
Under review as a conference paper at ICLR 2020

MULTI-HOP QUESTION ANSWERING VIA
REASONING CHAINS

Anonymous authors
Paper under double-blind review

ABSTRACT

Multi-hop question answering requires models to gather information from differ-
ent parts of a text to answer a question. Most current approaches learn to address
this task in an end-to-end way with neural networks, without maintaining an ex-
plicit representation of the reasoning process. We propose a method to extract
a discrete reasoning chain over the text, which consists of a series of sentences
leading to the answer. We then feed the extracted chains to a BERT-based QA
model (Devlin et al., 2018) to do final answer prediction. Critically, we do not
rely on gold annotated chains or “supporting facts:” at training time, we derive
pseudogold reasoning chains using heuristics based on named entity recognition
and coreference resolution. Nor do we rely on these annotations at test time, as our
model learns to extract chains from raw text alone. We test our approach on two
recently proposed large multi-hop question answering datasets: WikiHop (Welbl
et al., 2018) and HotpotQA (Yang et al., 2018), and achieve state-of-art perfor-
mance on WikiHop and strong performance on HotpotQA. Our analysis shows
properties of chains that are crucial for high performance: in particular, modeling
extraction sequentially is important, as is dealing with each candidate sentence
in a context-aware way. Furthermore, human evaluation shows that our extracted
chains allow humans to give answers with high confidence, indicating that these
are a strong intermediate abstraction for this task.

1 INTRODUCTION

As high performance has been achieved in simple question answering settings (Rajpurkar et al.,
2016), work on question answering has increasingly gravitated towards questions that require more
complex reasoning to solve. Multi-hop question answering datasets explicitly require aggregating
clues from different parts of some given documents (Dua et al., 2019; Welbl et al., 2018; Yang et al.,
2018; Jansen et al., 2018; Khashabi et al., 2018). Earlier question answering datasets contain some
questions of this form (Richardson et al., 2013; Lai et al., 2017), but typically exhibit a limited range
of multi-hop phenomena. Designers of multi-hop datasets aim to test a range of reasoning types
(Yang et al., 2018) and, ideally, systems should have to behave in a very specific way in order to
do well. However, Chen & Durrett (2019) and Min et al. (2019a) show that models achieving high
performance may not actually be performing the expected kinds of reasoning. Partially this is due to
the difficulty of evaluating intermediate model components such as attention (Jain & Wallace, 2019),
but it also suggests that models may need inductive bias if they are to solve this problem “correctly.”

In this work, we propose a step in this direction, with a two-stage model that identifies intermediate
reasoning chains and then separately determines the answer. A reasoning chain is a sequence of
sentences that logically connect the question to a fact relevant (or partially relevant) to giving a
reasonably supported answer. Figure 1 shows an example of what such chains look like. Extracting
chains gives us a discrete intermediate output of the reasoning process, which can help us gauge our
model’s behavior beyond just final task accuracy. Formally, our extractor model scores sequences
of sentences and produces an n-best list of chains via beam search.

To find the right answer, we need to maintain uncertainty over this chain set, since the correct
one may not immediately be evident, and for certain types of questions, information across multiple
chains may even be relevant. Sifting through the retrieved information to actually identify the answer
requires deeper, more expensive computation. We employ a second-stage answer module, a BERT-

1

Under review as a conference paper at ICLR 2020

Question: What government position was held by the woman who portrayed Corliss
Archer in the film Kiss and Tell ? Answer: Chief of Protocol

…

D
O

C
 1

D
O

C
 2

D
O

C
 3

Shirley Temple
Shirley Temple

Reasoning Chain 1 Reasoning Chain 2

q
<latexit sha1_base64="b+n3e1YQEa9MneUTanzPe56IiCk=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7Ow6M2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJb3ZpygH9GB5CFn1Fip/tgrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+ANzrjPk=</latexit>

q
<latexit sha1_base64="b+n3e1YQEa9MneUTanzPe56IiCk=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHxRHbRRI9ELx4hkUcCGzI79MLI7Ow6M2tCCF/gxYPGePWTvPk3DrAHBSvppFLVne6uIBFcG9f9dnJr6xubW/ntws7u3v5B8fCoqeNUMWywWMSqHVCNgktsGG4EthOFNAoEtoLR7cxvPaHSPJb3ZpygH9GB5CFn1Fip/tgrltyyOwdZJV5GSpCh1it+dfsxSyOUhgmqdcdzE+NPqDKcCZwWuqnGhLIRHWDHUkkj1P5kfuiUnFmlT8JY2ZKGzNXfExMaaT2OAtsZUTPUy95M/M/rpCa89idcJqlByRaLwlQQE5PZ16TPFTIjxpZQpri9lbAhVZQZm03BhuAtv7xKmpWyd1Gu1C9L1ZssjjycwCmcgwdXUIU7qEEDGCA8wyu8OQ/Oi/PufCxac042cwx/4Hz+ANzrjPk=</latexit>

s2<latexit sha1_base64="2cgpsriT0FZ86jLi3IGR6sef+Ng=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2ZQG5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68Ttq1qndVrd3XK41GHkcRzuAcLsGDa2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAGSo2e</latexit>

s3
<latexit sha1_base64="RGXpO6Tx8L+45HjaO/VMPkvKdAA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ/qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeONnXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qlev1u6vKo1GHkcRzuAcLsGDa2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAHzo2f</latexit>

s4<latexit sha1_base64="gAxHST9sy43JiO13q0F5JVdsmPk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ/qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeONnXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qndVrd3XK41GHkcRzuAcLsGDa2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAJUo2g</latexit>

s5
<latexit sha1_base64="DCrHV9bORddGGwhkg5emZBnzAKA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoseCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPtX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeONnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1fVur1PI4inMApnIMH11CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAK1o2h</latexit>

s6
<latexit sha1_base64="ZaC3xE1RKNMajjQh/K6JbNHD3Tc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPtX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeONnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1fVur1PI4inMApnIMH11CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAMWo2i</latexit>

s1<latexit sha1_base64="W7Id2l0MH4BcMRVBaWeDvCHaXr8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2bgDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u7rlUYjj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwTGjZ0=</latexit>

s2<latexit sha1_base64="2cgpsriT0FZ86jLi3IGR6sef+Ng=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2ZQG5QrbtVdgKwTLycVyNEclL/6w5ilEVfIJDWm57kJ+hnVKJjks1I/NTyhbEJHvGepohE3frY4dUYurDIkYaxtKSQL9fdERiNjplFgOyOKY7PqzcX/vF6K4Y2fCZWkyBVbLgpTSTAm87/JUGjOUE4toUwLeythY6opQ5tOyYbgrb68Ttq1qndVrd3XK41GHkcRzuAcLsGDa2jAHTShBQxG8Ayv8OZI58V5dz6WrQUnnzmFP3A+fwAGSo2e</latexit>

s3
<latexit sha1_base64="RGXpO6Tx8L+45HjaO/VMPkvKdAA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0laQY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ/qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeONnXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qlev1u6vKo1GHkcRzuAcLsGDa2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAHzo2f</latexit>

s4<latexit sha1_base64="gAxHST9sy43JiO13q0F5JVdsmPk=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsJ+3SzSbsboQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ7dzvPKHSPJaPZpqgH9GR5CFn1FjpQQ/qg3LFrboLkHXi5aQCOZqD8ld/GLM0QmmYoFr3PDcxfkaV4UzgrNRPNSaUTegIe5ZKGqH2s8WpM3JhlSEJY2VLGrJQf09kNNJ6GgW2M6JmrFe9ufif10tNeONnXCapQcmWi8JUEBOT+d9kyBUyI6aWUKa4vZWwMVWUGZtOyYbgrb68Ttq1qndVrd3XK41GHkcRzuAcLsGDa2jAHTShBQxG8Ayv8OYI58V5dz6WrQUnnzmFP3A+fwAJUo2g</latexit>

s5
<latexit sha1_base64="DCrHV9bORddGGwhkg5emZBnzAKA=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoseCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPtX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeONnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1fVur1PI4inMApnIMH11CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAK1o2h</latexit>

s6
<latexit sha1_base64="ZaC3xE1RKNMajjQh/K6JbNHD3Tc=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqqMeCF48V7Qe0oWy2k3bpZhN2N0IJ/QlePCji1V/kzX/jts1BWx8MPN6bYWZekAiujet+O4W19Y3NreJ2aWd3b/+gfHjU0nGqGDZZLGLVCahGwSU2DTcCO4lCGgUC28H4dua3n1BpHstHM0nQj+hQ8pAzaqz0oPtX/XLFrbpzkFXi5aQCORr98ldvELM0QmmYoFp3PTcxfkaV4UzgtNRLNSaUjekQu5ZKGqH2s/mpU3JmlQEJY2VLGjJXf09kNNJ6EgW2M6JmpJe9mfif101NeONnXCapQckWi8JUEBOT2d9kwBUyIyaWUKa4vZWwEVWUGZtOyYbgLb+8Slq1qndRrd1fVur1PI4inMApnIMH11CHO2hAExgM4Rle4c0Rzovz7nwsWgtOPnMMf+B8/gAMWo2i</latexit>

s1<latexit sha1_base64="W7Id2l0MH4BcMRVBaWeDvCHaXr8=">AAAB6nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY8FLx4r2g9oQ9lsN+3SzSbsToQS+hO8eFDEq7/Im//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNMbud+54lrI2L1iNOE+xEdKREKRtFKD2bgDcoVt+ouQNaJl5MK5GgOyl/9YczSiCtkkhrT89wE/YxqFEzyWamfGp5QNqEj3rNU0YgbP1ucOiMXVhmSMNa2FJKF+nsio5Ex0yiwnRHFsVn15uJ/Xi/F8MbPhEpS5IotF4WpJBiT+d9kKDRnKKeWUKaFvZWwMdWUoU2nZEPwVl9eJ+1a1buq1u7rlUYjj6MIZ3AOl+DBNTTgDprQAgYjeIZXeHOk8+K8Ox/L1oKTz5zCHzifPwTGjZ0=</latexit>

Ki
ss

 an
d

Te
ll

Corl
iss

 Arch
er

Entity Link:In-Doc Coref Link:

“A Kiss for Corliss” is a sequel to the film “Kiss and Tell”.

It stars Shirley Temple in her final starring role …

Kiss and Tell is a film in which 17-year-old Shirley Temple acts as Corliss Archer.

Shirley Temple Black was an American actress, businesswoman, and diplomat …

As an adult, she served as the Chief of Protocol of the United States …

She began her diplomatic career in 1969, when she represented …

Figure 1: A multi-hop example chosen from the HotpotQA development set. Several documents
are given as context to answer a question. We show two possible “reasoning chains” that leverage
connections (shared entities or coreference relations) between sentences to arrive at the answer. The
first chain is most appropriate, while the second requires a less well-supported inferential leap.

based QA system (Devlin et al., 2018), which can be run relatively cheaply given the pruned context.
Our approach resembles past models for coarse-to-fine question answering (Choi et al., 2017; Min
et al., 2018; Wang et al., 2019), but explores the context in a sequential fashion and is trained to
produce principled chains.

To train our model, we heuristically label examples with reasoning chains. We use a search pro-
cedure leveraging coreference and named entity recognition (NER) to find a path from the start
sentence to an end sentence through a graph of related sentences. Constructing this graph requires
running an NER system at train time, but does not rely on the answer or answer candidates (Kundu
et al., 2018). Our system also does not require these annotations at test time, operating instead from
raw text.

Our chain identification is effective and flexible: we can use it to derive supervision on two existing
datasets, and on HotpotQA (Yang et al., 2018), we found that these derived chains are essentially
as effective as the ground-truth supporting fact sets labeled in the dataset. In terms of final question
answering accuracy, on the WikiHop dataset (Welbl et al., 2018), our approach achieves state-of-the-
art performance by a substantial margin, and on HotpotQA, we achieve strong results and outperform
several recent published systems.

Our contributions are as follows: (1) We present a method for extracting oracle reasoning chains for
multi-hop reasoning tasks. These chains are grounded in simple types of reasoning and generalize
across multiple datasets. (2) We present a model that learns from these chains at train time and at test
time can produce a list of chains. These are fed into a simple downstream model (BERT) to extract
a final answer. (3) Results on two large datasets show strong performance by our chain extraction
and show that our chains are intrinsically a good representation of evidence for question answering.

2 QUESTION ANSWERING VIA CHAIN EXTRACTION

We describe our notion of chain extraction in more detail. A reasoning chain is a sequence of
sentences that logically connect the question to a fact relevant to determining the answer. Two
adjacent sentences in a reasoning chain should be intuitively related: they should exhibit a shared
entity or event, temporal structure, or some other kind of textual relation that would allow a human
reader to connect the information they contain.

Figure 1 shows an example of possible reasoning chains of an real example. In this case, we need to
find information about the actor who played Corliss Archer in Kiss and Tell. These question entities
may appear in multiple places in the text, and it is generally difficult to know which entity mentions
might eventually lead to text containing the answer. If we arrive at s4 and find the new entity Shirley
Temple, we then need to determine what government position she held, which in this case can be
found by two additional steps. Other reasoning chains could theoretically lead to this answer, such
as the second chain: Shirley Temple starred in the sequel to Kiss and Tell, which might lead us to
infer that Shirley Temple also plays Corliss Archer in Kiss and Tell. Although less justified, we also

2

Under review as a conference paper at ICLR 2020

view this as a valid reasoning chain. However, in general, there are also “connected” sequences of
sentences that don’t imply the answer; for example, they are connected by an entity which is not
related to the question.

In determining this chain, we largely used information about entity coreference to connect the rel-
evant pieces: either cross-document coreference about Shirley Temple or resolution of various pro-
nouns. Another relevant cue is that subsequent information about Shirley Temple in Document
1 occurs later in the discourse, which in this case reflects temporal structure. However, solving
coreference or temporal relation extraction in general is neither necessary nor sufficient to do chain
extraction. Therefore, we design our system so that it does not rely on coreference at test time, but
can instead directly extract reasoning chains based on what it has learned at training time.

Having established this notion of a reasoning chain, we have three questions to answer. First, how
can we automatically select pseudo-ground-truth reasoning chains? Second, how do we model the
chain extraction process? Third, how do we take one or more extracted chains and turn them into a
final answer? We answer these three questions in the next section.

3 LEARNING TO EXTRACT CHAINS

3.1 HEURISTIC ORACLE CHAIN CONSTRUCTION

Following the intuition in Figure 1, we assume that there are two relevant connections between
sentences that can form reasoning chains. First, the presence of a shared entity often implies some
kind of connection. This is not always a sufficient clue, since common entities like United States
may occur in otherwise unrelated sentences; however, because this oracle is only used at train time,
it does not need to be 100% reliable for the model to learn a chain extraction procedure. Second, we
assume that any two sentences in the same paragraph are connected; this is often true on the basis
of coreference or other kinds of bridging anaphora, but these may be hard to identify automatically.

We derive heuristic reasoning chains by searching over a graph which is constructed based on these
factors. Each sentence si is represented as a node i in the graph. We run an off-the-shelf named entity
recognition system to extract all entities for each sentence. If sentence i and sentence j contain a
shared entity based on string match, we add an edge between node i and j. We then also add an
edge between all pairs of sentence within the same paragraph.1

Starting from the question node, we do an exhaustive search to find all possible chains that could
lead to the answer. This process yields a set of possible chains with different lengths; two examples
are shown in Figure 1. We use two different criteria to select heuristic oracles:

• Shortest Path: We simply take the shortest chain from the chain set as our oracle.

• Question Overlap: We compute the Rouge-F1 score for each chain’s sentences with respect
to the question and take the chain with the highest score. This encourages selection of more
complete answer chains which address all of the question’s parts without finding shortcuts.

3.2 CHAIN EXTRACTION MODEL

Our chain extractor is a neural network that takes the input documents and questions as input and
returns a variable-length sequence of sentence pointers as output.

The processing flow of our chain extractor can be divided into two main parts: sentence encoding
and chain prediction as shown in Figure 2.

Sentence Encoding Given a document containing n paragraphs and a question, we first con-
catenate the question with each paragraph and then encode them using the pre-trained BERT en-
coder (Devlin et al., 2018). We denote the encoded ith paragraph as pi. We also encode the question
by itself with BERT, denoting as q. To compute the representation of a sentence, we extract it from

1We do not explicitly run a coreference system here since current coreference systems often introduce
spurious arcs. Moreover, cross-document links can nearly always be found by exact string match, and since we
add all within-paragraph links, exactly determining the coreference status of every mention is not needed.

3

Under review as a conference paper at ICLR 2020

Figure 2: The BERT-Para variant of our proposed chain extractor. Left side: we encode each doc-
ument paragraph jointly with the question and use pooling to form sentence representations. Right
side: a pointer network extracts a sequence of sentences.

the encoded paragraph. Suppose sentence j in the document is the jth sentence of paragraph i.
Then sj = Span Extractor(pi, sSTART

j , sEND
j). For simplicity, we choose max-pooling as our span

extractor, though other choices are possible. We name this scheme of sentence representation as
BERT-Para. This paragraph-factored model is much more efficient and scalable than attempting
to run BERT on the full context, as full contexts can be thousands of words long. We also explore
an even more factored version where each sentence is concatenated with the question and encoded
independently, which we denote as BERT-Sent. Finally, instead of using BERT as the sentence
encoder, we use a bidirectional attention layer between the passage and question (Seo et al., 2017)
as a baseline; we call this model BiDAF-Para.

Chain Prediction We treat all the encoded sentence representations as a bag of sentences and
adopt an LSTM-based pointer network (Vinyals et al., 2015) to extract the reasoning chain, shown
on the right side of Figure 2. At the first time step, we initialize the hidden state h0 in the pointer
network using the max-pooled representation of the question q, and feed a special token SOS as the
first input.

Let c1, . . . , cl denote the indices of sentences to include in the reasoning chain. At time step t, we
compute the probability of sentence i being chosen as P (ct = i|c1, . . . , ct−1, s) = softmax(α)[i],
where αi = W[ht−1; sct−1 ;ht−1 � sct−1], and W is a weight matrix to be learned.

Training the Chain Extractor During training, the loss for time step t is the negative log like-
lihood of the target sentence c∗t for that time step: losst = − log(P (c∗t)|c∗1, . . . , c∗t−1s). We also
explored training with reinforcement learning. For the two datasets we considered, pre-training with
our oracle and fine-tuning with policy gradient this did not lead to an improvement. Pure oracle
chain extraction appears strong enough for the model to learn the needed associations across chain
timesteps, but this may not be true on other datasets.

At evaluation time, we use beam search to explore a set of possible chains, which results in a set of
chains c1, c2, ..., ck, with each chain containing different number of sentences.

3.3 ANSWER PREDICTION

Since different beams may contain different plausible reasoning chains as shown in Figure 1, we
consider the sentences in the top k beams predicted by our chain extractor as input to our answer
prediction model. Different datasets may require different modifications of the basic BERT model
as well as different types of reasoning, so we present the answer prediction module in the following
section.

4 EXPERIMENTAL SETUP

4.1 DATASETS

WikiHop Welbl et al. (2018) introduced this English dataset specially designed for text under-
standing across multiple documents. The dataset consists of around 40k questions, answers, and
passages. Questions in this dataset are multiple-choice with around 10 choices on average.

4

Under review as a conference paper at ICLR 2020

HotpotQA Yang et al. (2018) proposed a new dataset with 113k English Wikipedia-based
question-answer pairs. Similar to WikiHop, questions require finding and reasoning over multi-
ple supporting documents to answer. Different from WikiHop, models should choose answers by
selecting variable-length spans from these documents. Sentences relevant to finding the answer are
annotated as “supporting facts” in the dataset.

4.2 IMPLEMENTATION DETAILS

Oracle chain extraction We use the off-the-shelf NER system from AllenNLP (Gardner et al.,
2017). We treat any entity that appears explicitly more than 5 times across sentences as a common
entity,2 and ignore it when we build the graph. Because these documents are only short snippets
from Wikipedia, this criterion is loose enough to keep most useful mentions.

Chain extractor We use the uncased BERT tokenizer to tokenize both question and paragraphs.
We use the pretrained bert-base-uncased model and fine-tune it using Adam with a fixed
learning rate of 5e-6. At test time, we produce our chains using beam search with beam size 5.

Answer prediction We concatenate the question and the combined chains from previous step in
the top k beams in the standard way as described in the original BERT paper Devlin et al. (2018)
and encode it using the pre-trained BERT model. We denote its [CLS] token as [CLS]p.

WikiHop is a multiple-choice dataset. Since we need to choose an answer from a candidate list, we
encode each candidate with BERT. The [CLS] token for candidate i is denoted as [CLS]Ci

. We then
compute the score of a candidate Ci being choose as the dot product between [CLS]p and [CLS]Ci

.

HotpotQA is a span-based question answering task, where finding the answer requires predicting
the start and end of a span in the context. We compute distributions over these positions via two
learned weight matrices Wstart and Wend. Each position in the concatenated sequence except the
[CLS] token is multiplied by the corresponding weight matrix and softmaxed. Since we also need
to predict the question type on HotpotQA (to handle yes/no questions vs. span extraction ones),
we predict the type by taking the dot product of [CLS]p with a trainable matrix Wtype. We use
bert-large-uncased instead of bert-base-uncased in the answer prediction module.
We use the same optimizer and learning rate as chain extractor.

5 RESULTS

In this section we aim to answer two main questions. First, which of our proposed chain extraction
techniques is most effective, and how do they compare? Second, how does our approach compare
to state-of-the-art models on these datasets? Finally, can we evaluate our extracted chains intrinsi-
cally: how important is ordering and how well do they align with human intuition about question
answering?

5.1 COMPARISON OF CHAIN EXTRACTION METHODS

In this section, we study the characteristics of our extracted chains with several experiments focused
on HotpotQA. We choose this dataset since it provides human-annotated supporting facts so we can
directly compare these against our model.

Several statistics are shown in Table 1. For different combinations of our model and which choice
of chain oracle we use, we calculate several statistics, as described in the caption. We have the
following observations:

Using more context helps chain extractors to find relevant sentences. Comparing BERT-Para
and BERT-Sent, we find that with all other parts fixed and only by encoding more context, we im-
prove the answer prediction performance by around 5%. This may indicate that BERT can capture
cross sentence relations such as coreference and find more supporting evidence as a result. The

2These mentions are often extremely common entities like U.S., which are likely to introduce spurious edges
rather than good ones.

5

Under review as a conference paper at ICLR 2020

Model Oracle Avg Length Answer Found Supp F1 Answer F1

Oracle Shortest 1.6 93.6 58.5 -
Oracle Q-Overlap 1.9 93.6 63.9 -
Oracle Supp Facts 2.4 100.0 100.0 75.4

BERT-Para Q-Overlap 2.0 76.3 64.5 66.0
BERT-Para Shortest 1.5 74.1 56.8 65.5
BERT-Sent Shortest 1.7 72.5 53.1 60.2
BiDAF-Para Shortest 1.4 62.0 52.4 58.1

BERT-Para (top 5) Q-Overlap 3.2 88.1 65.6 70.3

Table 1: The characteristics of different chains generated by different models under different super-
vision on the HotpotQA dev set: for different models and chain oracles, we report the average chain
length, fraction of chains containing the answer, F1 with respect to the annotated supporting facts,
and F1 on the final QA task. Here we only pick the chain in the first beam.

comparison with BiDAF-Para vs. BERT-Sent also indicates this. Despite finding many fewer an-
swer candidates (62% instead of 72%), BiDAF-Para only achieves around 2% lower performance.
One possible explanation to this is that without context, the BERT extraction model may pick up
“distractor” sentences related to the question but which do not actually lead to the answer, potentially
confusing the answer prediction module and cause a drop on the performance.

The one-best chain often contains the answer. This demonstrates the effectiveness of our chain
extractor: the BERT-Para model with just 2 extracted sentences can locate the answer 76% of the
time. We further analyze the quality of these chains in the following sections. Note that this is nearly
the same amount of evidence as in the human-labeled supporting facts (2.4 sentences on average);
the difference can be explained by cases where the model can jump directly to the answer (Chen &
Durrett, 2019).

Q-Overlap helps recover more supporting evidence. The main difference between our Shortest
oracle and the Q-Overlap oracle is that Q-Overlap contains additional relevant sentences besides the
one containing the answer. As a result, models trained with Q-Overlap should also yield a higher F1
score with respect to the supporting facts, which is supported by the results (64 vs. 56).

Performance can be improved by taking a union across multiple chains In the last row, we
show a version of BERT-Para where the top 5 chains in the beam have been unioned together and
truncated to 5 sentences. These top 5 chains contain permutations of roughly the same sentences, so
this does not greatly increase the average length. However, this greatly increases answer recall and
downstream F1. One reason is that this maintains uncertainty over the correct reasoning chain and
can seamlessly handle question types involving comparison of multiple entities, which are difficult
to address with a single reasoning chain of the sort presented in Figure 1.

5.2 RESULTS COMPARED TO OTHER SYSTEMS

We evaluate our best system from the prior section (BERT-Para with top-5 chains) on the blind test
sets of our two datasets. Performance is shown in Table 2. On WikiHop, our model significantly
outperforms past models, although these models do not use BERT. For HotpotQA, we use RoBERTa
(Liu et al., 2019) weights as the pretrained model instead of BERT, which gives a performance gain.
Our model also achieves strong performance compared to past models, including outperforming
those which use labeled supporting facts 3. This indicates that our heuristically-extracted chains can
stand in effectively for this supervision, which suggests that our approach can generalize to settings
where this annotation is not available.

5.3 EVALUATION OF CHAINS

Ordered extraction outperforms unordered extraction One question we can ask is how impor-
tant ordered chain extraction is versus just selecting “chain-like” sentences in an unordered fashion.

3Performance for other unpublished works can be find on the leader board: https://hotpotqa.github.io

6

Under review as a conference paper at ICLR 2020

dev test

GCN (De Cao et al., 2018) 64.8 67.6
BAG (Cao et al., 2019) 66.5 69.0

CFC (Zhong et al., 2019) 66.4 70.6
JDReader (Tu et al., 2019) 68.1 70.9

DynSAN (Zhuang & Wang, 2019) 70.1 71.4
BERT-Para (top 5) 72.2 76.5

EM F1 Supp?

BiDAF++ (Yang et al., 2018) 45.60 59.02 Y
DecompRC (Min et al., 2019b) 55.20 69.63 N

QFE (Nishida et al., 2019) 53.86 68.06 Y
DFGN (Qiu et al., 2019) 56.31 69.69 Y

Roberta-Para (top 5) 61.20 74.11 N

Table 2: The blind test set performance achieved by our model on WikiHop and HotpotQA. On
HotpotQA, all published works except DecompRC use the annotated supporting facts as extra super-
vision, which makes them not directly comparable to our model. However, our model still achieves
strong performance on this dataset despite not using this annotation.

Dataset WikiHop HotpotQA HotpotQA-Hard

Acc %ans F1 SP F1 %ans F1 SP F1 %ans

Chain Extraction 72.4 72.7 69.7 63.7 90.3 56.0 59.2 78.7
Unordered Extraction 72.1 72.3 68.3 63.4 90.1 54.3 59.4 78.3

Table 3: The downstream QA performance of the chains generated by different models on different
datasets. The performance is evaluated by accuracy and F1 score respectively in WikiHop and
HotpotQA dataset.

We compare our BERT-Para model with a variant of our model where, instead of using a pointer
network to predict a sequence, we make an independent classification decision for each sentence to
determine whether it is relevant to the question or not. We then pick top k sentences, for a specified
value of k, with the highest relevance score and feed these to our BERT model. We name this model
as unordered extraction. Both are trained with the shortest-path oracle 4. To make a fair comparison
to the unordered model, we pick the same number of sentences ranked by prediction probability as
the (top-5) chain extractor.

QA performance on those datasets is shown in Table 3. Besides WikiHop and HotpotQA, we also
train and test our model on a hard subset of HotpotQA pointed out by Chen & Durrett (2019). We see
that the sequential model is more powerful than the unordered model. On all datasets, our chain
extractor leads to higher QA performance than the unordered extractor, especially on HotpotQA-
Hard, where multi-hop reasoning is more strongly required. This is in spite of the fact that the
fraction of answers recovered is similar. This implies that even for a very powerful pre-trained model
like BERT, an explicitly sequential interaction between sentences is still useful for recovering related
evidences. On WikiHop, the improvement yield by our chain extractor is more marginal. One reason
is that correlations have been noted between the question and answer options (Chen & Durrett,
2019), so that the quality of the extracted evidence contributes less to the models’ downstream
performance.

Chain extraction is near the performance limit on HotpotQA Given our two-stage procedure,
one thing we can ask is: with a “perfect” chain extractor, how well would our question answering
model do? We compare the performance of the answer prediction trained with our extracted chains
against that trained with the human-annotated supporting facts. As we can see in Table 1, BERT
achieves a 75.4% F1 on the annotated supporting facts, which is only 5% higher than the result
achieved by our BERT-Para (top 5) extractor. A better oracle or stronger chain extractor could help
close this gap, but it is already fairly small considering the headroom on the task overall. It also
shows there exist other challenges to address in the question answering piece, complementary to the
proposed model in this work, like decomposing the question into different pieces (Min et al., 2019b)
to further improve the multi-hop QA performance.

4We do not use the question overlap oracle since the questions in WikiHop are synthetic like “place of birth
gregorio di cecco”, which is uninformative for the Q-overlap method.

7

Under review as a conference paper at ICLR 2020

quite confident somewhat confident not confident

shortest oracle 34 / 77.7 7 / 68.6 9 / 70.6
extracted chain 37 / 81.1 7 / 64.2 6 / 50.0

annotated supporting facts 33 / 78.8 12 / 60.0 5 / 88.0

Table 4: The human evaluation on different evidence sets. For each row, 50 responses are bucketed
based on the Turkers’ confidence ratings, and numbers denote the answer F1 within that bucket.

Human evaluation We perform a human evaluation to compare the quality of our extracted chains
with our oracle as well as the annotated supporting facts. We randomly pick 50 questions in Hot-
potQA and ask three Turkers to answer each question based on those different evidences and rate
their confidence in their answer. We pick the Turkers’ answer which has the highest word over-
lap with the actual answer (to control for Turkers who have simply misunderstood the question)
and assess their confidence in it. The statistics are shown in Table 4. Human performance on the
three sets is quite similar – they have similar confidence in their answers, and their answers achieve
similar F1 score. Although sometimes the shortest oracle may directly jump to the answer and the
extracted chains may contain distractors, humans still seem to be able to reason effectively and give
confidence in their answers on these short chains. Since the difference between supporting facts and
our oracle on overall question answering performance is marginal, this is further evidence that the
human-annotated supporting facts may not be needed.

For examples of the chains themselves, please see Appendix A.

6 RELATED WORK

Text-based multi-hop reasoning Memory Network based models (Weston et al., 2015;
Sukhbaatar et al., 2015; Kumar et al., 2016; Dhingra et al., 2016; Shen et al., 2017) try to solve
multi-hop questions sequentially by using a memory cell which is designed to gather information
iteratively from different parts of the passage. These models are trained in an end-to-end fashion
and the reasoning is conducted implicitly. More recent work including Entity-GCN (De Cao et al.,
2018), MHQA-GRN (Song et al., 2018), and BAG (Cao et al., 2019), form this problem as a search
over entity graph, and adapt graph convolution network Kipf & Welling (2017) to do reasoning.
Such kind of models need to construct an entity graph both at training and test time, while we only
need such entities during training.

Coarse-to-fine question answering Selecting the most related content regarding the question is
helpful to improve the performance of a QA model. Choi et al. (2017) combine a coarse, fast
model for selecting relevant sentences and a more expensive RNN for producing the answer from
those sentences. Wang et al. (2019) apply distant supervision to generate labels and uses them
to train a neural sentence extractor. Another line of work proposes to use the answer prediction
score as supervision to the sentence extractor (Wang et al., 2018; Indurthi et al., 2018; Min et al.,
2018). Instead of treating the sentence selection as a latent variable or learning the sentence extractor
using policy gradient, we treat the sentence extractor as a sequence predictor and use step by step
supervision generated by heuristics to train. This represents a step towards building models that
represent the reasoning process more explicitly (Trivedi et al., 2019; Jiang et al., 2019).

7 DISCUSSION AND CONCLUSION

In this work, we learn to extract reasoning chains to answer multi-hop reasoning questions. Ex-
perimental results show that the chains are as effective as human annotations, and achieve strong
performance on two large datasets. However, as remarked in past work (Chen & Durrett, 2019;
Min et al., 2019a), there are several aspects of HotpotQA and WikiHop which make them require
multi-hop reasoning less strongly than they otherwise might. As more challenging QA datasets are
built based on lessons learned from these, we feel that reasoning about more explicit reasoning and
properties of chain-like representations will be critical. This work represents a first step towards this
goal of improving QA systems in such settings.

8

Under review as a conference paper at ICLR 2020

REFERENCES

Yu Cao, Meng Fang, and Dacheng Tao. Bag: Bi-directional attention entity graph convolutional
network for multi-hop reasoning question answering. NAACL, 2019.

Jifan Chen and Greg Durrett. Understanding dataset design choices for multi-hop reasoning.
NAACL, 2019.

Eunsol Choi, Daniel Hewlett, Jakob Uszkoreit, Illia Polosukhin, Alexandre Lacoste, and Jonathan
Berant. Coarse-to-fine question answering for long documents. In Proceedings of the 55th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 209–220,
2017.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Question answering by reasoning across documents
with graph convolutional networks. EMNLP, 2018.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. NAACL, 2018.

Bhuwan Dhingra, Hanxiao Liu, Zhilin Yang, William W Cohen, and Ruslan Salakhutdinov. Gated-
attention readers for text comprehension. ACL, 2016.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
Drop: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Proceedings of NAACL-HLT, pp. 2368–2378, 2019.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew
Peters, Michael Schmitz, and Luke S. Zettlemoyer. Allennlp: A deep semantic natural language
processing platform. 2017.

Satish Indurthi, Seunghak Yu, Seohyun Back, Heriberto Cuayahuitl, et al. Cut to the chase: A
context zoom-in network for reading comprehension. Association for Computational Linguistics,
2018.

Sarthak Jain and Byron C. Wallace. Attention is not explanation. NAACL, 2019.

Peter A Jansen, Elizabeth Wainwright, Steven Marmorstein, and Clayton T Morrison. Worldtree:
A corpus of explanation graphs for elementary science questions supporting multi-hop inference.
LREC, 2018.

Yichen Jiang, Nitish Joshi, Yen-Chun Chen, and Mohit Bansal. Explore, propose, and assemble:
An interpretable model for multi-hop reading comprehension. arXiv preprint arXiv:1906.05210,
2019.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth, Shyam Upadhyay, and Dan Roth. Look-
ing beyond the surface: A challenge set for reading comprehension over multiple sentences. In
Proceedings of the 2018 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long Papers), volume 1, pp.
252–262, 2018.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. ICLR, 2017.

Ankit Kumar, Ozan Irsoy, Peter Ondruska, Mohit Iyyer, James Bradbury, Ishaan Gulrajani, Victor
Zhong, Romain Paulus, and Richard Socher. Ask me anything: Dynamic memory networks for
natural language processing. In International Conference on Machine Learning, pp. 1378–1387,
2016.

Souvik Kundu, Tushar Khot, and Ashish Sabharwal. Exploiting explicit paths for multi-hop reading
comprehension. arXiv preprint arXiv:1811.01127, 2018.

Guokun Lai, Qizhe Xie, Hanxiao Liu, Yiming Yang, and Eduard Hovy. RACE: Large-scale ReAding
Comprehension Dataset From Examinations. arXiv preprint arXiv:1704.04683, 2017.

9

Under review as a conference paper at ICLR 2020

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. RoBERTa: A Robustly Optimized BERT Pre-
training Approach. arXiv preprint arXiv:1907.11692, 2019.

Sewon Min, Victor Zhong, Richard Socher, and Caiming Xiong. Efficient and robust question
answering from minimal context over documents. ACL, 2018.

Sewon Min, Eric Wallace, Sameer Singh, Matt Gardner, Hannaneh Hajishirzi, and Luke Zettle-
moyer. Compositional questions do not necessitate multi-hop reasoning. In ACL, 2019a.

Sewon Min, Victor Zhong, Luke Zettlemoyer, and Hannaneh Hajishirzi. Multi-hop read-
ing comprehension through question decomposition and rescoring. In Proceedings of the
57th Conference of the Association for Computational Linguistics, ACL 2019, Florence,
Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp. 6097–6109, 2019b. URL
https://www.aclweb.org/anthology/P19-1613/.

Kosuke Nishida, Kyosuke Nishida, Masaaki Nagata, Atsushi Otsuka, Itsumi Saito, Hisako Asano,
and Junji Tomita. Answering while summarizing: Multi-task learning for multi-hop QA with
evidence extraction. In Proceedings of the 57th Conference of the Association for Computational
Linguistics, ACL 2019, Florence, Italy, July 28- August 2, 2019, Volume 1: Long Papers, pp.
2335–2345, 2019. URL https://www.aclweb.org/anthology/P19-1225/.

Lin Qiu, Yunxuan Xiao, Yanru Qu, Hao Zhou, Lei Li, Weinan Zhang, and Yong Yu. Dy-
namically fused graph network for multi-hop reasoning. In Proceedings of the 57th
Conference of the Association for Computational Linguistics, ACL 2019, Florence, Italy,
July 28- August 2, 2019, Volume 1: Long Papers, pp. 6140–6150, 2019. URL
https://www.aclweb.org/anthology/P19-1617/.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQuAD: 100,000+ questions
for machine comprehension of text. EMNLP, 2016.

Matthew Richardson, Christopher JC Burges, and Erin Renshaw. MCTest: A Challenge Dataset for
the Open-Domain Machine Comprehension of Text. In EMNLP, volume 3, pp. 4, 2013.

Minjoon Seo, Aniruddha Kembhavi, Ali Farhadi, and Hannaneh Hajishirzi. Bidirectional attention
flow for machine comprehension. ICLR, 2017.

Yelong Shen, Po-Sen Huang, Jianfeng Gao, and Weizhu Chen. Reasonet: Learning to stop reading
in machine comprehension. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pp. 1047–1055. ACM, 2017.

Linfeng Song, Zhiguo Wang, Mo Yu, Yue Zhang, Radu Florian, and Daniel Gildea. Explor-
ing Graph-structured Passage Representation for Multi-hop Reading Comprehension with Graph
Neural Networks. arXiv preprint arXiv:1809.02040, 2018.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al. End-to-end memory networks. In Advances
in neural information processing systems, pp. 2440–2448, 2015.

Harsh Trivedi, Heeyoung Kwon, Tushar Khot, Ashish Sabharwal, and Niranjan Balasubramanian.
Repurposing Entailment for Multi-Hop Question Answering Tasks. In Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long and Short Papers), 2019.

Ming Tu, Guangtao Wang, Jing Huang, Yun Tang, Xiaodong He, and Bowen Zhou. Multi-hop read-
ing comprehension across multiple documents by reasoning over heterogeneous graphs. arXiv
preprint arXiv:1905.07374, 2019.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. In Advances in Neural
Information Processing Systems, pp. 2692–2700, 2015.

Hai Wang, Dian Yu, Kai Sun, Jianshu Chen, Dong Yu, Dan Roth, and David McAllester. Evidence
sentence extraction for machine reading comprehension. arXiv preprint arXiv:1902.08852, 2019.

10

Under review as a conference paper at ICLR 2020

Shuohang Wang, Mo Yu, Xiaoxiao Guo, Zhiguo Wang, Tim Klinger, Wei Zhang, Shiyu Chang,
Gerry Tesauro, Bowen Zhou, and Jing Jiang. R 3: Reinforced ranker-reader for open-domain
question answering. In Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

Johannes Welbl, Pontus Stenetorp, and Sebastian Riedel. Constructing datasets for multi-hop read-
ing comprehension across documents. Transactions of the Association of Computational Linguis-
tics, 6:287–302, 2018.

Jason Weston, Antoine Bordes, Sumit Chopra, Alexander M Rush, Bart van Merriënboer, Armand
Joulin, and Tomas Mikolov. Towards AI-Complete Question Answering: A set of prerequisite
toy tasks. arXiv preprint arXiv:1502.05698, 2015.

Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov,
and Christopher D Manning. HotpotQA: A Dataset for Diverse, Explainable Multi-hop Question
Answering. EMNLP, 2018.

Victor Zhong, Caiming Xiong, Nitish Shirish Keskar, and Richard Socher. Coarse-grain fine-grain
coattention network for multi-evidence question answering. ICLR, 2019.

Yimeng Zhuang and Huadong Wang. Token-level dynamic self-attention network for multi-passage
reading comprehension. In Proceedings of the 57th Annual Meeting of the Association for Com-
putational Linguistics, pp. 2252–2262, 2019.

A APPENDIX: CASE STUDY OF EXTRACTED CHAINS

We dig into the chains picked up by our chain extractor to better understand what is captured by our
model. Those examples are shown in Figure 3. Seen from example (a), the model picks a perfect
chain by first picking the sentence containing “Kiss and Tell” and “Corliss Archer”, then finds the
next sentence through “Shirley Temple”. At the last step, to our surprise, it even finds a sentence via
coreference. This demonstrates that although we do not explicitly model the entity links, the model
still manages to learn to jump through entities in each hop.

Example (b) shows how our system can deal with comparison-style yes/no questions. There are two
entities, namely, “Laleli Mosque” and “Esma Sultan Mansion” in the question, each of which must
be pursued. The chain extractor proposes first a single-sentence chain about the first entity, then
a single-sentence chain about the second entity. When unioned together, our answer predictor can
leverage both of these together.

Example (c) shows that the extraction model picks a sentence containing the answer but without
justification, it directly jumps to the answer by the lexical overlap of the two sentences and the
shared entity “South Korean”. The chain picked in the second beam is a distractor. There are also
different distractors that contains in other hypotheses, of which we do not put in the example. The
fifth hypothesis contains the correct chain. This example shows that if the same entity appears
multiple time in the document, the chain extractor may be distracted and pick unrelated distractors.

11

Under review as a conference paper at ICLR 2020

Beam 3
S1: The Laleli Mosque is an 18th-century Ottoman
imperial mosque located in Laleli, Fatih, Istanbul,
Turkey.
S2: The Esma Sultan Mansion located at Bosphorus
in Ortaköy neighborhood of Istanbul, Turkey and
named after its original owner Esma Sultan.

Beam 1
S1: Kiss and Tell is a film starring then 17-year-old
Shirley Temple as Corliss Archer .
S2: Shirley Temple Black was an American actress,
singer, businesswoman, and diplomat …
S3: As an adult , she was named US ambassador to
Ghana and also served as Chief of Protocol of the
United States .

Question: What government position was held by the
woman who portrayed Corliss Archer in the film Kiss
and Tell ?

Answer: Chief of Protocol

Beam 2
S1: Kiss and Tell is a film starring then 17-year-old
Shirley Temple as Corliss Archer .
S3: As an adult , she was named US ambassador to
Ghana and also served as Chief of Protocol of the
United States .

Question: Are the Laleli Mosque and Esma Sultan
Mansion located in the same neighborhood?
Answer: No

Beam 1
S1: The Laleli Mosque is an 18th-century Ottoman
imperial mosque located in Laleli, Fatih, Istanbul,
Turkey.

Beam 2
S1: The Esma Sultan Mansion located at Bosphorus
in Ortaköy neighborhood of Istanbul, Turkey and
named after its original owner Esma Sultan.

Question: 2014 S/ S is the debut album of a South
Korean boy group that was formed by who?
Answer: YG Entertainment

Beam 1
S1: Winner (Hangul : ��), often stylized as
WINNER, is a South Korean boy group formed in
2013 by YG Entertainment and debuted in 2014.

Beam 2
S1: History (Korean : ����) was a South
Korean boy group formed by LOEN Entertainment
in 2013 .

Beam 5
S1: 2014 S/S is the debut album of South Korean
group WINNER .
S2: Winner (Hangul : ��), often stylized as
WINNER, is a South Korean boy group formed in
2013 by YG Entertainment and debuted in 2014.

(a) (b) (c)

Figure 3: Examples of different chains picked up by our chain extractor on the development set of
HotpotQA. The first shows a standard success case, the second shows success on a less common
question type, and the third shows a failure case.

12

