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ABSTRACT

We propose a novel interactive attention learning framework which we refer to as
Interactive Attention Learning (IAL), in which the human annotators interactively
manipulate the allocated attentions to correct the model’s behavior, by updating
only the attention-generating model without having to retrain the entire network.
For efficient update of the attention generator without retraining, we propose a
novel attention mechanism, Neural Attention Process (NAP), which can generate
stochastic attentions based on scarce attention-level labels, and can incorporate
new training instances without retraining. Further, to minimize human interaction
cost, we propose a cost-effective algorithm that selects the most negative training
instances that yield incorrect and non-intuitive interpretation with influence func-
tion and re-rank the attentions on the input features by their uncertainties, such
that the annotators label the instances and attentions that are more influential to
the prediction first. We validate IAL on various datasets from the healthcare and
finance domains, on which it significantly outperforms baseline approaches with
conventional attention mechanism and random selection of instances when using
the same number of annotations, with significantly shorter annotation time per
instance owing to attention reranking. Further qualitative analysis shows that IAL
also yields interpretations that agree well with human interpretations.

1 INTRODUCTION

Deep neural networks have been the most prevalent tools for predictive modeling tasks nowadays, as
they are powerful and can learn complex functions with multiple layers of non-linear transformations
without manual engineering of representations. However, the complex nature of the model at the
same time makes it very difficult to interpret what they have learned, and brought a new challenge
of interpretability. Interpreting deep neural networks is crucial to their applications to real-world
application domains such as healthcare (Choi et al., 2016; Heo et al., 2018; Ahmad et al., 2018;
Sankar et al., 2019), finance (Grath et al., 2018; Wong, 2018), and autonomous driving (Kim &
Canny, 2017; Chi & Mu, 2017). For such high-risk tasks, incorrectly learned correlation could result
in severe consequences (e.g. mortality, large financial loss, or accidents), and the deployments of
such unreliable models could be avoided if the model is interpretable.

Although many recent models proposed diverse solutions to interpretability (Choi et al., 2016; Ahmad
et al., 2018; Lage et al., 2018), we face yet another challenge: not all interpretations are correct.
Interpretable models should provide human-understandable and intuitive interpretations (Gilpin et al.,
2018; Lage et al., 2018), that conform to the domain knowledge of human experts. For instance, if an
interpretable model failed to provide correct and human-intuitive interpretation of why it arrived at
its decision on diagnosing a patient of heart failure, the final decision maker, the human physician,
may not be able to trust the model’s decision, even if the actual decision is correct. Often, deep
learning models tend to learn tricks that exploit dataset bias, which is another barrier in building trust
between humans and machine learning algorithms.

In the cognitive neuroscience perspective, human learning and understanding are built upon two
integral parts: interaction and explanation. Our brain’s biological functions are constantly developed
by internal reflection (Back-propagation) and external explanation (Human feedback) during social
interactions (Clark et al., 2015). In this sense, interactive learning frameworks could be effective
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Figure 1: Overview of our Interactive Attention Learning Framework.

means of guiding the model to learn what to focus or ignore, out of training examples and their
features, and how to provide desirable explanations for its decision to achieve human-interpretability.

Based on this motivation, we propose an interactive learning framework that allows the users to
manipulate the model, by adjusting the provided model interpretations. However, there are several
critical challenges that need to be addressed for such an interactive learning framework to be critical.
First, to reflect human feedback, the model may need to be retrained, but this is very expensive
for deep neural networks. Thus, we need an efficient approach to correct the model’s behavior
without retraining the entire network. Secondly, requesting and obtaining human feedbacks could be
highly expensive (e.g. asking for clinician’s annotation), and obtaining feedbacks on already correct
interpretations is wasteful. Therefore, we need to selectively provide interpretations on samples and
input features that can actually bring in performance improvements of the model. Finally, due to
scarcity of human feedbacks, the updated model may overfit, which we need to prevent.

To overcome theses challenges, we propose a novel interactive learning framework which we refer to
as Interactive Attention Learning (IAL) that can data-efficiently update the trained network without
having to train the entire model or overfitting to scarce human feedbacks (See Figure 1). Specifically,
we provide the model interpretations in the form of attention allocated on the input variables, and
obtain feedbacks from domain experts to correct the model’s interpretation by providing a mask on
the attention, which is used as supervised labels to update the attention generator without retrainig the
main network (Figure 1(c)). However, since the retraining of the attention generator alone could be
costly and is prone to overfitting, we propose a novel attention mechanism based on Neural Process,
which we refer to as Neural Attention Process (NAP), that can data-efficiently generate attentions
with scarce human labels, incorporate additional labeled instances without retraining, and output
uncertainty (Figure 1(a)). Further, since obtaining human attention labels for datasets with large
number of instances and large number of input variables is costly, we select the examples that has the
most negative effect on the generated interpretation using the influence function (Cook & Weisberg,
1980), and then sort the attended input variables by the measured uncertainty in order to interact with
the users in the most efficient way (Figure 1(b)).

We validate our interactive attention learning framework on a variety of tasks, including excercise
posture correction task, and cerebral infarction risk prediction from electronic health records (EHR),
and real-estate price forecast. The experimental results show that our model outperforms the baseline
network or naive interactive learning scheme by significant margins with much smaller annotation
cost, in terms of number of instances and time to annotate each instance. Further quantitative
and qualitative analysis of the learned attention weights shows that our model is able to generate
interpretations that align well with the physician’s evaluations on the same EHR records.

Our contribution in this paper is threefold:

• We propose a novel interactive attention learning framework with an efficient attention
mechanism based on Neural Processes, which enables to efficiently correct the model’s
understanding with scarce human feedbacks without retraining of the entire network.

• We propose a cost-effective interactive learning algorithm to rank the examples and the
attended input variables, in order to maximize the effect of each annotation and thus to
minimize the human-machine interaction cost.

• We validate our model on five real-world tasks from three different domains (fitness, health-
care, and finance) for binary, multi-label classification, and regression tasks, and show that
our model obtains significant improvements over baselines with less human feedbacks.
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2 RELATED WORK

Interpretable machine learning The literature in interpretable machine learning is vast, but we
only discuss a few. A popular approach to obtain interpretable model is to build a simple proxy
model that mimics the (local) behaviors of a complex model, using either simplified linear mod-
els (Ribeiro et al., 2016) or decision trees (Sato & Tsukimoto, 2001; Augasta & Kathirvalavakumar,
2012; Salzberg, 1994). Another approach, specific for neural networks, is analyzing their learned
representations (Sharif Razavian et al., 2014; Yosinski et al., 2014) at each unit via visualization.
Bau et al. (2017) further consider interpretability of representations in light of their correspondence to
semantic concepts, and utilize it for controlling the behavior of generative adversarial networks (Bau
et al., 2019). In tihs work, we propose a novel interactive learning framework that can make use
of the model’s interpretation to iteratively correct the model’s understanding, while minimizing the
interaction cost via cost-effective instance selection and reranking.
Attention Mechanism Attention mechanism is an effective approach to adaptively select a subset
of features (or inputs) in an input-dependent manner, such that the model dynamically focuses
on more relevant features for prediction. This mechanism works by input-adaptively generating
coefficients for the input features to locate more weights to the features that are found to be relevant
for the given input. Attention mechanisms have achieved success with various applications, including
image translation (Xu et al., 2015), machine translation (Bahdanau et al., 2015), memory-augmented
networks (Sukhbaatar et al., 2015), and visual question answering (Das et al., 2017), and health-
care (Choi et al., 2016; Heo et al., 2018). In this work, we consider attention as a way to both
understand what the model has learned and to efficiently correct the model’s behavior, using a novel
data-efficient attention mechanism based on Neural Process that can generalize well with scarce
human labels and can incorporate new labeled instances without retraining,
Neural Processes Neural Processes (NPs) is a neural network-based formulation that combines the
benefits of deep neural network and stochastic process, which learns an approximation of a stochastic
proces (Garnelo et al., 2018b). NPs allow for global sampling via a latent variable z to produce
different function samples and model the uncertainty for some given context data. (Garnelo et al.,
2018a) introduced Conditional Neural Processes (CNPs) which are different from NPs in the sense
that CNPs do not sample different functions for the same context points, since it doesn’t generate a
latent variable for global sampling. Kim et al. (2019) resolves the underfitting problem caused by
mean-aggregator, by utilizing the attention mechanism.

Algorithm 1: Interactive Attention Learning Framework

Input :Dtrain = {x(1:T )

i ,yi}Ni=1, θ = {ω,φ}, S
Output :θ

1 for s = 1, ..., S do
2 if s = 1 then
3 Train the network weights θ(1) by minimizeθ(1) L(θ(1);Dtrain) + Ω(θ(1))
4 else
5 (D(s)

selected = {x(1:T )

k ,yk}Kk=1,α)← CESR(θ(t−1)) . Cost-Effective Selection
6 & Reranking-Algorithm 2
7 {mk}Kk=1 ← Evaluate(D(s)

selected,α) . Evaluate & get feedback for attention α
8 φ(s) ← NAP(xs, {mk}Kk=1,φ) . Efficient model update with NAP.
9 end

10 end

3 APPROACH

We now describe our interactive attention learning framework with neural attention process. While
our method is generic enough to be applied to any types of prediction tasks, we focus on the
case using time-series data. A training dataset is represented as Dtrain = {(x(1:T )

i ,yi)}Ni=1, where
x(1:T )

i = [x(1)

i , . . . ,x(T )

i ] and x(t)

i ∈ RD is the D-dimensional observation vector for the t-th time
step. yi is the corresponding label defined according to the task at hands (e.g., a real number for
regression). We are interested in building a neural network with two components - an embedding
network fv(·;ω) embeds x(1:T )

i into v(1:T )

i , and an attention generating network fα(·;φ) computes the
attention weights. The attention generating networks accelerate the learning by attending to specific
parts of the inputs, and more importantly, provides a way to interpret the decision of the model. Thus
we are interested in improving the quality of attention by interacting with human experts. More
specifically, when the model produces a prediction with an attention, a human supervisor evaluates
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Figure 2: Neural Attention Process (NAP). Embeded outputs l and the global latent variable z are generated
from the embedding network (A-1) and neural process (A-2), respectively, and the final attention output α is
produced by the linear transformation (A-3).

the attention and gives feedback in the form of a binary attention mask m. This attention mask then
could be used as supervision to further improve the model by updating the parameter φ for fα.

We describe the overall interactive attention learning (IAL) framework in Algorithm 1. We aim to
improve the model over S interactions with human supervisors. At the first training stage (s = 1),
we initially train the model parameter θ(1) without the help of human supervisors by minimizing the
loss L(θ(1);Dtrain) + Ω(θ(1)) where L is the loss function for the task and Ω is the regularization
function. For each of the following iterations, we select instances and attended input variables, obtain
the attention mask m from the human supervisor, and update the model parameters by minimizing
the loss L(θ(s);θ(s−1),m,Dtrain) + Ω(θ(s)).

3.1 NEURAL ATTENTION PROCESS

In this section, we describe how to effectively update the model with sparse annotations using the
variant of neural process (Garnelo et al., 2018b) which we refer to as Neural Attention Process (NAP).
Before describing our approach, we briefly explain how attention is applied using RETAIN Choi et al.
(2016) as an example. Given the input embedding v(1:T ), attention coefficients for both timesteps and
input variables are constructed as follows:

g(1:T ) = RNNtime(v
(1:T )), h(1:T ) = RNNvar(v

(1:T )), (1)

e(t) = w>timeg
(t) + btime for t = 1, . . . , T, d(t) = Wvarh

(t) + bvar for t = 1, . . . , T, (2)

α(1:T )

time = Softmax(e(1), . . . , e(T )), α(t)

var = tanh(d(t)) for t = 1, . . . , T, (3)

where α(1:T )

time are attention weights applied for time-steps and α(1:T )
var are attention weights for the

input variables. We may also consider the stochastic attention as in (Xu et al., 2015). Having
α = {α(1:T )

time ,α
(1:T )
var }, the model can make predictions as ŷi =

∑T
t=1 α

(t)

time · (α(t)
var � v(t)

i ) where � is
the element-wise multiplication.

Now we describe the actual algorithm for NAP. Let {m(1:T )

k }Kk=1 be a set of annotations represented
as masks, given for the selected subsamples of the training data. The idea is that, instead of updating
the parameter φ using these small number of examples, we let network take the summarization of
the annotation set as an additional input. This approach, when trained properly, can automatically
adapt without retraining when a new set of annotations is further given. The overall pipeline of neural
attention process is depicted in Figure 2.

Embedding the inputs (A-1) we first embed the input x(1:T ) using LSTM (Hochreiter & Schmid-
huber, 1997) into l(1:T ) = [g(1:T ),h(1:T )].

Embedding & summarizing the annotations (A-2) Given the set of annotation masks
{m(1:T )

k }Kk=1, we build an intermediate representation {r(1:T )

k }Kk=1 via another LSTM. Then, for
each time step, we build a summarized representation r̄(t) by a permutation-invariant operation (for
instance, average),

r̄(t) = r(t)

1 ⊕ · · · ⊕ r(t)

K . (4)

Having r̄(1:T ), we define a distribution for the summary variable z as Gaussian:

z(t) ∼ N (µ(r̄(t)),σ2(r̄(t))), µ(r̄(t)) = Wµr̄
(t) + bµ, σ(r̄(t)) = softplus(Wσ r̄

(t) + bσ). (5)

Generating attentions (A-3) Now we generate the attention by a similar procedure to (3), but
instead of feeding only, l(1:T ) = (g(1:T ),h(1:T )), we feed both l(1:T ) and the annotation summarization
vector z(1:T ) by concatenation. This allows the network to naturally reflect the information obtained
from the summarization z(1:T ) without having to retrain the whole attention network parameter φ.
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Algorithm 2: Cost-Effective Selection & Reranking (CESR)

Input :Dtrain = {x(1:T )

i ,yi}Ni=1, Dvalid = {x(1:T )

j ,yj}Mj=1, P,K, θ(s−1).

Output :D(s)
selected = {x(1:T )

k ,yk}Kk=1, α.

1 Evaluate the network with Dvalid.
2 Sort valid points {(x(1:T )

j ,yj)}Mj=1 in the descending order of L(x(1:T )

j ,yj ;θ
(s−1)).

3 Select top P -valid points D′valid = {x(1:T )
p ,yp}Pp=1

4 for i = 1, ..., N do
5 Approximate influence of train points (x(1:T )

i ,yi) on loss at D′valid.
6 end
7 Select top K-training points D(s)

selected = {xk,yk}Kk=1 w.r.t. the approximated influence.
8 Compute the attention weights α for D(s)

selected.
9 Approximate uncertainty of attention weights Var(α) for D(s)

selected via Monte-Carlo sampling.

Training NAP Even with NAP, we need at least one training procedure to update φ so that it can
take z(1:T ) as an additional input. For this training, we use two strategies to make the NAP to readily
generalize to the future annotations to be given. First, at each training step, we randomly subsample
the annotations to comprise random task to train the model. This prevents the model from completely
over-fitted to the entire annotation set {m(1:T )

k }Kk=1. Secondly, we regularize the summarization
vector z(1:T ) by positing a prior distribution. We then train the ELBO in similar fashion to the original
neural process objectvie (Garnelo et al., 2018b).

3.2 COST-EFFECTIVE SELECTION AND RE-RANKING

Acquiring human annotations is highly expensive and thus it is crucial to prioritize the most important
instances and attentions (input variables) that negatively affect the model accuracy. The most native
approach to identify important negative examples in the training set, would be to retrain the entire
model parameter θ every time, while omitting a single targeted point. To avoid such costly retraining,
we utilize influence functions (Cook & Weisberg, 1980) and uncertainty to perform negative instance
selection and feature re-ranking respectively in a cost-effective manner.

Influence functions efficiently estimate the effect of removing particular train points on a model
without retraining (Koh & Liang, 2017). For notational simplicity, we set train points s1, ..., sN ,
where si = (xi,yi) ∈ Dtrain

1. Given a scenario where we approximate the change of the model’s
predictions by removing a data point s, we can formalize the change as θ̂−s − θ̂, where θ̂ =

argminθ
1
n

∑n
i=1 L(θ, si) and θ̂−s = argminθ

1
n−1

∑
si 6=s L(θ, si). That is, θ̂ is the parameter that

minimizes the empirical risk of the full dataset and θ̂−s is the empirical minimizer of the dataset
without the train point s. Since upweighting si with δ = − 1

n has the same effect as removing si from
the train set (Koh & Liang, 2017), we approximate the influence by upweighting si on the loss at all
valid points as follows:

Ĩup, loss(si, s
valid) =

P∑
p=1

∣∣∣∣Ĩup, loss(si, s
valid
p )

∣∣∣∣ =

P∑
p=1

∣∣∣∣−∇θL(θ̂, svalid
p )>H−1

θ̂
∇θL(θ̂, si)

∣∣∣∣ (6)

where Hθ̂ = 1
n

∑n
i=1∇2

θL(θ̂, si) is the Hessian matrix to compute the second partial derivative of
the function as a quadratic approximation with respect to the empirical loss around θ̂ and we set the
validation data points svalidp = {(xp,yp)|xp ∈ Rd,yp ∈ R1}Pp=1 and Ĩup, loss(si, s

valid) represents
the influence of a train point si on the the sum of loss at all valid points {sp}Pp=1.

Cost-Effective Selection & Reranking (CESR) We now describe the procedure illustrated in
(B)-Figure 1, in detail. (1) We train the entire network with a training set, sort valid points in
descending order of its loss, and select top P -valid points. (2) We then compute influence scores for
training points on the loss at P -valid points D′valid = {xp,yp}Pp=1, and (3) sort the influence scores
of training points in descending order of Ĩup, loss(si, s

valid) and select top K-train points denoted as
Dselected = {xk,yk}Kk=1. (4) Finally, using the approximate uncertainty of each variable’s attention
Var(α(xds)) with Monte Carlo dropout (Gal & Ghahramani, 2016), we sort the set of variables in

1We omit the time index in this section.
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descending order of the approximated uncertainty. One important aspect of CESR is that the identified
set of valid points with the highest losses at evaluation can be effectively used as means for detecting
negative train points via influence functions. Algorithm 2 describes the entire procedure.

3.3 ATTENTION EVALUATION AND EFFICIENT MODEL UPDATE

Figure 3: Attention Annota-
tion Interface (Healthcare).

Given the provided set of selected negative train instances from CESR
algorithm, (1) we present the visualizations of attentions on our online
interactive user interface in Figure 3.3, where the annotators can eas-
ily turn on/off the binary mask mk = {0, 1}. The interface visually
emphasizes features that the annotator should pay attention to the bar
plots or attention map depeding on the given task (see the appendix for
more information). (2) Annotators examine attention weights to deter-
mine whether attention weights are incorrectly allocated, simultaneously
checking for the corresponding input values and label. With time-series data, annotators evaluate
the delivered attentions α(1:T )

time and α(1:T )
var via an annotation matrix, which are basically matrices of

binarized attentions. (3) Accumulated annotations are efficiently updated to NAP without retraining.

4 EXPERIMENTS

We validate the performance and cost-effectiveness of our interactive neural attention learning, on
five datasets from three domains.

1) Fitness - Squat Pose Correction This dataset contains 4,000 video frames of human subject
performing squats with 11 multi-labels classification task (e.g., 0: Correct posture, 1: Incorrect-
exaggerated knees-forward movement, 2: Incorrect-sitting on the thighs instead of between them).
We extract 14 pairs of key points from joints (e.g., left shoulder or right ankle) to have a clear picture
of which body joints an attentional network attends to for a given instance. The task is to classify
whether a person performs the correct posture or 10 types of incorrect posture.

2) Medical Check-ups These datasets are subsets of the electronic health records database of a
major hospital, consisting of medical check-up records from 2009 to 2012 (4 time-steps) for patients
over age 15 in out-patient units, including around 1.5 million records. We extracted 245,000 patient
records from this database, in which each record contains 34 variables including general patient
information (e.g., sex and height), vital signs (e.g., systolic pressure and hemoglobin level), and
risk-inducing behaviors(e.g., alcohol consumption). The task is to predict the onset of the following
disease in one year: 1) Heart Failure, 2) Cerebral Infarction, 3) Cardiovascular Disease (CVD).

3) Realestate Sales Transactions This datasets is a subset of residential sales transaction database
from New York City Department of Finance consisting of approximately 70,700 house records with
27,000 sales transaction records over 15 years from 2011 to 2018 (8 time-steps). The dataset includes
3100 housing transactions and each record includes 47 variables (e.g., housing characteristics (number
of bathrooms or bed rooms) and macro economic index (interest rates, GDP price index). The task is
to forecast a residential property price in NYC in one year.

For all datasets, we generate train/valid/test with the ratio of 70%:10%:20%. For more details on the
datasets, network configurations, and hyperparameters used, please see supplementary file.

Baselines We now describe the baselines and our models.
1) [RETAIN]: The attentional recurrent neural network model (RETAIN) in (Choi et al., 2016).
2) [RETAIN] Random Selection: RETAIN, but newly trained from a train set with k-train points
omitted: k stands for the number of randomly selected train points from the original train set.
3) [RETAIN] IF Selection: RETAIN, but newly trained from a train set with top k-negative points
omitted: k is the number of negative points selected via influence function (Koh & Liang, 2017).
4) [IAL] UA-Random: Uncertainty-Aware attentional network (UA) in the interactive attention
learning setting. k-data points are randomly selected, delivered to annotators for attention evaluation,
and, during retraining, the set of parameters in the attention network are selectively fine-tuned by
element-wise multiplication of binary annotation masks (mk) with attention parameters (mk � α).
5) [IAL] NAP-Random: Our Neural Attention Process model (NAP), in the IAL-Random setting
(4). At each iteration, NAP is updated with binary annotation masks without retraining.
6) [IAL+Cost-Effective] Attention Cross Entropy (ACE): Retrain the attention network using a
binary cross entropy loss function between the attention weight vector α and the attention annotation
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EHR Squat Realestate
Heart Failure Cerebral Infarction CVD Posture Forecasting

Baselines
(RETAIN)

RETAIN 0.7921 ± 0.01 0.6168 ± 0.01 0.6164 ± 0.02 0.8425 ± 0.03 0.2522 ± 0.01
Random Selection 0.7852 ± 0.02 0.6116 ± 0.02 0.5671 ± 0.01 0.8221 ± 0.05 0.2540 ± 0.01

IF Selection 0.7984 ± 0.03 0.6182 ± 0.02 0.5882 ± 0.02 0.8363 ± 0.03 0.2434 ± 0.01
IAL (Random

Selection)
UA-Random 0.7824 ± 0.01 0.6191 ± 0.01 0.6012 ± 0.02 0.8512 ± 0.00 0.2632 ± 0.02

NAP-Random 0.8015 ± 0.02 0.6287 ± 0.03 0.6132 ± 0.02 0.8525 ± 0.01 0.2511 ± 0.01
IAL (Cost
-effective)

ACE 0.7982 ± 0.04 0.5992 ± 0.03 0.6193 ± 0.02 0.8450 ± 0.03 0.2519 ± 0.01
NAP-Selective 0.8157 ± 0.01 0.6374 ± 0.01 0.6304 ± 0.02 0.8562 ± 0.01 0.2381 ± 0.01

Table 1: The multi-class classification performance on the four electronic health records datasets and one fitness
dataset. The reported numbers are mean-AUROC for EHR and mean-Accuracy for squat. In the realestate price
forecast, the number indicates mean-percentage error, meaning a lower error indicates better performance.

EHR Squat
Heart Failure Cerebral Infarction CVD Posture

NPA Random Order 0.8082 ± 0.01 0.6274 ± 0.01 0.6224 ± 0.02 0.8519 ± 0.01
Selective 0.8159 ± 0.01 0.6311 ± 0.02 0.6302 ± 0.01 0.8538 ± 0.01

Table 2: Accuracy and percentage error on NPA-Selective and NPA-Random-order, in which veriables are
randomly ordered. Only top 30% of variables were selected to the annotators.

Age Smoking SysBP HDL LDL
2009 31 Yes 139 54 97
2010 32 Yes 134 55 97
Current State 33 yrs Yes 141 mmHg 55 mg/dL 102 mg/dL
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Figure 4: Visualization of attention for a selected patient on the
Cardio Vascular Disease (CVD) prediction task. Contribution indi-
cates the extent to which each individual feature affects the onset
of CVD in 1 year. Age - Age, Smoking - Whether the patient cur-
rently smokes, SysBP - Systolic blood pressure, HDL - High-density
lipoproteins cholesterol, LDL - Low-density lipoprotein cholesterol.
Bars correspond to attention weights.
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task. Variables in red stands for impor-
tant key factor determined by physicians.

mk in generating attention weights, which adopts a similar approach with (Choi et al., 2019).
7) [IAL+Cost-Effective] NAP-Selective Our IAL framework with Neural Attention Process (NPA).

4.1 EVALUATION OF THE FINAL MODEL PERFORMANCE

We first examine the prediction accuracy of baselines and our model. Table 1 contains the accuracies
of baselines and our model measured with Area Under the ROC curve (AUROC) on the risk prediction
tasks, accuracy on squat posture task with multi-labels, and percentage error on real-estate price
forecast. Note that IF Selection, which uses influence functions to remove instances with negative
influence scores, performs relatively better on most tasks than other RETAIN baselines, but fails
to improve on CVD and squat posture task. We observe that UA-Random, whose newly learned
knowledge of the human annotations from randomly selected data points, performs worse than
NAP-Random on all tasks, which is caused by overfitting to a particular example with retraining.
Note that NAP-Selective works significantly better than NAP-Random for all tasks, which shows that
the effect of attention annotation process cannot have much effect on the model when the instances are
randomly selected. The Attention Cross Entropy model, which retrained with the binary cross entropy
loss function between attention weights and annotation masks, performs worse than NAP-Selective,
caused by severe overfitting with scarce annotation samples.

Interpretability and Accuracy of Generated Attentions We further qualitatively analyze the
contribution of each feature for a CVD patient (label=1) whose records showed significant changes in
attention with the help of physicians in Figure 4. The table ( 4.1) shows the patient’s medical records
at the previous (2009, 2010) and the current time-step (2011), yearly registered records. The three
graphs show the values of the allocated attentions across three iterations. Our model, NAP-Selective
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Figure 6: (Top) Change of accuracy with 40 annotations for each iterations(s) on the all tasks between NAP-
Selective (Red) vs NAP-Random (Green). (Bottom) Mean Response Time (mean-RT) of annotators to evaluate
one data sample (Being prioritized by uncertainty vs Randomly ordered).
failed to predict the label at s=1 (a), but make a correct prediction at s=1 (c). We visualized five
variables that have clinically meaningful changes. Across the change of attentions from (a) to (c),
the physicians consider that attentions on age, HDL, and LDL in (a) are false positive and smoking
as false negative, except SysBP as true positive. Noting that the patient’s age (30) is younger than
the median age (50 years-old) of female CVD patient (Garcia et al., 2016), initial NAP-Selective (a)
allocated too much weights on age, which led to an overconfident attention model and in turn resulted
in the incorrect prediction. However, our model gradually allocated less weights on age over iteration,
as it started to learn what to attend to from physicians on a disjoint set of training data. Note that
attention on smoking highly increased at s=3 (c), which is also clinically guided by a physician for
the reason that CVD risk increases by 25% for women who smoke cigarettes (Huxley & Woodward,
2011).

In Figure 5, each bar graph corresponds to top 5 feature variables that are selected most often by
each method on the CVD task with 810 EHR records. Interestingly, all variables that NAP-Selective
attends to the most are interpreted by physicians as key risk factors for accessing a CVD patient.
Although NP-Random failed to ignore GGT which is a relatively a less important variable, it accesses
the key variable better than other models with IF-Selection. For broad clinical descriptions for
figure 5, please see supplementary file.

4.2 EVALUATION OF THE COST-EFFECTIVE SELECTION AND RE-RANKING
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Figure 7: Top 10 variables (Green)
ranked by the total number of being
checked by physicians and top 10
variables (Blue) ranked by attention
uncertainty in the CVD task.

The line graphs in Figure 6 (top) shows the change in model
accuracy over iterations, with NP-Random and NP-Selective. On
the risk prediction and posture estimation tasks, the accuracy
of NP-Selective increases over the rounds of interaction, while
NP-Random achieves marginal increases only on heart failures
and CVD tasks, and degnerates accuracy on others. We further
measure the average response time of the annotators with and
without reranking of the attented inputs. The bar graphs (bottom)
show that annotators spend less time with annotation if variables
are prioritized by its uncertainty using our uncertainty-based
reranking method (red bars), compared to presenting them in
the original order (green bars), on all tasks. We further analyze
the effect of the re-ranking algorithm by comparing top-10 input
variables selected by our re-ranking algorithm, with the top-10 variables whose attentions are corrected
by the annotators without variable re-ranking. In Figure 7, We see that 7 out of 10 input variables that
are most often selected by our algorithm (colored in red) corresponded to those selected by human
annotators, which further demonstrates the effectiveness of the method.

5 CONCLUSION

We proposed an interactive learning framework through the attention generated by the model, using a
novel attention mechanism based on Neural Process that efficiently enables correction of a model’s
interpretability with scarce human feedback without retraining the entire network. Further, we propose
a cost-effective instance selection and attention re-ranking algorithm to minimize the human-machine
interaction cost while maximizing its effect. We validated our model on five real-world tasks from
the healthcare, fitness, and finance domains and showed that our model significantly outperforms the
baselines with fewer annotation cost in terms of the number of training instances and annotation time,
while generating more human-interpretable attentions.
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6 DETAILED DESCRIPTION OF DATASETS AND EXPERIMENTAL SETUP

6.1 DATASETS

Squat Posture Correction This datset consists of 4000 video frames of squat posture our research
team collected over 6 months. Professional trainers performed the conventional squat, filed by three
Kinect V-2 devices placed at three different angles. Going through discussions with trainers, we
determined one correct squat postures and 10 types of typical incorrect posture that non-experience
people mistakenly make, which makes posture correction task as multi-label classification task (e.g.,
1) Exaggerated knees-forward movement or 2) sitting on the tighs instead of betweeen them). The
average runtime for one video is 5.8 seconds with around 60 frames. For cost-efficiency, we set
the frame skip as 3, such that each instance has 14 timesteps. Instead of using raw pixels as input,
we extracted 14 pairs of body joints from a human object in frames by using the famous Openpose
model (Cao et al., 2017). Extracted body points consist of 14 pairs of x and y coordinates, which is
expected highly useful when determining attention labels due to its autonomical locality. All data
examples have two labels: 1) Label for class, 2) Label for attention. For example, the data example,
labeled as sitting on the tighs instead of betweeen them has attention labels: Left hip, Right hip, Left
knee, Right Knee. Information about the extracted 14 pairs of body joints and 11 classes are shown
in the table. We performed additional experiment on this dataset with respect to interactive attention
learning in the next chapter. Three annotators participated in the annotation evaluation procedures. In
the case that the same set of negative train points is delievered to multiple annotators, the accumulated
sets are aggregated into one annotation matrix by averaging: mk = 1

I

∑I
i=1 m

(i)
k .

Electronic Health Records This datasets is a subset of electronic healthcare records-based
database from healthcare organization, consisting of around 1.5 million records. The database
contains demographic information including medical aid beneficiaries, treatmenet information, dis-
ease histories, and drug prescription records. In total, 34 features regarding vital signs, social and
behavioral factors, medical history, and general information, were extracted from the database over
12 years. Total cholesterol level and fasting glucose level were sampled after overnight fasting and
systolic blood pressure and diastolic blood pressure were checked through medical examinations.
Also, there were several questionnaires that are designed to identify social and behavioral risk factors,
such as smoking habit, alcohol consumption, and time spent on excercise. Individual medical history
was followed with drug perscription history and clinical codes of the 10th revision of the International
Classification of Diseases (ICD-10). We determined patients with pancreatic cancer by identifying
ICD code, C25, on examination and treatment records. On the labeling process, we exclude those
who had previous pancreatic cancer-related treatment records as well as pre-existing medical history
of pancreatic cancer. Two physicians participated in the experiments with CVD, cerebral infarction,
and heart failure tasks, as an annotator.

Real-estate Price Forecast in New York City The datasets are the subset of residential sales
transaction database from the Department of Finance’s Rolling sales files list properties, sold in the
last 17 years from 2003 to 2018. We combine the subset from the rolling sales files with another
subset extracted from Final Property Assessment Data from all NYC properties. The dataset we
processed has a very hetero geneous set of homes spread over five boroughs in New York City: 1) The
Bronx, 2) Queens, 3) Brooklyn, 4) Manhattan, 5) Staten Island. Each house is described by a total
of 182 attribute variables. These attributes specific to 1) the house-related profiles (Number of bed
rooms and bethrooms, square footage, and the year built), 2) Realestate owner-related information
(Tax information or Salary), 3) Geographical information (e,g, distance from a hospital, school score
in that neighborhood, and the number of hospital facilities within 5 miles), 4) Global economic
indicators (e.g., Global copper price, interest rates, total vehicle sales, and Russell 2000). Two
real-estate business managers in New York City annotated attentions for real-estate price forecast
tasks.

6.2 CONFIGURATION AND PARAMETERS FOR THE RISK PREDICTION TASKS

We trained all the models using Adam (Kingma & Ba, 2014) optimizer with dropout regulariza-
tion. We set the maximum iteration for Adam optimizer as 10, 000, and for other hyperparam-
eters, we searched for the optimal values by cross-validation, within predefined ranges as fol-
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lows: Mini batch size: {32, 64, 128, 256}, annotation subsampling batch size: {8, 16, 32} learning
rate: {0.01, 0.001, 0.0001}, L-2 regularization: {0.02, 0.002, 0.0002, 0.0004}, and dropout rate
{0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5}.

7 BENEFITS OF INTERACTIVE ATTENTION LEARNING FRAMEWORK

(a) Original Image (b) IAL-NAP(S=1) (c) IAL-NAP(S=3) (d) Answer

Figure 8: Attention map for 14 pairs of body joints, generated from RNNs trained for squat pose correction
task (Fitness).

Exercise Posture Correction Task In the interactive attention learning framework, professional
trainers interactively evaluate visualized attentions generated from the attentional network via anno-
tation attention masks. In figure 8, the size of white circles represents the size of attention weights.
For the given the instance (Label 2. Rounding back like c, Attention label: R-Knee, L-Knee, R-Hip,
L-Hip), (c) shows that the network evenly generates weights on both left and right knees by allocating
more weights on R-Knee over three iterations, compared to the initial iteration (b). An attention
network relearned how to attend for a given input, as a human annotator guided (d)shows that attention
answer for correcting posture.

Cerebral Infarction Fatty Liver
t=1 0.3242 0.2881
t=2 0.2844 0.2752
t=3 0.2485 0.2639

Table 3: Type 1 Error over three iterations, which shows percentage of features selected from the model that do
not match the features selected by the clinicians.

Further Interpretation in the cerebral infarction and fatty liver tasks We further quantitatively
compared the accuracy of attentions, using variables selected meaningful by the physicians as ground
truth labels (avg. 134 variables per patient). We randomly selected 10 age groups from 40s to 80s
for cerebral infarction and fatty liver risk prediction tasks. In table 3, we observe that Type 1 error
significantly decreases only with three iterations (from t=1 to t=3).

8 DETAILED DESCRIPTION OF ATTENTION ANNOTATION INTERFACE

Attention Annotation Interface in the CVD and cerebral infarction tasks Clinical features with
high correlation to each task (CVD, Cerebral) were highly annotated according to the value of each
features. For example, when the attention is relatively high on LDL value with 90 compared to other
features, physician annotated LDL to further change its attention value over the loop. Furthermore,
clinical features with low correlation to each task were highly annotated when model weighs them
with relatively high attention. Detailed explanations on each features are summarized in Annotation
Rules: Cardiovascular Disease and annotation Rules: Cerebral Infarction.

Annotation Rules - Cardiovascular Disease Risk stratification and detailed critea on when the
model should attend to each features are summarized below:
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Figure 9: Interactive Attention learning Annotation Interface for Squat Pose Correction Task.

Figure 10: Interactive Attention learning Interface for EHR datsets, on which physicians interactively guide
the attention network to re-learn how to properly attend to features of a given input. Attentions from the
attention network are visualized as above and physicians evaluate them on the web-based attention annotation
interface.

First of all, hypertension(systolic blood pressure(SBP) > 140mmHg and diastolic blood pressure(DBP)
> 90 mmHg) is quantitatively the most important risk factor of cardiovascular disease (CVD) (Stan-
away et al., 2018). Insulin resistance, hyperinsulinemia, diabetic dyslipidemia, and elevated blood
glucose are associated with atherosclerotic CVD (Kannel & McGee, 1979; Almdal et al., 2004;
Zavaroni et al., 1989). Dyslipidemia, hypercholesterolemia with serum cholesterol ≥ 200 mg/dL can
be accounted for the attributable risk of CVD (Yusuf et al., 2004; Lowe et al., 1998). Reductions
in low-density lipoprotein (LDL) cholesterol levels with the use of statin reduce the risk of CVD
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(Downs et al., 1998). Low HDL level (<40mg/dL) raises risk for developing CVD, while high HDL
level(>60mg/dL) acts as a protective factor of CVD (Ridker et al., 1998). Obesity(BMI > 30) is
associated with a number of risk factors for atherosclerosis, CVD, and cardiovascular mortality.
Risk factors for CVD includes diabetic condition of a patient, such as insulin resistance and glucose
intolerance (Eckel et al., 2004; Calle et al., 1999).

Among social history of a patient, exposure to tobacco is independent major risk factor, dose-
dependently increasing the risk for total atherosclerotic CVD, coronary heart disease(CHD), cere-
brovascular disease, heart failure, and mortality (Jee et al., 1999; Qiao et al., 2000; Foody et al., 2001).
Smoking cessation is known to be beneficial for preventing CVD; smoking cessation is associated
with the reduction in cardiac event rate (Rose et al., 1982), where the risk further decreases with
elongation of time since quitting (Novello, 1990). While epidemiologic data indicate that moderate
alcohol intake has a protective effect on CHD (Gemes et al., 2016), binge drinking increases the risk
for CVD (Roerecke & Rehm, 2010; Ruidavets et al., 2010). Moderate exercise has a protective effect
against CHD and all-cause mortality (Powell et al., 1987).

Next, among non-modifiable risk factors, CVD risk increases with aging (over age 45 for men, over
age 55 for women), and for the same age patient group, men are more prone to develop cardiovascular
disease than women (Jousilahti et al., 1999). Family history of CVD is an independent risk factor for
CHD; high risk for the individuals with first-degree relatives who developed atherosclerotic CVD
or death from CVD (male relative prior to age 55 and female relative prior to age 65) (Patel et al.,
2018; Stone et al., 2014). A wider definition of this significant family history of CVD might also
include CVD-related death, stroke, or transient ischemic attack (Patel et al., 2018). History of stroke
can also be risk factor of CVD as they both have similar pathophysiology (Anderson et al., 1991).
Family history of hypertension(systolic blood pressure > 140mmHg and diastolic pressure > 90
mmHg) (Anderson et al., 1991), diabetes (Anderson et al., 1991) can indirectly be a risk factor of
CVD. Additionally, for other features like hemoblogin, urine protein, AST, ALT, GGT, Creatinine
and history of pulmonary tuberculosis, there is no proven evidence on the effect of these values with
cardiovascular disorder (Pencina et al., 2019).

Annotation Rules - Cerebral Infarction Risk stratification and detailed critea on when the model
should attend to each features are summarized below:

History of stroke and transient ischemic attack in the same territory strongly predicts future stroke
occurrence (Society, 2016). Hypertension(SBP > 140mmHg and DBP > 90 mmHg) is quantitatively
the most common and most important risk factor for stroke with estimated relative risk of 4.0-5.0
and estimated prevalence of 25-40% (Society, 2016; Ezekowitz et al., 2003; Jorgensen et al., 1994).
A cardiac evaluation (e.g. echocardiogram) to find out whether patient has cardiac disease, such
as atrial fibrillation or other embolic conditions, is important in managing risk factors for stroke
(Jorgensen et al., 1994; Ezekowitz et al., 2003). Diabetes itself and diabetic conditions such as insulin
resistance, elevated blood glucose increase the likelihood of large and small artery occlusive disease
(Jorgensen et al., 1994). Risks for stroke stem not only from increased likelihood of atherogenesis
but also from aggravation of other risk factors including hypertension and hyperlipidemia (Najarian
et al., 2006). Preventing dyslipidemia by lowering LDL cholesterol and elevating HDL may prevent
strokes (Society, 2016; Hindy et al., 2018). Also, compared to those with normal BMI, obese and
overweight patients have significantly better early and long-term survival rates, which is called the
paradox of obesity (Vemmos et al., 2011; Banack & Kaufman, 2013).

Among social history of a patient, smoking increases the likelihood of CVD, more than doubling the
risk of stroke with relative risk of 1.5-2.9 and estimated prevalence of 4-8% (Shah & Cole, 2010;
Ezekowitz et al., 2003) which decreases with the cessation of smoking proportional to the period
after cessation (Kawachi et al., 1993). Moderate and high level of exercise is associated with reduced
risk of stroke (Society, 2016; Potempa et al., 1995; Lee et al., 2003). Epidemiologic data indicate
that moderate alcohol intake has a protective effect on stroke. However, binge drinking increases the
risk for stroke (Society, 2016; Hillbom et al., 1999).

Aging is nonmodifiable risk factor for ischemic stroke, and also for mortality and morbidity (Society,
2016; Lee et al., 2003; Roy-O Reilly & McCullough, 2018). Also, older subjects are more prone to
develop CVD and emblic, thrombotic stroke compared to their younger counterparts (Roy-O Reilly
& McCullough, 2018; Nakayama et al., 1994). Individuals with family history of stroke (Liao et al.,
1997; Jerrard-Dunne et al., 2003), cardiac conditions(especially atrial fibrillation) (Fox et al., 2004),
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and hypertension (Staessen et al., 2003; Wang et al., 2008) possess genetic susceptibility, thus high
risk of developing stroke compared to the individuals without family history. Furthermore, family
history of type II diabetes in any first degree relative have a two to three-fold increased risk of
developing diabetes thus indirectly increasing risk of stroke, compared to individuals without family
history (Consortium et al., 2013; Meigs et al., 2000). Additionally, for other features like hemoblogin,
urine protein, AST, ALT, GGT, Creatinine and history of pulmonary tuberculosis, there is no proven
evidence on the effect of these values with cardiovascular disorder (Society, 2016).
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