
Published as a conference paper at ICLR 2019

L2-NONEXPANSIVE NEURAL NETWORKS

Haifeng Qian & Mark N. Wegman
IBM Research
Yorktown Heights, NY 10598, USA
qianhaifeng,wegman@us.ibm.com

ABSTRACT

This paper proposes a class of well-conditioned neural networks in which a unit
amount of change in the inputs causes at most a unit amount of change in the out-
puts or any of the internal layers. We develop the known methodology of control-
ling Lipschitz constants to realize its full potential in maximizing robustness, with
a new regularization scheme for linear layers, new ways to adapt nonlinearities
and a new loss function. With MNIST and CIFAR-10 classifiers,we demonstrate
a number of advantages. Without needing any adversarial training, the proposed
classifiers exceed the state of the art in robustness againstwhite-boxL2-bounded
adversarial attacks. They generalize better than ordinarynetworks from noisy
data with partially random labels. Their outputs are quantitatively meaningful and
indicate levels of confidence and generalization, among other desirable properties.

1 INTRODUCTION

Artificial neural networks are often ill-conditioned systems in that a small change in the inputs
can cause significant changes in the outputs (Szegedy et al.,2014). This results in poor robustness
and vulnerability under adversarial attacks which has beenreported on a variety of networks in-
cluding image classification (Carlini & Wagner, 2017a; Goodfellow et al., 2014), speech recognition
(Kreuk et al., 2018; Alzantot et al., 2018; Carlini & Wagner,2018), image captioning (Chen et al.,
2017) and natural language processing (Gao et al., 2018; Ebrahimi et al., 2017). These issues
bring up both theoretical questions of how neural networks generalize (Kawaguchi et al., 2017;
Xu & Mannor, 2012) and practical concerns of security in applications (Akhtar & Mian, 2018).

A number of remedies have been proposed for these issues and will be discussed in Section 4. White-
box defense is particularly difficult and many proposals have failed. For example, Athalye et al.
(2018) reported that out of eight recent defense works, onlyMadry et al. (2017) survived strong at-
tacks. So far the mainstream and most successful remedy is that of adversarial training (Madry et al.,
2017). However, as will be shown in Tables 1 and 2, the robustness by adversarial training dimin-
ishes when a white-box attacker (Carlini & Wagner, 2017a) isallowed to use more iterations.

This paper explores a different approach and demonstrates that a combination of the following three
conditions results in enhanced robustness: 1) the Lipschitz constant of a network from inputs to
logits is no greater than 1 with respect to theL2-norm; 2) the loss function explicitly maximizes
confidence gap, which is the difference between the largest and second largest logits of a classifier;
3) the network architecture restricts confidence gaps as little as possible. We will elaborate.

There are previous works that achieve the first condition (Cisse et al., 2017;
Hein & Andriushchenko, 2017) or bound responses to input perturbations by other means
(Kolter & Wong, 2017; Raghunathan et al., 2018; Haber & Ruthotto, 2017). For example, Parseval
networks (Cisse et al., 2017) bound the Lipschitz constant by requiring each linear or convolution
layer be composed of orthonormal filters. However, the reported robustness and guarantees are
often under weak attacks or with low noise magnitude, and none of these works has demonstrated
results that are comparable to adversarial training.

In contrast, we are able to build MNIST and CIFAR-10 classifiers, without needing any adversarial
training, that exceed the state of the art (Madry et al., 2017) in robustness against white-boxL2-
bounded adversarial attacks. The defense is even stronger if adversarial training is added. We
will refer to these networks asL2-nonexpansive neural networks(L2NNNs). Our advantage comes

1

Published as a conference paper at ICLR 2019

from a set of new techniques: our weight regularization, which is key in enforcing the first condition,
allows greater degrees of freedom in parameter training than the scheme in Cisse et al. (2017); a new
loss function is specially designed for the second condition; we adapt various layers in new ways for
the third condition, for example norm-pooling and two-sided ReLU, which will be presented later.

Let us begin with intuitions behind the second and third conditions. Consider a multi-class classifier.
Let g (x) denote its confidence gap for an input data pointx. If the classifier is a single L2NNN,1 we
have a guarantee2 that the classifier will not change its answer as long as the inputx is modified by
no more than anL2-norm ofg (x) /

√
2. Therefore maximizing the average confidence gap directly

boosts robustness and this motivates the second condition.To explain the third condition, let us
introduce the notion of preserving distance: the distance between any pair of input vectors with two
different labels ought to be preserved as much as possible atthe outputs, while we do not care about
the distance between a pair with the same label. Letd (x1,x2) denote theL2-distance between the
output logit-vectors for two input pointsx1 andx2 that have different labels and that are classi-
fied correctly. It is straightforward to verify the condition3 of g (x1) + g (x2) ≤

√
2 · d (x1,x2).

Therefore a network that maximizes confidence gaps well mustbe one that preserves distance well.
Ultimately some distances are preserved while others are lost, and ideally the decision of which dis-
tance to lose is made by parameter training rather than by artifacts of network architecture. Hence the
third condition involves distance-preserving architecture choices that leave the decision to parameter
training as much as possible, and this motivates many of our design decisions such as Sections 2.2
and 2.3.

In practice we employ the strategy of divide and conquer and build each layer as a nonexpansive
map with respect to theL2-norm. It is straightforward to see that a feedforward network composed
of nonexpansive layers must implement a nonexpansive map overall. How to adapt subtleties like
recursion and splitting-reconvergence is included in the appendix.

Besides being robust against adversarial noises, L2NNNs have other desirable properties. They
generalize better from noisy training labels than ordinarynetworks: for example, when 75% of
MNIST training labels are randomized, an L2NNN still achieves 93.1% accuracy on the test set, in
contrast to 75.2% from the best ordinary network. The problem of exploding gradients, which is
common in training ordinary networks, is avoided because the gradient of any output with respect
to any internal signal is bounded between -1 and 1. Unlike ordinary networks, the confidence gap
of an L2NNN classifier is a quantitatively meaningful indication of confidence on individual data
points, and the average gap is an indication of generalization.

2 L2-NONEXPANSIVE NEURAL NETWORKS

This section describes how to adapt some individual operators in neural networks for L2NNNs.
Discussions on splitting-reconvergence, recursion and normalization are in the appendix.

2.1 WEIGHTS

This section covers both the matrix-vector multiplicationin a fully connected layer and the convo-
lution calculation between input tensor and weight tensor in a convolution layer. The convolution
calculation can be viewed as a set of vector-matrix multiplications: we make shifted copies of the
input tensor and shuffle the copies into a set of small vectorssuch that each vector contains input
entries in one tile; we reshape the weight tensor into a matrix by flattening all but the dimension
of the output filters; then convolution is equivalent to multiplying each of the said small vectors
with the flattened weight matrix. Therefore, in both cases, abasic operator isy = Wx. To be a
nonexpansive map with respect to theL2-norm, a necessary and sufficient condition is

yTy ≤ xTx =⇒ xTWTWx ≤ xTx, ∀x ∈ R
N

ρ
(

WTW
)

≤ 1
(1)

whereρ denotes the spectral radius of a matrix.

1This is only an example and we recommend building a classifier as multiple L2NNNs, see Section 2.4.
2See Lemma 1 in Appendix D for the proof of the guarantee.
3See Lemma 2 in Appendix D for the proof of the condition.

2

Published as a conference paper at ICLR 2019

The exact condition of (1) is difficult to incorporate into training. Instead we use an upper bound:4

ρ
(

WTW
)

≤ b (W) , min
(

r(WTW), r(WWT)
)

, wherer (M) = max
i

∑

j

|Mi,j | (2)

The above is where our linear and convolution layers differ from those in Cisse et al. (2017): they
requireWWT to be an identity matrix, and it is straightforward to see that their scheme is only one
special case that makesb (W) equal to 1. Instead of forcing filters to be orthogonal to eachother,
our bound ofb (W) provides parameter training with greater degrees of freedom.

One simple way to use (2) is replacingW with W ′ = W/
√

b (W) in weight multiplications, and this
would enforce that the layer is strictly nonexpansive. Another method is described in the appendix.

As mentioned, convolution can be viewed as a first layer of making copies and a second layer of
vector-matrix multiplications. With the above regularization, the multiplication layer is nonexpan-
sive. Hence we only need to ensure that the copying layer is nonexpansive. For filter size ofK1 by
K2 and strides ofS1 byS2, we simply divide the input tensor by a factor of

√

⌈K1/S1⌉ · ⌈K2/S2⌉.

2.2 RELU AND OTHERS

Let us turn our attention to the third condition from Section1. ReLU, tanh and sigmoid are nonex-
pansive but do not preserve distance well. This section presents a method that improves ReLU and
is generalizable to other nonlinearities. A different approach to improve sigmoid is in the appendix.

To understand the weakness of ReLU, let us consider two inputdata points A and B, and suppose
that a ReLU in the network receives two different negative values for A and B and outputs zero for
both. Comparing the A-B distance before and after this ReLU layer, there is a distance loss and this
particular ReLU contributes to it. We usetwo-sided ReLUwhich is a function fromR to R

2 and
simply computes ReLU(x) and ReLU(−x). Two-sided ReLU has been studied in Shang et al. (2016)
in convolution layers for accuracy improvement. It is straightforward to verify that two-sided ReLU
is nonexpansive with respect to anyLp-norm and that it preserves distance in the above scenario.
We will empirically verify its effectiveness in increasingconfidence gaps in Section 3.

Two-sided ReLU is a special case of the following general technique. Letf(x) be a nonexpansive
and monotonically increasing scalar function, and note that ReLU, tanh and sigmoid all fit these
conditions. We can define a function fromR to R

2 that computesf(x) andf(x) − x. Such a
new function is nonexpansive with respect to anyLp-norm5 and preserves distance better thanf(x)
alone.

2.3 POOLING

The popular max-pooling is nonexpansive, but does not preserve distance as much as possible.
Consider a scenario where the inputs to pooling are activations that represent edge detection, and
consider two images A and B such that A contains an edge that passes a particular pooling window
while B does not. Inside this window, A has positive values while B has all zeroes. For this window,
the A-B distance before pooling is theL2-norm of A’s values, yet if max-pooling is used, the A-B
distance after pooling becomes the largest of A’s values, which can be substantially smaller than the
former. Thus we suffer a loss of distance between A and B whilepassing this pooling layer.

We replace max-pooling with norm-pooling, which was reported in Boureau et al. (2010) to occa-
sionally increase accuracy. Instead of taking the max of values inside a pooling window, we take the
L2-norm of them. It is straightforward to verify that norm-pooling is nonexpansive6 and would en-
tirely preserve theL2-distance between A and B in the hypothetical scenario above. OtherLp-norms
can also be used. We will verify its effectiveness in increasing confidence gaps in Section 3.

If pooling windows overlap, we divide the input tensor by
√
K whereK is the maximum number

of pooling windows in which an entry can appear, similar to convolution layers discussed earlier.

4The spectral radius of a matrix is no greater than its naturalL∞-norm.WT
W andWW

T have the same
non-zero eigenvalues and hence the same spectral radius.

5See Lemma 4 in Appendix D for the proof of nonexpansiveness.
6See Lemma 5 in Appendix D for the proof of nonexpansiveness.

3

Published as a conference paper at ICLR 2019

2.4 LOSS FUNCTION

For a classifier withK labels, we recommend building it asK overlapping L2NNNs, each of which
outputs a single logit for one label. In an architecture withno split layers, this simply implies that
theseK L2NNNs share all but the last linear layer and that the last linear layer is decomposed intoK
single-output linear filters, one in each L2NNN. For a multi-L2NNN classifier, we have a guarantee7

that the classifier will not change its answer as long as the inputx is modified by no more than an
L2-norm ofg (x) /2, where againg (x) denotes the confidence gap. As mentioned in Section 1, a
single-L2NNN classifier has a guarantee ofg (x) /

√
2. Although this seems better on the surface, it

is more difficult to achieve large confidence gaps. We will assume the multi-L2NNN approach.

We use a loss function with three terms, with trade-off hyperparametersγ andω:

L = La + γ · Lb + ω · Lc (3)

Let y1, y2, · · · , yK be outputs from the L2NNNs. The first loss term is

La = softmax-cross-entropy(u1y1, u2y2, · · · , uKyK , label) (4)

whereu1, u2, · · · , uK are trainable parameters. The second loss term is

Lb = softmax-cross-entropy(vy1, vy2, · · · , vyK , label) (5)

wherev can be either a trainable parameter or a hyperparameter. Note thatu1, u2, · · · , uK andv
are not part of the classifier and are not used during inference. The third loss term is

Lc =
average

(

log
(

1− softmax(zy1, zy2, · · · , zyK)label

))

z
(6)

wherez is a hyperparameter.

The rationale for the first loss term (4) is that it mimics cross-entropy loss of an ordinary network. If
an ordinary network has been converted to L2NNNs by multiplying each layer with a small constant,
its original outputs can be recovered by scaling up L2NNN outputs with certain constants, which is
enabled by the formula (4). Hence this loss term is meant to guide the training process to discover
any feature that an ordinary network can discover. The rationale for the second loss term (5) is that it
is directly related to the classification accuracy. Multiplying L2NNN outputs uniformly withv does
not change the output label and only adapts to the value rangeof L2NNN outputs and drive towards
better nominal accuracy. The third loss term (6) approximates average confidence gap: the log term
is a soft measure of a confidence gap (for a correct prediction), and is asymptotically linear for larger
gap values. The hyperparameterz controls the degree of softness, and has relatively low impact on
the magnitude of loss due to the division byz; if we increasez then (6) asymptotically becomes
the average of minus confidence gaps for correct predictionsand zeroes for incorrect predictions.
Therefore loss (6) encourages large confidence gaps and yet is smooth and differentiable.

A notable variation of (3) is one that combines with adversarial training. Our implementation applies
the technique of Madry et al. (2017) on the first loss term (4):we use distorted inputs in calculating
La. The results are reported in Tables 1 and 2 as Model 4. Anotherpossibility is to use distorted
inputs in calculatingLa andLb, whileLc should be based on original inputs.

3 EXPERIMENTS

Experiments are divided into three groups to study different properties of L2NNNs. Our MNIST
and CIFAR-10 classifiers are available at
http://researcher.watson.ibm.com/group/9298

3.1 ROBUSTNESS

This section evaluates robustness of L2NNN classifiers for MNIST and CIFAR-10 and compares
against the state of the art Madry et al. (2017). The robustness metric is accuracy under white-
box non-targetedL2-bounded attacks. The attack code of Carlini & Wagner (2017a) is used. We

7See Lemma 6 in Appendix D for the proof of the guarantee. The guarantee in either Lemma 1 or Lemma 6
is only a loose guarantee and it has been shown in Hein & Andriushchenko(2017) that a larger guarantee exists
by analyzing local Lipschitz constants, though it is expensive to compute.

4

http://researcher.watson.ibm.com/group/9298

Published as a conference paper at ICLR 2019

Figure 1: Attacks on Model 2 found after 1K and 10K iterations: the same 0 recognized as 5.

downloaded the classifiers8 of Madry et al. (2017) and report their robustness againstL2-bounded
attacks in Tables 1 and 2.9 Note that their defense diminishes as the attacks are allowed more
iterations. Figure 1 illustrates one example of this effect: the first image is an attack on MNIST
Model 2 (0 recognized as 5) found after 1K iterations, with noiseL2-norm of 4.4, while the second
picture is one found after 10K iterations, the same 0 recognized as 5, with noiseL2-norm of 2.1. We
hypothesize that adversarial training alone provides little absolute defense at the noise levels used
in the two tables: adversarial examples still exist and are only more difficult to find. The fact that
in Table 2 Model 2 accuracy is lower in the 1000x10 row than the10K row further supports our
hypothesis.

Table 1: Accuracies of MNIST classifiers under white-box non-targeted attacks with noiseL2-norm
limit of 3. MaxIter is the max number of iterations the attacker uses. Model 1 is an ordinarily trained
model. Model 2 is the model from Madry et al. (2017). Model 3 isL2NNN without adversarial
training. Model 4 is L2NNN with adversarial training.

MaxIter Model1 Model2 Model3 Model4

Natural 99.1% 98.5% 98.7% 98.2%
100 70.2% 91.7% 77.6% 75.6%
1000 0.05% 51.5% 20.3% 24.4%
10K 0% 16.0% 20.1% 24.4%
100K 0% 9.8% 20.1% 24.4%
1M 0% 7.6% 20.1% 24.4%

Table 2: Accuracies of CIFAR-10 classifiers under white-boxnon-targeted attacks with noiseL2-
norm limit of 1.5. MaxIter is the max number of iterations theattacker uses, and 1000x10 indicates
10 runs each with 1000 iterations. Model 1 is an ordinarily network. Model 2 is the model from
Madry et al. (2017). Model 3 is L2NNN without adversarial training. Model 4 is L2NNN with
adversarial training.

MaxIter Model1 Model2 Model3 Model4

Natural 95.0% 87.1% 79.2% 77.2%
100 0% 13.9% 10.2% 20.8%
1000 0% 9.4% 10.1% 20.4%
10K 0% 9.0% 10.1% 20.4%
1000x10 0% 8.7% 10.1% 20.4%
100K 0% NA 10.1% 20.4%

In contrast, the defense of the L2NNN models remain constantwhen the attacks are allowed more
iterations, specifically MNIST Models beyond 10K iterations and CIFAR-10 Models beyond 1000

8At github.com/MadryLab/mnist_challenge andgithub.com/MadryLab/cifar10_challenge. These mod-
els (Model 2’s in Tables 1 and 2) were built by adversarial training withL∞-bounded adversaries (Madry et al.,
2017). To the best of our knowledge, Tsipras et al. (2019) from the same lab is the only paper in the literature
that reports on models trained withL2-bounded adversaries, and it reports that training withL2-bounded ad-
versaries resulted in weakerL2 robustness than theL2 robustness results from training withL∞-bounded
adversaries in Madry et al. (2017). Therefore we choose to compare against the best available models, even
though they were trained withL∞-bounded adversaries. Note also that our own Model 4’s in Tables 1 and 2
are trained with the sameL∞-bounded adversaries.

9In reading Tables 1 and 2, it is worth remembering that the norm of after-attack accuracy is zero, and for
example the 7.6% on MNIST is currently the state of the art.

5

https://github.com/MadryLab/mnist_challenge
https://github.com/MadryLab/cifar10_challenge

Published as a conference paper at ICLR 2019

iterations. The reason is that L2NNN classifiers achieve their defense by creating a confidence gap
between the largest logit and the rest, and that half of this gap is a lower bound ofL2-norm of dis-
tortion to the input data in order to change the classification. Hence L2NNN’s defense comes from a
minimum-distortion guarantee. Although adversarial training alone may also increase the minimum
distortion limit for misclassification, as suggested in Carlini et al. (2017) for a small network, that
limit likely does not reach the levels used in Tables 1 and 2 and hence the defense depends on how
likely the attacker can reach a lower-distortion misclassification. Consequently when the attacks are
allowed to make more attempts the defense with guarantee stands while the other diminishes.

For both MNIST and CIFAR-10, adding adversarial training boosts the robustness of Model 4.
We hypothesize that adversarial training lowers local Lipschitz constants in certain parts of the
input space, specifically around the training images, and therefore makes local robustness guarantees
larger (Hein & Andriushchenko, 2017). To test this hypothesis on MNIST Models 3 and 4, we
measure the averageL2-norm of their Jacobian matrices, averaged over the first 1000 images in the
test set, and the results are 1.05 for Model 3 and 0.83 for Model 4. Note that theL2-norm of Jacobian
can be greater than 1 for multi-L2NNN classifiers. These measurements are consistent with, albeit
does not prove, the hypothesis.

Table 3: Ablation studies: MNIST model without weight regularization; one withoutLc loss; one
with max-pooling instead of norm-pooling; one without two-sided ReLU; Gap is average confidence
gap. R-Accu is under attacks with 1000 iterations and with noiseL2-norm limit of 3.

Accu. Gap R-Accu.

no weight reg. 99.4% 68.3 0%
noLc loss 99.2% 2.2 8.9%
no norm-pooling 98.8% 1.3 9.9%
no two-sided ReLU 98.0% 2.5 15.1%

To test the effects of various components of our method, we build models for each of which we dis-
able a different technique during training. The results arereported in Table 3. To put the confidence
gap values in context, our MNIST Model 3 has an average gap of 2.8. The first one is without weight
regularization of Section 2.1 and it becomes an ordinary network which has little defense against
adversarial attacks; its large average confidence gap is meaningless. For the second one we remove
the third loss term (6) and for the third one we replace norm-pooling with regular max-pooling, both
resulting in smaller average confidence gap and less defenseagainst attacks. For the fourth one, we
replace two-sided ReLU with regular ReLU, and this leads to degradation in nominal accuracy, aver-
age confidence gap and robustness. Parseval networks (Cisseet al., 2017) can be viewed as models
withoutLc term, norm-pooling or two-sided ReLU, and with a more restrictive scheme for weight
matrix regularization.

Model 3 in Table 1 and the second row of Table 3 are two points along a trade-off curve that are
controllable by varying hyperparameterω in loss function (3). Other trade-off points have nominal
accuracy and under-attack accuracy of (98.8%,19.1%), (98.4%,22.6%) and (97.9%,24.7%) respec-
tively. Similar trade-offs have been reported by other robustness works including adversarial train-
ing (Tsipras et al., 2019) and adversarial polytope (Wong etal., 2018). It remains an open question
whether such trade-off is a necessary part of life, and please see Section 3.3 for further discussion
on the L2NNN trade-off.

Table 4: Accuracy of L2NNN classifiers under white-box non-targeted attacks with 1000 iterations
and with noiseL∞-norm limit of ǫ.

ǫ Model3 Model4

MNIST 0.1 90.9% 92.4%
MNIST 0.3 7.0% 44.0%
CIFAR-10 8/256 32.3% 42.5%

Although we primarily focus on defending againstL2-bounded adversarial attacks in this work,
we achieve some level of robustness againstL∞-bounded attacks as a by-product. Table 4 shows

6

Published as a conference paper at ICLR 2019

our results, again measured with the attack code of Carlini &Wagner (2017a). Theǫ values match
those used in Raghunathan et al. (2018); Kolter & Wong (2017); Madry et al. (2017). Our MNIST
L∞ results are on par with Raghunathan et al. (2018); Kolter & Wong (2017) but not as good as
Madry et al. (2017). Our CIFAR-10 Model 4 is on par with Madry et al. (2017) forL∞ defense.

3.2 MEANINGFUL OUTPUTS

This section discusses how to understand and utilize L2NNNs’ output values. We observe strong
correlation between the confidence gap of L2NNN and the magnitude of distortion needed to force
it to misclassify, and images are included in appendix.

In the next experiment, we sort test data by the confidence gapof a classifier on each image. Then
we divide the sorted data into 10 bins and report accuracy separately on each bin in Figure 2. We
repeat this experiment for Model 2 (Madry et al., 2017) and our Model 3 of Tables 1 and 2. Note
that the L2NNN model shows better correlation between confidence and robustness: for MNIST our
first bin is 95% robust and second bin is 67% robust. This indicates that the L2NNN outputs are
much more quantitatively meaningful than those of ordinaryneural networks.

Figure 2: Accuracy percentages of classifiers on test data bin-sorted by the confidence gap.

It is an important property that an L2NNN has an easily accessible measurement on how robust its
decisions are. Since robustness is easily measurable, it can be optimized directly, and we believe
that this is the primary reason that we can demonstrate the robustness results of Tables 1 and 2. This
can also be valuable in real-life applications where we needto quantify how reliable a decision is.

One of the other practical implications of this property is that we can form hybrid models which
use L2NNN outputs when the confidence is high and a different model when the confidence of
the L2NNN is low. This creates another dimension of trade-off between nominal accuracy and
robustness that one can take advantage of in an application.We built such a hybrid model for
MNIST with the switch threshold of 1.0 and achieved nominal accuracy of 99.3%, where only 6.9%
of images were delegated to the alternative classifier. We built such a hybrid model for CIFAR-10
with the switch threshold of 0.1 and achieved nominal accuracy of 89.4%, where 25% of images
were delegated. To put these threshold values in context, MNIST Model 3 has an average gap
of 2.8 and CIFAR-10 Model 3 has an average gap of 0.34. In otherwords, if for a data point
the L2NNN confidence gap is substantially below average, theclassification is delegated to the
alternative classifier, and this way we can recover nominal accuracy at a moderate cost of robustness.

3.3 GENERALIZATION VERSUS MEMORIZATION

This section studies L2NNN’s generalization through a noisy-data experiment where we randomize
some or all MNIST training labels. The setup is similar to Zhang et al. (2017), except that we added
three scenarios where 25%, 50% and 75% of training labels arescrambled.

Table 5 shows the comparison between L2NNNs and ordinary networks. Dropout rate and weight-
decay weight are tuned for each WD/DR run, and each WD+DR+ES runuses the combined hyper-
parameters from its row. In early-stopping runs, 5000 training images are withheld as validation set
and training stops when loss on validation set stops decreasing. The L2NNNs do not use weight
decay, dropout or early stopping. L2NNNs achieve the best accuracy in all three partially-scrambled

7

Published as a conference paper at ICLR 2019

Table 5: Accuracy comparison of MNIST classifiers that are trained on noisy data. Rand is the
percentage of training labels that are randomized. WD is weight decay. DR is dropout. ES is early
stopping. Gap1 is L2NNN’s average confidence gap on trainingset and Gap2 is that on test set.

Rand Ordinary network L2NNN
Vanilla WD DR ES WD+DR+ES Gap1 Gap2

0 99.4% 99.0% 99.2% 99.0% 99.3% 98.7% 2.84 2.82
25% 90.4% 91.1% 91.8% 96.2% 98.0% 98.5% 0.64 0.63
50% 65.5% 67.7% 72.6% 81.0% 88.3% 96.0% 0.58 0.60
75% 41.5% 44.9% 41.8% 75.2% 66.4% 93.1% 0.86 0.89
100% 9.7% 9.1% 9.4% NA NA 11.9% 0.09 0.01

Table 6: Training-accuracy-versus-confidence-gap trade-off points of L2NNNs on 50%-scrambled
MNIST training labels.

on training set on test set
Accu. Gap Accu. Gap

98.7% 0.17 79.0% 0.12
96.5% 0.21 79.3% 0.18
89.4% 0.22 86.3% 0.20
70.1% 0.36 93.4% 0.37
66.1% 0.45 93.7% 0.47
59.8% 0.58 96.0% 0.60

scenarios, and it is remarkable that an L2NNN can deliver 93.1% accuracy on test set when three
quarters of training labels are random. More detailed data and discussions are in the appendix.

To illustrate why L2NNNs generalize better than ordinary networks from noisy data, we show in
Table 6 trade-off points between accuracy and confidence gapon the 50%-scrambled training set.
These trade-off points are achieved by changing hyperparametersω in (3) andv in (5). In a noisy
training set, there exist data points that are close to each other yet have different labels. For a pair
of such points, if an L2NNN is to classify both points correctly, the two confidence gaps must be
small. Therefore, in order to achieve large average confidence gap, an L2NNN must misclassify
some of the training data. In Table 6, as we adjust the loss function to favor larger average gap, the
L2NNNs are forced to make more and more mistakes on the training set. The results suggest that
loss is minimized when an L2NNN misclassifies some of the scrambled labels while fitting the 50%
original labels with large gaps, and parameter training discovers this trade-off automatically. Hence
we see in Table 6 increasing accuracies and gaps on the test set. The above is a trade-off between
memorization (training-set accuracy) and generalization(training-set average gap), and we hypoth-
esize that L2NNN’s trade-off between nominal accuracy and robustness, reported in Section 3.1, is
due to the same mechanism. To be fair, dropout and early stopping are also able to sacrifice accuracy
on a noisy training set, however they do so through differentmechanisms that tend to be brittle, and
Table 5 suggests that L2NNN’s mechanism is superior. More discussions and the trade-off tables
for 25% and 75% scenarios are in the appendix.

Another interesting observation is that the average confidence gap dramatically shrinks in the last
row of Table 5 where the training is pure memorization. This is not surprising again due to training
data points that are close to each other yet have different labels. The practical implication is that after
an L2NNN model is trained, one can simply measure its averageconfidence gap to know whether
and how much it has learned to generalize rather than to memorize the training data.

4 RELATED WORK

Adversarial defense is a well-known difficult problem (Szegedy et al., 2014; Goodfellow et al.,
2014; Carlini & Wagner, 2017a; Athalye et al., 2018; Gilmer et al., 2018). There are many avenues

8

Published as a conference paper at ICLR 2019

to defense (Carlini & Wagner, 2017b; Meng & Chen, 2017), and here we will focus on defense
works that fortify a neural network itself instead of introducing additional components.

The mainstream approach has been adversarial training, where examples of successful attacks on
a classifier itself are used in training (Tramèr et al., 2017; Zantedeschi et al., 2017). The work of
Madry et al. (2017) has the best results to date and effectively flattens gradients around training data
points, and, prior to our work, it is the only work that achieves sizable white-box defense. It has
been reported in Carlini et al. (2017) that, for a small network, adversarial training indeed increases
the average minimumL1-norm andL∞-norm of noise needed to change its classification. However,
in view of results of Tables 1 and 2, adversarial-training results may be susceptible to strong attacks.
The works of Drucker & Le Cun (1992); Ross & Doshi-Velez (2017) are similar to adversarial train-
ing in aiming to flatten gradients around training data set but use different mechanisms.

While the above approaches fortify a network around trainingdata points, others aim to bound a net-
work’s responses to input perturbations over the entire input space. For example, Haber & Ruthotto
(2017) models ResNet as an ordinary differential equation and derive stability conditions. Other
examples include Kolter & Wong (2017); Raghunathan et al. (2018); Wong et al. (2018) which
achieved provable guarantees againstL∞-bounded attacks. However there exist scalability issues
with respect to network depth, and the reported results so far are against relatively weak attacks or
low noise magnitude. As shown in Table 4, we can match their measuredL∞-bounded defense.

Controlling Lipschitz constants also regularizes a network over the entire input space. Szegedy et al.
(2014) is the seminal work that brings attention to this topic. Bartlett et al. (2017) proposes the
notion of spectrally-normalized margins as an indicator ofgeneralization, which are strongly related
to our confidence gap. Pascanu et al. (2013) studies the role of the spectral radius of weight matrices
in the vanishing and the exploding gradient problems. Yoshida & Miyato (2017) proposes a method
to regularize the spectral radius of weight matrices and shows its effect in reducing generalization
gap. The work on Parseval networks (Cisse et al., 2017) showsthat it is possible to control Lipschitz
constants of neural networks through regularization. The core of their work is to constrain linear
and convolution layer weights to be composed of Parseval tight frames, i.e., orthonormal filters, and
thereby force the Lipschitz constant of these layers to be 1;they also propose to restrict aggregation
operations. The reported robustness results of Cisse et al.(2017), however, are much weaker than
those by adversarial training in Madry et al. (2017). We differ from Parseval networks in a number
of ways. Our linear and convolution layers do not require filters to be orthogonal to each other and
subsume Parseval layers as a special case, and therefore provide more freedom to parameter training.
We use non-standard techniques, e.g. two-sided ReLU, to modify various network components to
maximize confidence gaps while keeping the network nonexpansive, and we propose a new loss
function for the same purpose. We are unable to obtain Parseval networks for a direct comparison,
however it is possible to get a rough idea of what the comparison might be by looking at Table 3
which shows the impacts of those new techniques. The work of Hein & Andriushchenko (2017)
makes an important point regarding guarantees provided by local Lipschitz constants, which helps
explain many observations in our results, including why adversarial training on L2NNNs leads to
lasting robustness gains. The regularization proposed by Hein & Andriushchenko (2017) however
is less practical and again introduces reliance on the coverage of training data points.

5 CONCLUSIONS AND FUTURE WORK

In this work we have presentedL2-nonexpansive neural networks which are well-conditionedsys-
tems by construction. Practical techniques are developed for building these networks. Their prop-
erties are studied through experiments and benefits demonstrated, including that our MNIST and
CIFAR-10 classifiers exceed the state of the art in robustness against white-box adversarial attacks,
that they are robust against partially random training labels, and that they output confidence gaps
which are strongly correlated with robustness and generalization. There are a number of future di-
rections, for example, other applications of L2NNN, L2NNN-friendly neural network architectures,
and the relation between L2NNNs and interpretability.

9

Published as a conference paper at ICLR 2019

REFERENCES

Naveed Akhtar and Ajmal Mian. Threat of adversarial attackson deep learning in computer vision:
A survey.arXiv preprint arXiv:1801.00553, 2018.

Moustafa Alzantot, Bharathan Balaji, and Mani Srivastava.Did you hear that? Adversarial examples
against automatic speech recognition.arXiv preprint arXiv:1801.00554, 2018.

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
security: Circumventing defenses to adversarial examples. arXiv preprint arXiv:1802.00420,
2018.

Peter L Bartlett, Dylan J Foster, and Matus J Telgarsky. Spectrally-normalized margin bounds for
neural networks. InAdvances in Neural Information Processing Systems, pp. 6241–6250, 2017.

Y-Lan Boureau, Jean Ponce, and Yann LeCun. A theoretical analysis of feature pooling in visual
recognition. InInternational Conference on Machine Learning, pp. 111–118, 2010.

Nicholas Carlini and David Wagner. Towards evaluating the robustness of neural networks. In
Proceedings of the IEEE Symposium on Security and Privacy, pp. 39–57, 2017a.

Nicholas Carlini and David Wagner. Adversarial examples are not easily detected: Bypassing ten
detection methods. InProceedings of the 10th ACM Workshop on Artificial Intelligence and
Security, pp. 3–14. ACM, 2017b.

Nicholas Carlini and David Wagner. Audio adversarial examples: Targeted attacks on speech-to-
text. arXiv preprint arXiv:1801.01944, 2018.

Nicholas Carlini, Guy Katz, Clark Barrett, and David L Dill.Provably minimally-distorted adver-
sarial examples.arXiv preprint arXiv:1709.10207, 2017.

Hongge Chen, Huan Zhang, Pin-Yu Chen, Jinfeng Yi, and Cho-Jui Hsieh. Show-and-fool: Crafting
adversarial examples for neural image captioning.arXiv preprint arXiv:1712.02051, 2017.

Moustapha Cisse, Piotr Bojanowski, Edouard Grave, Yann Dauphin, and Nicolas Usunier. Parseval
networks: Improving robustness to adversarial examples. In International Conference on Machine
Learning, pp. 854–863, 2017.

Harris Drucker and Yann Le Cun. Improving generalization performance using double backpropa-
gation. IEEE Transactions on Neural Networks, 3(6):991–997, 1992.

Javid Ebrahimi, Anyi Rao, Daniel Lowd, and Dejing Dou. Hotflip: White-box adversarial examples
for nlp. arXiv preprint arXiv:1712.06751, 2017.

Ji Gao, Jack Lanchantin, Mary Lou Soffa, and Yanjun Qi. Black-box generation of adversarial text
sequences to evade deep learning classifiers.arXiv preprint arXiv:1801.04354, 2018.

Justin Gilmer, Luke Metz, Fartash Faghri, Samuel S Schoenholz, Maithra Raghu, Martin Watten-
berg, and Ian Goodfellow. Adversarial spheres.arXiv preprint arXiv:1801.02774, 2018.

Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples.arXiv preprint arXiv:1412.6572, 2014.

Eldad Haber and Lars Ruthotto. Stable architectures for deep neural networks.Inverse Problems,
34(1):014004, 2017.

Matthias Hein and Maksym Andriushchenko. Formal guarantees on the robustness of a classifier
against adversarial manipulation. InAdvances in Neural Information Processing Systems, pp.
2263–2273, 2017.

Kenji Kawaguchi, Leslie Pack Kaelbling, and Yoshua Bengio.Generalization in deep learning.
arXiv preprint arXiv:1710.05468, 2017.

J. Zico Kolter and Eric Wong. Provable defenses against adversarial examples via the convex outer
adversarial polytope.arXiv preprint arXiv:1711.00851, 2017.

10

Published as a conference paper at ICLR 2019

Felix Kreuk, Yossi Adi, Moustapha Cisse, and Joseph Keshet.Fooling end-to-end speaker verifica-
tion by adversarial examples.arXiv preprint arXiv:1801.03339, 2018.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083,
2017.

Dongyu Meng and Hao Chen. Magnet: a two-pronged defense against adversarial examples. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications Security,
pp. 135–147. ACM, 2017.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. InInternational Conference on Machine Learning, pp. 1310–1318, 2013.

Aditi Raghunathan, Jacob Steinhardt, and Percy Liang. Certified defenses against adversarial exam-
ples.arXiv preprint arXiv:1801.09344, 2018.

Andrew Slavin Ross and Finale Doshi-Velez. Improving the adversarial robustness and in-
terpretability of deep neural networks by regularizing their input gradients. arXiv preprint
arXiv:1711.09404, 2017.

Wenling Shang, Kihyuk Sohn, Diogo Almeida, and Honglak Lee.Understanding and improving
convolutional neural networks via concatenated rectified linear units. InInternational Conference
on Machine Learning, pp. 2217–2225, 2016.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, IlyaSutskever, and Ruslan Salakhutdinov.
Dropout: a simple way to prevent neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, JoanBruna, Dumitru Erhan, Ian Goodfel-
low, and Rob Fergus. Intriguing properties of neural networks. In Proceedings of International
Conference on Learning Representations, 2014.

Florian Tram̀er, Alexey Kurakin, Nicolas Papernot, Dan Boneh, and Patrick McDaniel. Ensemble
adversarial training: Attacks and defenses.arXiv preprint arXiv:1705.07204, 2017.

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry.
Robustness may be at odds with accuracy. InInternational Conference on Learning Representa-
tions, 2019.

Eric Wong, Frank Schmidt, Jan Hendrik Metzen, and J Zico Kolter. Scaling provable adversarial
defenses. InAdvances in Neural Information Processing Systems, 2018.

Huan Xu and Shie Mannor. Robustness and generalization.Machine learning, 86(3):391–423,
2012.

Yuichi Yoshida and Takeru Miyato. Spectral norm regularization for improving the generalizability
of deep learning.arXiv preprint arXiv:1705.10941, 2017.

Valentina Zantedeschi, Maria-Irina Nicolae, and Ambrish Rawat. Efficient defenses against adver-
sarial attacks. InProceedings of the 10th ACM Workshop on Artificial Intelligence and Security,
pp. 39–49. ACM, 2017.

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding
deep learning requires rethinking generalization. InProceedings of International Conference on
Learning Representations, 2017.

11

Published as a conference paper at ICLR 2019

A L2-NONEXPANSIVE NETWORK COMPONENTS

A.1 ADDITIONAL METHODS FOR WEIGHT REGULARIZATION

There are numerous ways to utilize the bound of (2). The main text describes a simple method of
usingW ′ = W/

√

b (W) to enforce strict nonexpansiveness. The following is an alternative.

Approximate nonexpansiveness can be achieved by adding a penalty to the loss function whenever
b (W) exceeds 1, for example:

LW = min
(

l(WTW), l(WWT)
)

, wherel (M) =
∑

i

max

∑

j

|Mi,j | − 1, 0

 (7)

The sum of (7) losses over all layers becomes a fourth term in the loss function (3), multiplied with
one additional hyperparameter. This would lead to an approximate L2NNN with trade-offs between
how much its layers violate (1) with surrogate (2) versus other objectives in the loss function.

In practice, we have found that it is beneficial to begin neural network training with the regularization
scheme of (7), which allows larger learning rates, and switch to the first scheme of usingW ′, which
avoids artifacts of an extra hyperparameter, when close to convergence. Of course if the goal is
building approximate L2NNNs one can use (7) all the way.

A.2 SIGMOID AND OTHERS

Sigmoid is nonexpansive as is, but does not preserve distance as much as possible. A better way is
to replace sigmoid with the following operator

s (x) = t · sigmoid

(

4x

t

)

(8)

wheret > 0 is a trainable parameter and each neuron has its ownt. In general, the requirement for
any scalar nonlinearity is that its derivative is bounded between -1 and 1. If a nonlinearity violates
this condition, a shrinking multiplier can be applied. If the actual range of derivative is narrower, as
in the case of sigmoid, an enlarging multiplier can be applied to preserve distance.

For further improvement, (8) can be combined with the general form of the two-sided ReLU of
Section 2.2. Then the new nonlinearity is a function fromR toR

2 that computess(x) ands(x)− x.

A.3 SPLITTING AND RECONVERGENCE

There are different kinds of splitting in neural networks. Some splitting is not followed by recon-
vergence. For example, a classifier may have common layers followed by split layers for each label,
and such an architecture can be viewed as multiple L2NNNs that overlap at the common layers and
each contain one stack of split layers. In such cases, no modification is needed because there is no
splitting within each individual L2NNN.

Some splitting, however, is followed by reconvergence. In fact, convolution and pooling layers
discussed earlier can be viewed as splitting, and reconvergence happens at the next layer. Another
common example is skip-level connections such as in ResNet.Such splitting should be viewed as
making two copies of a certain vector. Let the before-split vector bex0, and we make two copies as

x1 = t · x0

x2 =
√

1− t2 · x0

(9)

wheret ∈ [0, 1] is a trainable parameter.

In the case of ResNet, the reconvergence is an add operator, which should be treated as vector-
matrix multiplication as in Section 2.1, but with much simplified forms. Letx1 be the skip-level
connections andf (x2) be the channels of convolution outputs to be added withx1, we perform the
addition as

y = t · x1 +
√

1− t2 · f (x2) (10)

12

Published as a conference paper at ICLR 2019

wheret ∈ [0, 1] is a trainable parameter and could be a common parameter with(9).

ResNet-like reconvergence is referred to as aggregation layers in Cisse et al. (2017) and a different
formula was used:

y = α · x1 + (1− α) · f (x2) (11)

whereα ∈ [0, 1] is a trainable parameter. Because splitting is not modified in Cisse et al. (2017),
their scheme may seem approximately equivalent to ours if a commont parameter is used for (9) and
(10). However, there is a substantial difference: in many ResNet blocks,f (x2) is a subset of rather
than all of the output channels of convolution layers, and our scheme does not apply the shrinking
factor of

√
1− t2 on channels that are not part off (x2) and therefore better preserve distances. In

contrast, because splitting is not modified, at reconvergence the scheme of Cisse et al. (2017) must
apply the shrinking factor of1 − α on all outputs of convolution layers, regardless of whethera
channel is part of the aggregation or not. To state the difference in more general terms, our scheme
enables splitting and reconvergence at arbitrary levels ofgranularity and multiplies shrinking factors
to only the necessary components. We can also have a different t per channel or even per entry.

To be fair, the scheme of Cisse et al. (2017) has an advantage of being nonexpansive with respect to
anyLp-norm. However, forL2-norm, it is inferior to ours in preserving distances and maximizing
confidence gaps.

A.4 RECURSION

There are multiple ways to interpret recurrent neural networks (RNN) as L2NNNs. One way is to
view an unrolled RNN as multiple overlapping L2NNNs where each L2NNN generates the output at
one time step. Under this interpretation, nothing special is needed and recurrent inputs to a neuron
are simply treated as ordinary inputs.

Another way to interpret an RNN is to view unrolled RNN as a single L2NNN that generates outputs
at all time steps. Under this interpretation, recurrent connections are treated as splitting at their
sources and should be handled as in (9).

A.5 NORMALIZATION

Normalization operations are limited in an L2NNN. Subtracting mean is nonexpansive and allowed,
and subtract-mean operation can be performed on arbitrary subsets of any layer. Subtracting batch
mean is also allowed because it can be viewed as subtracting abias parameter. However, scaling,
e.g., division by standard deviation or batch standard deviation is only allowed if the multiplying fac-
tors are between -1 and 1. To satisfy this in practice, one simple method is to divide all multiplying
factors in a normalization layer by the largest of their absolute values.

B MNIST IMAGES

Gap 5.1 4.4 5.1 4.6 5.0 4.4 4.6 4.5 4.0 3.1

Mstk 5 8 3 5 9 8 2 5 0 7
Dist 4.8 3.6 4.8 3.4 4.1 3.7 4.0 4.5 3.8 2.3

Figure 3: Original and distorted images of MNIST digits in test set with the largest confidence gaps.
Mstk denotes the misclassified labels. Dist denotes theL2-norm of the distortion noise.

Let us begin by showing MNIST images with the largest confidence gaps in Figure 3 and those
with the smallest confidence gaps in Figure 4. They include images before and after attacks as well
as Model 3’s confidence gap, the misclassified label andL2-norm of the added noise. The images
with large confidence gaps seem to be ones that are most different from other digits, while some

13

Published as a conference paper at ICLR 2019

Gap 0.03 0.2 0.1 0.03 0.03 0.001 0.3 0.06 0.01 0.005

Mstk 8 6 8 5 9 3 5 2 3 7
Dist 0.04 0.3 0.1 0.02 0.03 0.001 0.3 0.05 0.02 0.01

Figure 4: Original and distorted images of MNIST digits in test set with the smallest confidence
gaps. Mstk denotes the misclassified output label. Dist denotes theL2-norm of the distortion noise.

of the images with small confidence gaps are genuinely ambiguous. It’s worth noting the strong
correlation between the confidence gap of L2NNN and the magnitude of distortion needed to force
it to misclassify. Also note that our guarantee states that the minimumL2-norm of noise is half of
the confidence gap, but in reality the needed noise is much stronger than the guarantee. The reason
is that the true local guarantee is in fact larger due to localLipschitz constants, as pointed out by
Hein & Andriushchenko (2017).

Figure 5: Original image of 0; attack on Model 2 (Madry et al.,2017) found after 1K iterations;
attack on Model 2 found after 10K iterations; attack on Model3 (L2NNN) found after 1M iterations.
The latter three all lead to misclassification as 5.

Figure 5 shows additional details regarding the example in Figure 1. The first image is the original
image of a zero. The second image is an attack on Model 2 (Madryet al., 2017) found after 1K
iterations, with noiseL2-norm of 4.4. The third is one found after 10K iterations for Model 2, with
noiseL2-norm of 2.1. The last image is the best attack on our Model 3 found after one million
iterations, with noiseL2-norm of 3.5. These illustrates the trend shown in Table 1 that the defense
by adversarial training diminishes as the attacks are allowed more iterations, while L2NNNs with-
stand strong attacks and it requires more noise to fool an L2NNN. It’s worth noting that the slow
degradation of Model 2’s accuracy is an artifact of the attacker (Carlini & Wagner, 2017a): when
gradients are near zero in some parts of the input space, which is true for MNIST Model 2 due to
adversarial training, it takes more iterations to make progress. It is conceivable that, with a more
advanced attacker, Model 2 could drop quickly to 7.6%. What truly matter are the robust accuracies
where we advance the state of the art from 7.6% to 24.4%.

C DETAILS OF SCRAMBLED-LABEL EXPERIMENTS

For ordinary networks in Table 5, we use two network architectures. The first has 4 layers and is the
architecture used in Madry et al. (2017). The second has 22 layers and is the architecture of Models
3 and 4 in Table 1, which includes norm-pooling and two-sidedReLU. Results of ordinary networks
using these two architectures are in Tables 7 and 8 respectively. The ordinary-network section of
Table 5 is entry-wise max of Tables 7 and 8.

In Tables 7 and 8, dropout rate and weight-decay weight are tuned for each WD/DR run, and each
WD+DR+ES run uses the combined hyperparameters from its row.In early-stopping runs, 5000
training images are withheld as validation set and trainingstops when loss on validation set stops
decreasing. Each ES or WD+DR+ES entry is an average over ten runs to account for randomness of
the validation set. The L2NNNs do not use weight decay, dropout or early stopping.

Table 9 shows L2NNN trade-off points between accuracy and confidence gap on the 25%-scrambled
training set. Table 10 shows L2NNN trade-off points betweenaccuracy and confidence gap on

14

Published as a conference paper at ICLR 2019

Table 7: Accuracies of non-L2NNN MNIST classifiers that use a4-layer architecture and that are
trained on training data with various amounts of scrambled labels. Rand is the percentage of training
labels that are randomized. WD is weight decay. DR is dropout.ES is early stopping.

Rand Ordinary network
Vanilla WD DR ES WD+DR+ES

0 98.9% 99.0% 99.2% 99.0% 99.3%
25% 82.5% 91.1% 91.8% 79.1% 98.0%
50% 57.7% 67.7% 72.6% 66.4% 88.3%
75% 32.1% 44.9% 41.8% 52.7% 66.4%
100% 9.5% 8.9% 9.4% NA NA

Table 8: Accuracies of non-L2NNN MNIST classifiers that use a22-layer architecture and that are
trained on training data with various amounts of scrambled labels. Rand is the percentage of training
labels that are randomized. WD is weight decay. DR is dropout.ES is early stopping.

Rand Ordinary network
Vanilla WD DR ES WD+DR+ES

0 99.4% 99.0% 99.0% 99.0% 99.0%
25% 90.4% 86.5% 89.8% 96.2% 90.3%
50% 65.5% 62.5% 63.7% 81.0% 83.1%
75% 41.5% 38.2% 40.2% 75.2% 61.9%
100% 9.7% 9.1% 8.8% NA NA

the 75%-scrambled training set. Like Table 6, they demonstrate the trade-off mechanism between
memorization (training-set accuracy) and generalization(training-set average gap).

To be fair, dropout and early stopping are also able to sacrifice accuracy on a noisy training set.
For example, the DR run in the 50%-scrambled row in Table 7 has67.5% accuracy on the training
set and 72.6% on the test set. However, the underlying mechanisms are very different from that
of L2NNN. Dropout (Srivastava et al., 2014) has an effect of data augmentation, and, with a noisy
training set, dropout can create a situation where the effective data complexity exceeds the network
capacity. Therefore, the parameter training is stalled at alowered accuracy on the training set, and
we get better performance if the model tends to fit more of original labels and less of the scrambled
labels. The mechanism of early stopping is straightforwardand simply stops the training when
it is mostly memorizing scrambled labels. We get better performance from early stopping if the
parameter training tends to fit the original labels early. These mechanisms from dropout and early
stopping are both brittle and may not allow parameter training enough opportunity to learn from the
useful data points with original labels. The comparison in Table 5 suggests that they are inferior to
L2NNN’s trade-off mechanism as discussed in Section 3.3 andillustrated in Tables 6, 9 and 10. The
L2NNNs in this paper do not use weight decay, dropout or earlystopping, however it is conceivable
that dropout may be complementary to L2NNNs.

D PROOFS

Lemma 1. Let g (x) denote a single-L2NNN classifier’s confidence gap for an input data pointx.
The classifier will not change its answer as long as the inputx is modified by no more than an
L2-norm ofg (x) /

√
2.

Proof. Let y (x) = [y1 (x) , y2 (x) , · · · , yK (x)] denote logit vector of a single-L2NNN classifier
for an input data pointx. Letx1 andx2 be two input vectors such that the classifier outputs different
labelsi andj. By definitions, we have the following inequalities:

yi (x1)− yj (x1) ≥ g (x1)

yi (x2)− yj (x2) ≤ 0
(12)

15

Published as a conference paper at ICLR 2019

Table 9: Training-accuracy-versus-confidence-gap trade-off points of L2NNNs on 25%-scrambled
MNIST training labels.

on training set on test set
Accu. Gap Accu. Gap

99.6% 0.12 92.6% 0.10
97.6% 0.20 95.7% 0.17
78.6% 0.31 98.2% 0.30
77.2% 0.64 98.5% 0.63

Table 10: Training-accuracy-versus-confidence-gap trade-off points of L2NNNs on 75%-scrambled
MNIST training labels.

on training set on test set
Accu. Gap Accu. Gap

97.9% 0.07 49.8% 0.03
93.0% 0.09 59.2% 0.05
75.9% 0.10 70.0% 0.08
58.0% 0.18 80.4% 0.17
46.2% 0.29 86.8% 0.30
40.1% 0.44 89.8% 0.46
34.7% 0.86 93.1% 0.89

Because the classifier is a single L2NNN, it must be true that:

‖x2 − x1‖2 ≥ ‖y (x2)− y (x1) ‖2

≥
√

(yi (x2)− yi (x1))
2
+ (yj (x2)− yj (x1))

2

=

√

(yi (x1)− yi (x2))
2
+ (yj (x2)− yj (x1))

2

≥

√

(yi (x1)− yi (x2) + yj (x2)− yj (x1))
2

2

=

√

((yi (x1)− yj (x1)) + (yj (x2)− yi (x2)))
2

2

≥

√

(g (x1) + 0)
2

2

= g (x1) /
√
2

(13)

Lemma 2. Let g (x) denote a classifier’s confidence gap for an input data pointx. Letd (x1,x2)
denote theL2-distance between the output logit-vectors for two input points x1 andx2 that have
different labels and that are classified correctly. Then this condition holds:g (x1) + g (x2) ≤√
2 · d (x1,x2).

Proof. Let y (x) = [y1 (x) , y2 (x) , · · · , yK (x)] denote logit vector of a classifier for an input data
pointx. Let i andj be the labels forx1 andx2. By definitions, we have the following inequalities:

yi (x1)− yj (x1) ≥ g (x1)

yj (x2)− yi (x2) ≥ g (x2)
(14)

16

Published as a conference paper at ICLR 2019

Therefore,
d (x1,x2) , ‖y (x2)− y (x1) ‖2

≥
√

(yi (x2)− yi (x1))
2
+ (yj (x2)− yj (x1))

2

=

√

(yi (x1)− yi (x2))
2
+ (yj (x2)− yj (x1))

2

≥

√

(yi (x1)− yi (x2) + yj (x2)− yj (x1))
2

2

=

√

((yi (x1)− yj (x1)) + (yj (x2)− yi (x2)))
2

2

≥

√

(g (x1) + g (x2))
2

2

=
g (x1) + g (x2)√

2

(15)

Lemma 3. For anya ≥ 0, b ≥ 0, p ≥ 1, the following inequality holds:ap + bp ≤ (a+ b)
p.

Proof. If a andb are both zero, the inequality holds. If at least one ofa andb is nonzero:

ap + bp = (a+ b)
p ·

(

a

a+ b

)p

+ (a+ b)
p ·

(

b

a+ b

)p

≤ (a+ b)
p · a

a+ b
+ (a+ b)

p · b

a+ b

= (a+ b)
p

(16)

Lemma 4. Let f(x) be a nonexpansive and monotonically increasing scalar function. Define a
function fromR to R

2: h(x) = [f(x), f(x) − x]. Thenh(x) is nonexpansive with respect to any
Lp-norm.

Proof. For anyx1 > x2, by definition we have the following inequalities:

f(x1)− f(x2) ≥ 0

f(x1)− f(x2) ≤ x1 − x2

(17)

For anyp ≥ 1, invoking Lemma 3 witha = f(x1)− f(x2) andb = x1 − x2 − f(x1) + f(x2), we
have:

((f(x1)− f(x2))
p
+ (x1 − x2 − f(x1) + f(x2))

p ≤ (x1 − x2)
p

(((f(x1)− f(x2))
p
+ (x1 − x2 − f(x1) + f(x2))

p
)
1/p ≤ x1 − x2

(|f(x1)− f(x2)|p + |(f(x1)− x1)− (f(x2)− x2)|p)1/p ≤ x1 − x2

‖h(x1)− h(x2)‖p ≤ x1 − x2

(18)

Lemma 5. Norm-pooling within each pooling window is a nonexpansive map with respect toL2-
norm.

Proof. Let x1 andx2 be two vectors with the size of a pooling window. By triangle inequality, we
have

‖x1 − x2‖2 + ‖x1‖2 ≥ ‖x2‖2
‖x1 − x2‖2 + ‖x2‖2 ≥ ‖x1‖2

(19)

17

Published as a conference paper at ICLR 2019

Therefore,
‖x1 − x2‖2 ≥ ‖x2‖2 − ‖x1‖2
‖x1 − x2‖2 ≥ ‖x1‖2 − ‖x2‖2

(20)

Therefore,
‖x1 − x2‖2 ≥ |‖x1‖2 − ‖x2‖2| (21)

Lemma 6. Let g (x) denote a multi-L2NNN classifier’s confidence gap for an inputdata pointx.
The classifier will not change its answer as long as the inputx is modified by no more than an
L2-norm ofg (x) /2.

Proof. Let y (x) = [y1 (x) , y2 (x) , · · · , yK (x)] denote logit vector of a multi-L2NNN classifier
for an input data pointx. Letx1 andx2 be two input vectors such that the classifier outputs different
labelsi andj. By definitions, we have the following inequalities:

yi (x1)− yj (x1) ≥ g (x1)

yi (x2)− yj (x2) ≤ 0
(22)

For a multi-L2NNN classifier, each logit is a nonexpansive function of the input, and it must be true
that:

‖x2 − x1‖2 ≥ |yi (x1)− yi (x2)|
‖x2 − x1‖2 ≥ |yj (x2)− yj (x1)|

(23)

Therefore,

‖x2 − x1‖2 ≥ |yi (x1)− yi (x2)|+ |yj (x2)− yj (x1)|
2

≥ |yi (x1)− yi (x2) + yj (x2)− yj (x1)|
2

=
|(yi (x1)− yj (x1)) + (yj (x2)− yi (x2))|

2

≥ |g (x1) + 0|
2

= g (x1) /2

(24)

18

	Introduction
	L2-nonexpansive neural networks
	Weights
	ReLU and others
	Pooling
	Loss function

	Experiments
	Robustness
	Meaningful outputs
	Generalization versus memorization

	Related work
	Conclusions and future work
	L2-nonexpansive network components
	Additional methods for weight regularization
	Sigmoid and others
	Splitting and reconvergence
	Recursion
	Normalization

	MNIST images
	Details of scrambled-label experiments
	Proofs

