directly replan. This allows the algorithm to
take new online information about the real prizes into account directly, but is very expensive
to compute as it requires O(n) iterations.
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