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ABSTRACT

This paper proposes a class of well-conditioned neural oré&svn which a unit
amount of change in the inputs causes at most a unit amouhtafje in the out-
puts or any of the internal layers. We develop the known ndtoay of control-
ling Lipschitz constants to realize its full potential in ximizing robustness, with
a new regularization scheme for linear layers, new ways &ptdonlinearities
and a new loss function. With MNIST and CIFAR-10 classifieve,demonstrate
a number of advantages. Without needing any adversariairtga the proposed
classifiers exceed the state of the art in robustness agaiitstbox L,-bounded
adversarial attacks. They generalize better than ordinatyworks from noisy
data with partially random labels. Their outputs are gquatitely meaningful and
indicate levels of confidence and generalization, amongratésirable properties.

1 INTRODUCTION

Artificial neural networks are often ill-conditioned syste in that a small change in the inputs
can cause significant changes in the outputs (Szegedy|20&#). This results in poor robustness
and vulnerability under adversarial attacks which has beenrted on a variety of networks in-
cluding image classification (Carlini & Wagner, 2017a; Gietidw et al.| 2014), speech recognition
(Kreuk et al.; 2018; Alzantot et al., 2018; Carlini & Wagn2018), image captioning (Chen et al.,
2017) and natural language processing (Gaolet al.,| 201&hibret al.,l 2017). These issues
bring up both theoretical questions of how neural networknegalize |(Kawaguchi et al., 2017;
Xu & Mannor,[2012) and practical concerns of security in aggtions ((Akhtar & Mian, 2018).

A number of remedies have been proposed for these issueslabé discussed in Sectidn 4. White-
box defense is particularly difficult and many proposalsehfailed. For example, Athalye et al.
(2018) reported that out of eight recent defense works, Ibtadry et al. (2017) survived strong at-
tacks. So far the mainstream and most successful remedt isftadversarial training (Madry etlal.,
2017). However, as will be shown in Tablgs 1 amd 2, the rolesstivy adversarial training dimin-
ishes when a white-box attacker (Carlini & Wagner, 2017a)lmsved to use more iterations.

This paper explores a different approach and demonsttzea tombination of the following three
conditions results in enhanced robustness: 1) the Lipscloibstant of a network from inputs to
logits is no greater than 1 with respect to the-norm; 2) the loss function explicitly maximizes
confidence gapwhich is the difference between the largest and seconddatggits of a classifier;
3) the network architecture restricts confidence gapstéesdis possible. We will elaborate.

There are previous works that achieve the first condition s§€etal., | 2017;
Hein & Andriushchenko,l 2017) or bound responses to inputupgations by other means
(Kolter & Wong,|2017| Raghunathan et al., 2018; Haber & Rtith@017). For example, Parseval
networks [(Cisse et al., 2017) bound the Lipschitz constgnmeluiring each linear or convolution
layer be composed of orthonormal filters. However, the regbrobustness and guarantees are
often under weak attacks or with low noise magnitude, ancerajrthese works has demonstrated
results that are comparable to adversarial training.

In contrast, we are able to build MNIST and CIFAR-10 classsfi&vithout needing any adversarial
training, that exceed the state of the art (Madry et al., 20d Fobustness against white-bdx-

bounded adversarial attacks. The defense is even strohgdwersarial training is added. We
will refer to these networks a,;-nonexpansive neural networds2NNNs). Our advantage comes
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from a set of new techniques: our weight regularization ciwlié key in enforcing the first condition,
allows greater degrees of freedom in parameter trainingtth@scheme in Cisse et al. (2017); a new
loss function is specially designed for the second condlitice adapt various layers in new ways for
the third condition, for example norm-pooling and two-sideeL U, which will be presented later.

Let us begin with intuitions behind the second and third dboas. Consider a multi-class classifier.
Letg (x) denote its confidence gap for an input data peinif the classifier is a single L2NNfive
have a guarant8ehat the classifier will not change its answer as long as thetix is modified by

no more than ar.,-norm of g (x) /+/2. Therefore maximizing the average confidence gap directly
boosts robustness and this motivates the second condifiorexplain the third condition, let us
introduce the notion of preserving distance: the distamt@den any pair of input vectors with two
different labels ought to be preserved as much as possitile autputs, while we do not care about
the distance between a pair with the same label.dl(gt , x2) denote thel,-distance between the
output logit-vectors for two input pointg; andx, that have different labels and that are classi-
fied correctly. It is straightforward to verify the condittbof g (x1) + g (x2) < V2 - d (x1,X2).
Therefore a network that maximizes confidence gaps well meishe that preserves distance well.
Ultimately some distances are preserved while others atedod ideally the decision of which dis-
tance to lose is made by parameter training rather than iigastof network architecture. Hence the
third condition involves distance-preserving architeetthoices that leave the decision to parameter
training as much as possible, and this motivates many of esigd decisions such as Sectiénd 2.2
and2.3.

In practice we employ the strategy of divide and conquer ariltl kleach layer as a nonexpansive
map with respect to thé,-norm. It is straightforward to see that a feedforward neknemmposed
of nonexpansive layers must implement a nonexpansive maqalkhvHow to adapt subtleties like
recursion and splitting-reconvergence is included in fheeadix.

Besides being robust against adversarial noises, L2ZNNNs bther desirable properties. They
generalize better from noisy training labels than ordinaeyworks: for example, when 75% of
MNIST training labels are randomized, an L2NNN still acl@s\®3.1% accuracy on the test set, in
contrast to 75.2% from the best ordinary network. The probté exploding gradients, which is
common in training ordinary networks, is avoided becausegtiadient of any output with respect
to any internal signal is bounded between -1 and 1. Unlikénargt networks, the confidence gap
of an L2NNN classifier is a quantitatively meaningful indioa of confidence on individual data
points, and the average gap is an indication of generadizati

2 L,-NONEXPANSIVE NEURAL NETWORKS

This section describes how to adapt some individual operatoneural networks for LZNNNSs.
Discussions on splitting-reconvergence, recursion amohalization are in the appendix.

2.1 WEIGHTS

This section covers both the matrix-vector multiplicatiora fully connected layer and the convo-
lution calculation between input tensor and weight tensa tonvolution layer. The convolution
calculation can be viewed as a set of vector-matrix muttiglons: we make shifted copies of the
input tensor and shuffle the copies into a set of small vecoch that each vector contains input
entries in one tile; we reshape the weight tensor into a matriflattening all but the dimension
of the output filters; then convolution is equivalent to npliting each of the said small vectors
with the flattened weight matrix. Therefore, in both caselsasic operator iy = Wx. To be a
nonexpansive map with respect to the-norm, a necessary and sufficient condition is

yly <xTx = xTWTwx<xTx, vxeRY
p(WTW) <1

wherep denotes the spectral radius of a matrix.

)

1This is only an example and we recommend building a classifier as multipl&lN2Nsee Sectidn 2.4.
2See Lemmall in AppendixID for the proof of the guarantee.
3See LemmaAl2 in AppendixID for the proof of the condition.



Published as a conference paper at ICLR 2019

The exact condition of{1) is difficult to incorporate intaiming. Instead we use an upper bodnd:

p (WTW) <b(W) £ min (r(W™W),r(WWT)), wherer(M):miaxZ|Mi,j\ )
J

The above is where our linear and convolution layers diffemf those in_Cisse et al. (2017): they
requireW T to be an identity matrix, and it is straightforward to sed thair scheme is only one
special case that makésg1¥) equal to 1. Instead of forcing filters to be orthogonal to eaitter,
our bound of (W) provides parameter training with greater degrees of freedo

One simple way to usgl(2) is replacitig with W/ = W/, /b (W) in weight multiplications, and this
would enforce that the layer is strictly nonexpansive. Awotmethod is described in the appendix.

As mentioned, convolution can be viewed as a first layer ofingakopies and a second layer of
vector-matrix multiplications. With the above regulatipa, the multiplication layer is nonexpan-
sive. Hence we only need to ensure that the copying layerrisxgansive. For filter size df’; by

K, and strides of; by S,, we simply divide the input tensor by a factor gff K1 /51] - [K2/S>].

2.2 RELU AND OTHERS

Let us turn our attention to the third condition from SecfibrReLU, tanh and sigmoid are nonex-
pansive but do not preserve distance well. This sectioreptesa method that improves ReLU and
is generalizable to other nonlinearities. A different aygmh to improve sigmoid is in the appendix.

To understand the weakness of ReLU, let us consider two idgtiat points A and B, and suppose
that a ReLU in the network receives two different negatiees for A and B and outputs zero for
both. Comparing the A-B distance before and after this Redyél, there is a distance loss and this
particular ReLU contributes to it. We u$e&o-sided ReL.Uvhich is a function fronR to R? and
simply computes ReLU() and ReLU{x). Two-sided ReLU has been studied in Shang et al. (2016)
in convolution layers for accuracy improvement. It is gjtaforward to verify that two-sided ReLU

is nonexpansive with respect to afy-norm and that it preserves distance in the above scenario.
We will empirically verify its effectiveness in increasiegnfidence gaps in Sectibh 3.

Two-sided ReLU is a special case of the following generdinégue. Letf(x) be a nonexpansive
and monotonically increasing scalar function, and not¢ el U, tanh and sigmoid all fit these
conditions. We can define a function froRnto R? that computesf(z) and f(x) — z. Such a
new function is nonexpansive with respect to dnynornfi and preserves distance better ttfam)
alone.

2.3 PooLING

The popular max-pooling is nonexpansive, but does not presdistance as much as possible.
Consider a scenario where the inputs to pooling are aativatihat represent edge detection, and
consider two images A and B such that A contains an edge tlsaepa particular pooling window
while B does not. Inside this window, A has positive valuedlevB has all zeroes. For this window,
the A-B distance before pooling is thHg-norm of A's values, yet if max-pooling is used, the A-B
distance after pooling becomes the largest of A's valueg;wtan be substantially smaller than the
former. Thus we suffer a loss of distance between A and B vglatesing this pooling layer.

We replace max-pooling with norm-pooling, which was repdrin|Boureau et al. (2010) to occa-
sionally increase accuracy. Instead of taking the max afeginside a pooling window, we take the
Lo-norm of them. It is straightforward to verify that norm-piog is nonexpansiieand would en-
tirely preserve thé.,-distance between A and B in the hypothetical scenario alOtfeerL,-norms
can also be used. We will verify its effectiveness in inciegsonfidence gaps in Sectibh 3.

If pooling windows overlap, we divide the input tensor §§ where K is the maximum number
of pooling windows in which an entry can appear, similar towaution layers discussed earlier.

“The spectral radius of a matrix is no greater than its natligalnorm. W™ W andW W™ have the same
non-zero eigenvalues and hence the same spectral radius.

°See LemmAl4 in AppendixID for the proof of nonexpansiveness.

®See Lemmals5 in AppendixID for the proof of nonexpansiveness.
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2.4 LOSS FUNCTION

For a classifier withi labels, we recommend building it &S overlapping L2NNNs, each of which
outputs a single logit for one label. In an architecture withsplit layers, this simply implies that
theseK L2NNNs share all but the last linear layer and that the lasdr layer is decomposed inkd
single-output linear filters, one in each L2NNN. For a muliNNN classifier, we have a guararifee
that the classifier will not change its answer as long as thetix is modified by no more than an
Ls-norm of g (x) /2, where agairy (x) denotes the confidence gap. As mentioned in Seflion 1, a
single-L2NNN classifier has a guarantegygk) /+/2. Although this seems better on the surface, it
is more difficult to achieve large confidence gaps. We willass the multi-L2NNN approach.

We use a loss function with three terms, with trade-off hppeameters andw:

L=L,+7v Ly+w-L. 3
Letyi,ya, - -, yx be outputs from the LZNNNs. The first loss term is
L, = softmax-cross-entroply1y1, usya, - - - , Uk YK, label 4)
whereuy, uq, - -+ , ux are trainable parameters. The second loss term is
Ly = softmax-cross-entropyy, , vys, - - - , vyx, label) (5)
wherewv can be either a trainable parameter or a hyperparametee tNatu, us, - - - ,ux andv

are not part of the classifier and are not used during infexefle third loss term is
_ averagglog (1 — softmax(zyi, zy2, - - , 2UK )japel))

L. (6)

z

wherez is a hyperparameter.

The rationale for the first loss terin (4) is that it mimics cr@ntropy loss of an ordinary network. If
an ordinary network has been converted to LZNNNs by muliglgach layer with a small constant,
its original outputs can be recovered by scaling up L2ZNNNpotg with certain constants, which is
enabled by the formul@](4). Hence this loss term is meant iegine training process to discover
any feature that an ordinary network can discover. Thematfor the second loss terfd (5) is that it
is directly related to the classification accuracy. Muitipy LZNNN outputs uniformly withv does
not change the output label and only adapts to the value manig2NNN outputs and drive towards
better nominal accuracy. The third loss tefrh (6) approxamaterage confidence gap: the log term
is a soft measure of a confidence gap (for a correct predjctima is asymptotically linear for larger
gap values. The hyperparametetontrols the degree of softness, and has relatively low ainga
the magnitude of loss due to the division byif we increasez then [6) asymptotically becomes
the average of minus confidence gaps for correct predictodszeroes for incorrect predictions.
Therefore losd{6) encourages large confidence gaps anslgmbioth and differentiable.

A notable variation of((B) is one that combines with adveedamraining. Our implementation applies
the technique of Madry et al. (2017) on the first loss tdrim @8 use distorted inputs in calculating
L. The results are reported in Tablds 1 ahd 2 as Model 4. Angibssibility is to use distorted
inputs in calculatingZ,, and L, while £. should be based on original inputs.

3 EXPERIMENTS

Experiments are divided into three groups to study diffepoperties of LZNNNs. Our MNIST
and CIFAR-10 classifiers are available at
http://researcher.watson.i1bm com group/ 9298

3.1 ROBUSTNESS

This section evaluates robustness of L2NNN classifiers fbi$T and CIFAR-10 and compares
against the state of the art Madry et al. (2017). The robgstmeetric is accuracy under white-
box non-targeted.o-bounded attacks. The attack code of Carlini & Wagner (2pisased. We

"See LemmAl6 in AppendixID for the proof of the guarantee. The guarangither Lemm@ll or Lemnid 6
is only a loose guarantee and it has been shown in Hein & Andriushclt{2@ka) that a larger guarantee exists
by analyzing local Lipschitz constants, though it is expensive to compute.


http://researcher.watson.ibm.com/group/9298
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Figure 1: Attacks on Model 2 found after 1K and 10K iteratiothe same O recognized as 5.

downloaded the classifi€sf Madry et al. (2017) and report their robustness againsbounded
attacks in TableE]1 arld®.Note that their defense diminishes as the attacks are allon@re
iterations. Figuréll illustrates one example of this effeébe first image is an attack on MNIST
Model 2 (0 recognized as 5) found after 1K iterations, witisad.o-norm of 4.4, while the second
picture is one found after 10K iterations, the same 0 reamghas 5, with noisé,-norm of 2.1. We
hypothesize that adversarial training alone providel labsolute defense at the noise levels used
in the two tables: adversarial examples still exist and atg more difficult to find. The fact that

in Table[2 Model 2 accuracy is lower in the 1000x10 row thant8K row further supports our
hypothesis.

Table 1: Accuracies of MNIST classifiers under white-box-tameted attacks with noide,-norm
limit of 3. Maxlter is the max number of iterations the attackses. Model 1 is an ordinarily trained
model. Model 2 is the model from _Madry et al. (2017). Model 3. ZNNN without adversarial
training. Model 4 is LZNNN with adversarial training.

Maxlter Modell Model2 Model3 Model4
Natural 99.1% 985% 98.7%  98.2%

100 70.2% 91.7%  77.6%  75.6%
1000 0.05% 51.5% 20.3% 24.4%
10K 0% 16.0% 20.1% 24.4%
100K 0% 9.8% 20.1% 24.4%
1M 0% 7.6% 20.1% 24.4%

Table 2. Accuracies of CIFAR-10 classifiers under white-box-targeted attacks with noide-
norm limit of 1.5. Maxlter is the max number of iterations titéacker uses, and 1000x10 indicates
10 runs each with 1000 iterations. Model 1 is an ordinariltwoek. Model 2 is the model from
Madry et al. (201/7). Model 3 is LZNNN without adversarialitiag. Model 4 is L2ZNNN with
adversarial training.

Maxlter Modell Model2 Model3 Model4
Natural 95.0% 87.1% 79.2%  77.2%

100 0% 13.9% 10.2%  20.8%
1000 0% 9.4% 10.1%  20.4%
10K 0% 9.0% 10.1%  20.4%
1000x10 0% 8.7% 10.1%  20.4%
100K 0% NA 10.1%  20.4%

In contrast, the defense of the LZNNN models remain constaen the attacks are allowed more
iterations, specifically MNIST Models beyond 10K iteratsoand CIFAR-10 Models beyond 1000

8 At [gi t hub. coni Madr yLab/ i st _chal T engel andgi t hub. coni MadryLab/ ci f ar 10 chal T enge. These mod-
els (Model 2's in Tablels]1 arid 2) were built by adversarial training With-bounded adversaries (Madry et al.,
2017). To the best of our knowledge, Tsipras etlal. (2019) fromadheedab is the only paper in the literature
that reports on models trained wifty-bounded adversaries, and it reports that training Wwittbounded ad-
versaries resulted in weakér, robustness than thg, robustness results from training with..-bounded
adversaries in_Madry etlal. (2017). Therefore we choose to carggainst the best available models, even
though they were trained with..-bounded adversaries. Note also that our own Model 4's in TablesiPan
are trained with the samk,.-bounded adversaries.

°In reading TableEl1 arid 2, it is worth remembering that the norm of aftack accuracy is zero, and for
example the 7.6% on MNIST is currently the state of the art.
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iterations. The reason is that LZNNN classifiers achievi ttefense by creating a confidence gap
between the largest logit and the rest, and that half of thisig a lower bound of o-norm of dis-
tortion to the input data in order to change the classificatitence L2NNN's defense comes from a
minimum-distortion guarantee. Although adversariatiraj alone may also increase the minimum
distortion limit for misclassification, as suggested inl@aet all (2017) for a small network, that
limit likely does not reach the levels used in Taliles 1[@nd®tence the defense depends on how
likely the attacker can reach a lower-distortion miscléssiion. Consequently when the attacks are
allowed to make more attempts the defense with guarantedsstehile the other diminishes.

For both MNIST and CIFAR-10, adding adversarial trainingp$its the robustness of Model 4.
We hypothesize that adversarial training lowers local tljig constants in certain parts of the
input space, specifically around the training images, aecktbre makes local robustness guarantees
larger (Hein & Andriushchenkao, 2017). To test this hypoikes MNIST Models 3 and 4, we
measure the averade-norm of their Jacobian matrices, averaged over the firsh id@ges in the
test set, and the results are 1.05 for Model 3 and 0.83 for Mbd¥ote that the.,-norm of Jacobian
can be greater than 1 for multi-L2NNN classifiers. These miegsents are consistent with, albeit
does not prove, the hypothesis.

Table 3: Ablation studies: MNIST model without weight regitzation; one withouf,. loss; one
with max-pooling instead of norm-pooling; one without tsigled ReLU; Gap is average confidence
gap. R-Accu is under attacks with 1000 iterations and witis@b,-norm limit of 3.

Accu. Gap R-Accu.

no weight reg. 99.4% 68.3 0%
no L. loss 99.2% 2.2 8.9%
no norm-pooling 98.8% 1.3 9.9%
no two-sided ReLU 98.0% 2.5 15.1%

To test the effects of various components of our method, vild models for each of which we dis-
able a different technique during training. The resultsrapwrted in Tablgl3. To put the confidence
gap values in context, our MNIST Model 3 has an average gaBofTae first one is without weight
regularization of Section 2.1 and it becomes an ordinarwoet which has little defense against
adversarial attacks; its large average confidence gap ieinggass. For the second one we remove
the third loss terni(6) and for the third one we replace nooolipg with regular max-pooling, both
resulting in smaller average confidence gap and less defgyasest attacks. For the fourth one, we
replace two-sided ReLU with regular ReLU, and this leadsgrddation in nominal accuracy, aver-
age confidence gap and robustness. Parseval networks éCmls=22017) can be viewed as models
without £, term, norm-pooling or two-sided ReLU, and with a more resitré scheme for weight
matrix regularization.

Model 3 in Tabld L and the second row of Table 3 are two poirtegah trade-off curve that are
controllable by varying hyperparameteiin loss function[(B). Other trade-off points have nominal
accuracy and under-attack accuracy of (98.8%,19.1%)4%822.6%) and (97.9%,24.7%) respec-
tively. Similar trade-offs have been reported by other sthass works including adversarial train-
ing (Tsipras et all, 2019) and adversarial polytope (Worel P018). It remains an open question
whether such trade-off is a necessary part of life, and plesas Section 3.3 for further discussion
on the L2NNN trade-off.

Table 4: Accuracy of L2NNN classifiers under white-box nargeted attacks with 1000 iterations
and with noiselL..-norm limit of e.

€ Model3 Model4

MNIST 0.1 90.9%  92.4%
MNIST 0.3 7.0% 44.0%
CIFAR-10 8/256 32.3%  42.5%

Although we primarily focus on defending againsi-bounded adversarial attacks in this work,
we achieve some level of robustness againstbounded attacks as a by-product. Tdble 4 shows
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our results, again measured with the attack code of Carlwaner|(2017a). Thevalues match
those used inh_ Raghunathan et al. (2018); Kolter & Wong (200adry et al. (2017). Our MNIST
L., results are on par with_Raghunathan etlal. (2018); Kolter &§V@017) but not as good as
Madry et al. [(201/7). Our CIFAR-10 Model 4 is on par with Madhaé& (2017) forL, defense.

3.2 MEANINGFUL OUTPUTS

This section discusses how to understand and utilize L2NMMNput values. We observe strong
correlation between the confidence gap of LZNNN and the nadgmiof distortion needed to force
it to misclassify, and images are included in appendix.

In the next experiment, we sort test data by the confidencefiagrlassifier on each image. Then
we divide the sorted data into 10 bins and report accuracgraegly on each bin in Figufé 2. We
repeat this experiment for Model 2_(Madry et al., 2017) andMaodel 3 of Tablesll and]2. Note
that the LZNNN model shows better correlation between cenfid and robustness: for MNIST our
first bin is 95% robust and second bin is 67% robust. This méi that the L2NNN outputs are
much more quantitatively meaningful than those of ordinmeeyral networks.

1 MNIST: after 10K-iteration attacks 10 CIFAR-10: after 100-iteration attacks
50 I 50 I
"Model 2 ®mModel 3 Model 2 ®Model 3
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
100 100
MNIST: after 1M-iteration attacks CIFAR-10: after 10K-iteration attacks
30 Model 2 mModel 3 30 I Model 2 mModel 3
0 I - 0 || - .
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Figure 2: Accuracy percentages of classifiers on test datadiited by the confidence gap.

It is an important property that an L2ZNNN has an easily adbssmeasurement on how robust its

decisions are. Since robustness is easily measurable) heaptimized directly, and we believe

that this is the primary reason that we can demonstrate thestoess results of Tablgls 1 &nd 2. This
can also be valuable in real-life applications where we neegiantify how reliable a decision is.

One of the other practical implications of this propertytiattwe can form hybrid models which
use L2NNN outputs when the confidence is high and a differesdehwhen the confidence of
the L2NNN is low. This creates another dimension of tradebetween nominal accuracy and
robustness that one can take advantage of in an applicatidm built such a hybrid model for
MNIST with the switch threshold of 1.0 and achieved nomirwaacy of 99.3%, where only 6.9%
of images were delegated to the alternative classifier. Vilteduch a hybrid model for CIFAR-10
with the switch threshold of 0.1 and achieved nominal acguad 89.4%, where 25% of images
were delegated. To put these threshold values in contextiSWINModel 3 has an average gap
of 2.8 and CIFAR-10 Model 3 has an average gap of 0.34. In otloeds, if for a data point
the L2NNN confidence gap is substantially below average,ctassification is delegated to the
alternative classifier, and this way we can recover nomic@alia@cy at a moderate cost of robustness.

3.3 GENERALIZATION VERSUS MEMORIZATION

This section studies L2ZNNN's generalization through ayraiata experiment where we randomize
some or all MNIST training labels. The setup is similar to @&t al. [(201/7), except that we added
three scenarios where 25%, 50% and 75% of training labelscaasenbled.

Table[B shows the comparison between L2NNNs and ordinawyanks. Dropout rate and weight-
decay weight are tuned for each WD/DR run, and each WD+DR+E&8ses the combined hyper-
parameters from its row. In early-stopping runs, 5000 tngjimages are withheld as validation set
and training stops when loss on validation set stops ddaga3he L2NNNs do not use weight
decay, dropout or early stopping. LZNNNs achieve the besiracy in all three partially-scrambled
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Table 5: Accuracy comparison of MNIST classifiers that aséngd on noisy data. Rand is the
percentage of training labels that are randomized. WD is mtelgcay. DR is dropout. ES is early
stopping. Gapl is LZNNN's average confidence gap on traisgt@nd Gap? is that on test set.

Rand Ordinary network L2NNN
Vanilla WD DR ES WD+DR+ES Gapl Gap2
0 99.4% 99.0% 99.2% 99.0% 99.3% 98.7% 2.84 2.82

25% 90.4% 91.1% 91.8% 96.2% 98.0% 98.5% 0.64 0.63
50% 65.5% 67.7% 72.6% 81.0% 88.3% 96.0% 0.58 0.60
75%  415% 449% 418% 752% 66.4% 93.1% 0.86 0.89
100% 9.7% 9.1% 9.4% NA NA 11.9% 0.09 0.01

Table 6: Training-accuracy-versus-confidence-gap trdflpeints of LZNNNs on 50%-scrambled
MNIST training labels.

on training set on test set
Accu. Gap Accu. Gap

98.7% 0.17 79.0% 0.12
96.5% 0.21 79.3% 0.18
89.4% 0.22 86.3% 0.20
70.1% 0.36 93.4% 0.37
66.1% 0.45 93.7% 0.47
50.8% 0.58 96.0% 0.60

scenarios, and it is remarkable that an L2ZNNN can delivet®3accuracy on test set when three
quarters of training labels are random. More detailed datidéscussions are in the appendix.

To illustrate why L2NNNs generalize better than ordinarywegks from noisy data, we show in
Table[® trade-off points between accuracy and confidencengahe 50%-scrambled training set.
These trade-off points are achieved by changing hyperpateasa in (@) andv in (§). In a noisy
training set, there exist data points that are close to eti@r get have different labels. For a pair
of such points, if an L2NNN is to classify both points corhgcthe two confidence gaps must be
small. Therefore, in order to achieve large average cordelgap, an LZNNN must misclassify
some of the training data. In Taljle 6, as we adjust the losgtiimto favor larger average gap, the
L2NNNs are forced to make more and more mistakes on the tigaggt. The results suggest that
loss is minimized when an L2ZNNN misclassifies some of thersbltad labels while fitting the 50%
original labels with large gaps, and parameter trainingalisrs this trade-off automatically. Hence
we see in TablE]6 increasing accuracies and gaps on the teSth&eabove is a trade-off between
memorization (training-set accuracy) and generalizafi@ining-set average gap), and we hypoth-
esize that L2ZNNN'’s trade-off between nominal accuracy anmistness, reported in Sect[onl3.1, is
due to the same mechanism. To be fair, dropout and earlyistpppe also able to sacrifice accuracy
on a noisy training set, however they do so through differethanisms that tend to be brittle, and
Table[® suggests that LZNNN’s mechanism is superior. Moseudisions and the trade-off tables
for 25% and 75% scenarios are in the appendix.

Another interesting observation is that the average coméelggap dramatically shrinks in the last
row of Tabld® where the training is pure memorization. Thigét surprising again due to training
data points that are close to each other yet have differbaldaThe practical implication is that after
an L2NNN model is trained, one can simply measure its avecagédence gap to know whether
and how much it has learned to generalize rather than to nieenthie training data.

4 RELATED WORK

Adversarial defense is a well-known difficult problem_(Seeget al., 2014; Goodfellow etal.,
2014 Carlini & Wagner, 2017a; Athalye et al., 2018; Gilmeak,|2013). There are many avenues
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to defensel(Carlini & Wagner, 2017b; Meng & Chen, 2017), arcehwe will focus on defense
works that fortify a neural network itself instead of inttaiing additional components.

The mainstream approach has been adversarial trainingevexamples of successful attacks on
a classifier itself are used in training (Tranet al.| 2017, Zantedeschi et al., 2017). The work of
Madry et al.|(2017) has the best results to date and effégfiedtens gradients around training data
points, and, prior to our work, it is the only work that aclgewsizable white-box defense. It has
been reported in_Carlini et al. (2017) that, for a small nekwadversarial training indeed increases
the average minimum;-norm andL.,-norm of noise needed to change its classification. However,
in view of results of Tablesl1 ahd 2, adversarial-trainirgutes may be susceptible to strong attacks.
The works of Drucker & Le Cun (1992); Ross & Doshi-Velez (2Paie similar to adversarial train-
ing in aiming to flatten gradients around training data seule different mechanisms.

While the above approaches fortify a network around traidigig points, others aim to bound a net-
work’s responses to input perturbations over the entiratispace. For example, Haber & Ruthbtto
(2017) models ResNet as an ordinary differential equatiah derive stability conditions. Other
examples include_Kolter & Wong _(2017); Raghunathan et/aD1&}); [Wong et dl.[(2018) which
achieved provable guarantees agaihst-bounded attacks. However there exist scalability issues
with respect to network depth, and the reported resultsrsaréaagainst relatively weak attacks or
low noise magnitude. As shown in Talble 4, we can match thearsmedl .. -bounded defense.

Controlling Lipschitz constants also regularizes a nekvawer the entire input space. Szegedy et al.
(2014) is the seminal work that brings attention to this copBartlett et al.|(2017) proposes the
notion of spectrally-normalized margins as an indicatggarieralization, which are strongly related
to our confidence gap. Pascanu etlal. (2013) studies thefrthile spectral radius of weight matrices
in the vanishing and the exploding gradient problems. M8 Miyvato (2017) proposes a method
to regularize the spectral radius of weight matrices andvstits effect in reducing generalization
gap. The work on Parseval networks (Cisse et al.,[2017) stimw# is possible to control Lipschitz
constants of neural networks through regularization. Tdre of their work is to constrain linear
and convolution layer weights to be composed of Parsevat tigmes, i.e., orthonormal filters, and
thereby force the Lipschitz constant of these layers to lleel; also propose to restrict aggregation
operations. The reported robustness results of Cisse @l7), however, are much weaker than
those by adversarial traininglin Madry et al. (2017). Weatifrom Parseval networks in a number
of ways. Our linear and convolution layers do not requirerfditto be orthogonal to each other and
subsume Parseval layers as a special case, and therefadeprmre freedom to parameter training.
We use non-standard techniques, e.g. two-sided RelLU, tafynaatious network components to
maximize confidence gaps while keeping the network nonesipanand we propose a new loss
function for the same purpose. We are unable to obtain Rareetworks for a direct comparison,
however it is possible to get a rough idea of what the companmight be by looking at Tablg 3
which shows the impacts of those new techniques. The workedf i Andriushchenkol (2017)
makes an important point regarding guarantees provideddal Lipschitz constants, which helps
explain many observations in our results, including whyeadarial training on L2NNNSs leads to
lasting robustness gains. The regularization proposeddin & Andriushchenko (2017) however
is less practical and again introduces reliance on the ageeof training data points.

5 CONCLUSIONS AND FUTURE WORK

In this work we have presentdd,-nonexpansive neural networks which are well-conditiosyst
tems by construction. Practical techniques are developeluilding these networks. Their prop-
erties are studied through experiments and benefits dematatt including that our MNIST and
CIFAR-10 classifiers exceed the state of the art in robustagainst white-box adversarial attacks,
that they are robust against partially random training Iebend that they output confidence gaps
which are strongly correlated with robustness and geratadin. There are a number of future di-
rections, for example, other applications of LZNNN, L2NNifiendly neural network architectures,
and the relation between L2NNNs and interpretability.
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A L;-NONEXPANSIVE NETWORK COMPONENTS

A.1 ADDITIONAL METHODS FOR WEIGHT REGULARIZATION

There are numerous ways to utilize the bound df (2). The neaihdescribes a simple method of
using’/ = W//b (W) to enforce strict nonexpansiveness. The following is aeradttive.

Approximate nonexpansiveness can be achieved by addingadtyéo the loss function whenever
b (W) exceeds 1, for example:

Ly = min (I(WTW),((WWT)), wherel (M) =3 max [ |M; ;| — 1,0 7
i J

The sum of[(¥) losses over all layers becomes a fourth terimeitoiss function[(|3), multiplied with
one additional hyperparameter. This would lead to an apprate L2NNN with trade-offs between
how much its layers violaté](1) with surrogaté (2) versugptibjectives in the loss function.

In practice, we have found that it is beneficial to begin nengéwork training with the regularization
scheme of[{]7), which allows larger learning rates, and $wiitche first scheme of usifdg”’, which
avoids artifacts of an extra hyperparameter, when closemwergence. Of course if the goal is
building approximate L2NNNSs one can ugé (7) all the way.

A.2 SIGMOID AND OTHERS

Sigmoid is nonexpansive as is, but does not preserve destmuch as possible. A better way is
to replace sigmoid with the following operator

s(z) =t - sigmoid (4;10) (8)

wheret > 0 is a trainable parameter and each neuron has itstolwngeneral, the requirement for
any scalar nonlinearity is that its derivative is boundetiieen -1 and 1. If a nonlinearity violates
this condition, a shrinking multiplier can be applied. Iétactual range of derivative is narrower, as
in the case of sigmoid, an enlarging multiplier can be apigitepreserve distance.

For further improvement[8) can be combined with the gdrferan of the two-sided RelLU of
Section 2.2. Then the new nonlinearity is a function frérto R? that computes(x) ands(z) — .

A.3 SPLITTING AND RECONVERGENCE

There are different kinds of splitting in neural networkang splitting is not followed by recon-
vergence. For example, a classifier may have common layoe/éal by split layers for each label,
and such an architecture can be viewed as multiple LZNNNotrealap at the common layers and
each contain one stack of split layers. In such cases, nofitetitin is needed because there is no
splitting within each individual L2ZNNN.

Some splitting, however, is followed by reconvergence. det,f convolution and pooling layers
discussed earlier can be viewed as splitting, and recoexmesghappens at the next layer. Another
common example is skip-level connections such as in ResBlath splitting should be viewed as
making two copies of a certain vector. Let the before-s@iter bex,, and we make two copies as

X1 = t- X0 ( )
9
X9g = \/].—t2-X0
wheret € [0, 1] is a trainable parameter.

In the case of ResNet, the reconvergence is an add operdtah whould be treated as vector-
matrix multiplication as in Section 2.1, but with much siifipd forms. Letx; be the skip-level
connections and (x2) be the channels of convolution outputs to be added withwe perform the

addition as
y=t-x1+vV1—12 f(x2) (10)

12
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wheret € [0,1] is a trainable parameter and could be a common paramete(@yith

ResNet-like reconvergence is referred to as aggregati@ndan Cisse et al. (2017) and a different
formula was used:

y=a-xi+(1-a) f(x) (11)
wherea € [0, 1] is a trainable parameter. Because splitting is not modifie@isse et al.[ (2017),
their scheme may seem approximately equivalent to oursdfranzont parameter is used fdrl(9) and
(10). However, there is a substantial difference: in mangNRe blocks f (x») is a subset of rather
than all of the output channels of convolution layers, andsolheme does not apply the shrinking
factor of /1 — t2 on channels that are not part pfx,) and therefore better preserve distances. In
contrast, because splitting is not modified, at reconvergdine scheme of Cisse et al. (2017) must
apply the shrinking factor of — « on all outputs of convolution layers, regardless of whether
channel is part of the aggregation or not. To state the éiffee in more general terms, our scheme
enables splitting and reconvergence at arbitrary levedgsarularity and multiplies shrinking factors
to only the necessary components. We can also have a diffepen channel or even per entry.

To be fair, the scheme pf Cisse et al. (2017) has an advantdoging nonexpansive with respect to
any L,-norm. However, fotl,-norm, it is inferior to ours in preserving distances and imazing
confidence gaps.

A.4 RECURSION

There are multiple ways to interpret recurrent neural nate¢RNN) as L2ZNNNs. One way is to
view an unrolled RNN as multiple overlapping LZNNNs wheretee2NNN generates the output at
one time step. Under this interpretation, nothing spesialkieded and recurrent inputs to a neuron
are simply treated as ordinary inputs.

Another way to interpret an RNN is to view unrolled RNN as ayf#rl. 2NNN that generates outputs
at all time steps. Under this interpretation, recurrentnemtions are treated as splitting at their
sources and should be handled ag]n (9).

A.5 NORMALIZATION

Normalization operations are limited in an L2ZNNN. Subtitagtmean is nonexpansive and allowed,
and subtract-mean operation can be performed on arbitwdngess of any layer. Subtracting batch
mean is also allowed because it can be viewed as subtrachiap gparameter. However, scaling,
e.g., division by standard deviation or batch standardadieri is only allowed if the multiplying fac-
tors are between -1 and 1. To satisfy this in practice, onelsimethod is to divide all multiplying
factors in a normalization layer by the largest of their dibsovalues.

B MNIST IMAGES

EIIIIIFIIEI

45 40 31

Gap 51 4.4

Mstk 5
Dist 4.8 3.6 4.8 3.4 4.1 3.7 4.0 4.5 3.8 2.3

Figure 3: Original and distorted images of MNIST digits istteet with the largest confidence gaps.
Mstk denotes the misclassified labels. Dist denoted.thaorm of the distortion noise.

Let us begin by showing MNIST images with the largest configegaps in Figurgl3 and those
with the smallest confidence gaps in Figlire 4. They includegies before and after attacks as well
as Model 3's confidence gap, the misclassified label &ndiorm of the added noise. The images
with large confidence gaps seem to be ones that are mostediffeom other digits, while some
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ll

Gap 0.03 0.03 0.03 0.001 0.06 0.01 0.005
Mstk 8

Dist 0.04 0.3 0.1 0.02 0.03 0.001 0.3 0.05 0.02 0.01

Figure 4: Original and distorted images of MNIST digits istteet with the smallest confidence
gaps. Mstk denotes the misclassified output label. Dist @srtbel,-norm of the distortion noise.

of the images with small confidence gaps are genuinely arobiult's worth noting the strong
correlation between the confidence gap of LZNNN and the nhadgmiof distortion needed to force
it to misclassify. Also note that our guarantee states tiantinimumL,-norm of noise is half of
the confidence gap, but in reality the needed noise is muchggr than the guarantee. The reason
is that the true local guarantee is in fact larger due to lagadchitz constants, as pointed out by
Hein & Andriushchenko (2017).

0605

Figure 5: Original image of 0; attack on Model 2 (Madry et'2D17) found after 1K iterations;
attack on Model 2 found after 10K iterations; attack on M&I@l2NNN) found after 1M iterations.
The latter three all lead to misclassification as 5.

Figure[® shows additional details regarding the exampledgnre[l. The first image is the original
image of a zero. The second image is an attack on Model 2 (Mgdily,[2017) found after 1K
iterations, with noisd.,-norm of 4.4. The third is one found after 10K iterations foodi&l 2, with
noise Lo-norm of 2.1. The last image is the best attack on our ModeluBdoafter one million
iterations, with noisd.,-norm of 3.5. These illustrates the trend shown in Table ftttedefense
by adversarial training diminishes as the attacks are allbmiore iterations, while LZNNNs with-
stand strong attacks and it requires more noise to fool anNINt's worth noting that the slow
degradation of Model 2’s accuracy is an artifact of the &ga¢Carlini & Wagner| 2017a): when
gradients are near zero in some parts of the input spacehvgtcue for MNIST Model 2 due to
adversarial training, it takes more iterations to make mssg It is conceivable that, with a more
advanced attacker, Model 2 could drop quickly to 7.6%. Whdy tmatter are the robust accuracies
where we advance the state of the art from 7.6% to 24.4%.

C DETAILS OF SCRAMBLED-LABEL EXPERIMENTS

For ordinary networks in Tabld 5, we use two network architess. The first has 4 layers and is the
architecture used In_ Madry etlal. (2017). The second hasy22dand is the architecture of Models
3 and 4 in Tabl€l1, which includes norm-pooling and two-sigtetlU. Results of ordinary networks
using these two architectures are in Talfles 7[and 8 resphctiVhe ordinary-network section of
Table[B is entry-wise max of Tablek 7 ddd 8.

In Tabled¥ an@8, dropout rate and weight-decay weight aredtfor each WD/DR run, and each
WD+DR+ES run uses the combined hyperparameters from its howarly-stopping runs, 5000
training images are withheld as validation set and traisitogps when loss on validation set stops
decreasing. Each ES or WD+DR+ES entry is an average overterigaccount for randomness of
the validation set. The L2NNNSs do not use weight decay, dnbpoearly stopping.

Table[® shows L2NNN trade-off points between accuracy anfidence gap on the 25%-scrambled
training set. Tablé_10 shows L2NNN trade-off points betwaenuracy and confidence gap on
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Table 7: Accuracies of non-L2NNN MNIST classifiers that usélayer architecture and that are
trained on training data with various amounts of scramtabdeéls. Rand is the percentage of training
labels that are randomized. WD is weight decay. DR is drogegtis early stopping.

Rand Ordinary network
Vanilla WD DR ES WD+DR+ES
0 98.9% 99.0% 99.2% 99.0% 99.3%

25% 825% 91.1% 91.8% 79.1% 98.0%
50% 57.7% 67.7% 72.6% 66.4% 88.3%
75% 32.1% 449% 41.8% 52.7% 66.4%
100%  9.5% 8.9% 9.4% NA NA

Table 8: Accuracies of non-L2NNN MNIST classifiers that us22dayer architecture and that are
trained on training data with various amounts of scramtaéels. Rand is the percentage of training
labels that are randomized. WD is weight decay. DR is drofestis early stopping.

Rand Ordinary network
Vanilla WD DR ES WD+DR+ES
0 99.4% 99.0% 99.0% 99.0% 99.0%

25% 90.4% 86.5% 89.8% 96.2% 90.3%
50% 65.5% 62.5% 63.7% 81.0% 83.1%
75%  415% 38.2% 40.2% 75.2% 61.9%
100% 9.7% 9.1% 8.8% NA NA

the 75%-scrambled training set. Like Table 6, they dematesthe trade-off mechanism between
memorization (training-set accuracy) and generalizi@ining-set average gap).

To be fair, dropout and early stopping are also able to seerdccuracy on a noisy training set.
For example, the DR run in the 50%-scrambled row in Table 7687a5% accuracy on the training
set and 72.6% on the test set. However, the underlying mexharare very different from that
of L2NNN. Dropout (Srivastava et al., 2014) has an effectathcaugmentation, and, with a noisy
training set, dropout can create a situation where thetaféedata complexity exceeds the network
capacity. Therefore, the parameter training is stalledlavared accuracy on the training set, and
we get better performance if the model tends to fit more ofimaigabels and less of the scrambled
labels. The mechanism of early stopping is straightforwamd simply stops the training when
it is mostly memorizing scrambled labels. We get bettergreniince from early stopping if the
parameter training tends to fit the original labels earlyeS¢hmechanisms from dropout and early
stopping are both brittle and may not allow parameter tngirnough opportunity to learn from the
useful data points with original labels. The comparisonabl&® suggests that they are inferior to
L2NNN'’s trade-off mechanism as discussed in Sedfioh 3.3larsdrated in Tablegl4.]9 and 0. The
L2NNNSs in this paper do not use weight decay, dropout or estdgping, however it is conceivable
that dropout may be complementary to L2ZNNNs.

D PROOFS

Lemma 1. Letg (x) denote a single-L2NNN classifier's confidence gap for antidjpta pointx.
The classifier will not change its answer as long as the inpig modified by no more than an
Ly-norm ofg (x) /+/2.

Proof. Lety (x) = [y1 (x),y2 (x),- -,y (x)] denote logit vector of a single-L2NNN classifier
for an input data point. Letx; andxs, be two input vectors such that the classifier outputs differe
labels: andj. By definitions, we have the following inequalities:

Yi (x1) — yj (x1) > g (x1)

yi (x2) —y; (x2) <0 (12)
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Table 9: Training-accuracy-versus-confidence-gap trdfipeints of LZNNNs on 25%-scrambled
MNIST training labels.

on training set on test set
Accu. Gap Accu. Gap

99.6% 0.12 92.6% 0.10
97.6% 0.20 95.7% 0.17
78.6% 0.31 98.2% 0.30
77.2% 0.64 98.5% 0.63

Table 10: Training-accuracy-versus-confidence-gap tcdideoints of LZNNNs on 75%-scrambled
MNIST training labels.

on training set on test set
Accu. Gap Accu. Gap

97.9% 0.07 49.8% 0.03
93.0% 0.09 59.2% 0.05
75.9% 0.10 70.0% 0.08
58.0% 0.18 80.4% 0.17
46.2% 0.29 86.8% 0.30
40.1% 0.44 89.8% 0.46
34.7% 0.86 93.1% 0.89

Because the classifier is a single L2ZNNN, it must be true that:
%2 —x1ll2 > [ly (x2) =y (x1) [|2
>\ i (x2) = s (x0))° + (35 (x2) — 35 (x0))?
— /(1) = i (x2))° + () (x2) — 3 (x0))?
N \/ (v: (1) — i (x2) + 95 (x2) —  (2))°

- 2 (13)
_ \/ (91 (1) — 5 (x2)) + (1 (2) — 33 (x2)?
2
o [l () +0)°
- 2
gl V2

O

Lemma 2. Letg (x) denote a classifier’s confidence gap for an input data printetd (x1, x2)
denote thel.,-distance between the output logit-vectors for two inpuhfsax; andx that have
different labels and that are classified correctly. Therstbdndition holds:g (x1) + g (x2) <

\/E' d(Xl,Xz).

Proof. Lety (x) = [y1 (x),y2 (X),- -+ ,yx (x)] denote logit vector of a classifier for an input data
pointx. Lets andj be the labels fox; andxs. By definitions, we have the following inequalities:
yi (x1) —y; (x1) = g (x1) (14)
yj (x2) — yi (x2) > g (x2)
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Therefore,
d(x1,x2) £ ||y (x2) — ¥ (x1) I|2

>\ (s (x2) — s (x0))? + () (x2) — 3y (x0))?
= s (1) — 9 (x2))° + (35 (x2) — 5 (x2))°

§ \/ o ) s )+ 3 )~ (x1))?

(15)
_ \/ (3 (1) — 5 (x2)) + (3 (x2) — 9 (x2)))°
2
=g (x0) + 9 (x2))*
- 2
_9g (x1) + g (x2)
V2
O
Lemma3. Foranya > 0,b > 0, p > 1, the following inequality holdsa? + b < (a + b)".
Proof. If a andb are both zero, the inequality holds. If at least one ahdb is nonzero:
» a P P b P
p Y . — .
a? + 0P = (a+b) ( +b> + (a+10) <a+b)
b (16)
< R -
<(a+b)- +b+m+h) P
= (a+b)*
O

Lemma 4. Let f(z) be a nonexpansive and monotonically increasing scalartionc Define a
function fromR to R?: h(z) = [f(z), f(x) — z]. Thenh(z) is nonexpansive with respect to any
L,-norm.

Proof. For anyz; > x4, by definition we have the following inequalities:

f(x1) = f(x2) >0
f(x1) = f(z2) <31 — 22

For anyp > 1, invoking LemmadB withu = f(z1) — f(z2) andb = 21 — x5 — f(z1) + f(z2), we

have:
((f(z1) = f(22)" + (21 — 22 — f21) + fl22))" < (@1 — 22)7
((f(x1) = f(@2))" + (21 — @2 — f(w1) + fl22))")/? <21 — 9
(1f(x1) = f(@2)l? + |(f(21) = a1) — (f(z2) — 22)[")"/P < 21 — 2o

[h(z1) —h(z2)|l, < 21— 22

17)

(18)

O

Lemma 5. Norm-pooling within each pooling window is a nonexpansiapmwith respect td »-
norm.

Proof. Letx; andxs be two vectors with the size of a pooling window. By triangieduality, we
have
[x1 = x2ll2 + [Ix1]l2 = [[x2]]2
[x1 — x2ll2 + [Ix2]l2 > [[x1]]2

(19)
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Therefore,
X1 — X > ||x —||x
[x1 — x2[[2 > [Ix2ll2 — [[x1]l2 (20)
[x1 = x2ll2 > [Ix1][2 — [|x2]]2
Therefore,
[x1 —xz2ll2 > [[[x1]]2 — [Ix2]|2] (21)
O

Lemma 6. Letg (x) denote a multi-L2NNN classifier's confidence gap for an irfata pointx.
The classifier will not change its answer as long as the inpig modified by no more than an
Ls-norm ofg (x) /2.

Proof. Lety (x) = [y1 (x), 92 (x),--+ ,yx (x)] denote logit vector of a multi-L2NNN classifier
for an input data point. Letx; andxs be two input vectors such that the classifier outputs differe
labelsi and;j. By definitions, we have the following inequalities:

Yi (x1) —y; (x1) > g(x1)
Yi (x2) —yj (x2) <0

For a multi-L2NNN classifier, each logit is a nonexpansivection of the input, and it must be true
that:

(22)

Ix2 — x1ll2 > |yi (x1) — v: (X2)]

Ix2 — x1]l2 > |y; (x2) — y; (x1)] (23)
Therefore,
N N
> lyi (x1) — vi (x2) J;yj (x2) — y; (x1)]
(i (1) — g5 (x1)) + (9 (X2) — 9i (x2))] (24)
2
_ lgbe) +0]
- 2
=g(x1)/2
O]
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