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Abstract

We introduce the Neural State Machine, seeking to bridge the gap between the
neural and symbolic views of AI and integrate their complementary strengths for
the task of visual reasoning. Given an image, we first predict a probabilistic graph
that represents its underlying semantics and serves as a structured world model.
Then, we perform sequential reasoning over the graph, iteratively traversing its
nodes to answer a given question or draw a new inference. In contrast to most
neural architectures that are designed to closely interact with the raw sensory
data, our model operates instead in an abstract latent space, by transforming both
the visual and linguistic modalities into semantic concept-based representations,
thereby achieving enhanced transparency and modularity. We evaluate our model
on VQA-CP and GQA, two recent VQA datasets that involve compositionality,
multi-step inference and diverse reasoning skills, achieving state-of-the-art results
in both cases. We provide further experiments that illustrate the model’s strong
generalization capacity across multiple dimensions, including novel compositions
of concepts, changes in the answer distribution, and unseen linguistic structures,
demonstrating the qualities and efficacy of our approach.

1 Introduction

Language is one of the most marvelous feats of the human mind. The emergence of a compositional
system of symbols that can distill and convey from rich sensory experiences to creative new ideas has
been a major turning point in the evolution of intelligence, and made a profound impact on the nature
of human cognition [19, 79, 13]. According to Jerry Fodor’s Language of Thought hypothesis [22, 73],
thinking itself posses a language-like compositional structure, where elementary concepts combine in
systematic ways to create compound new ideas or thoughts, allowing us to make “infinite use of finite
means” [18] and fostering human’s remarkable capacities of abstraction and generalization [51].

Indeed, humans are particularly adept at making abstractions of various kinds: We make analogies
and form concepts to generalize from given instances to unseen examples [71]; we see things in
context, and build compositional world models to represent objects and understand their interactions
and subtle relations, turning raw sensory signals into high-level semantic knowledge [65]; and we
deductively draw inferences via conceptual rules and statements to proceed from known facts to novel
conclusions [32, 40]. Not only are humans capable of learning, but we are also talented at reasoning.

Ideas about compositionality, abstraction and reasoning greatly inspired the classical views of
artificial intelligence [75, 66], but have lately been overshadowed by the astounding success of deep
learning over a wide spectrum of real-world tasks [33, 64, 83]. Yet, even though neural networks
are undoubtedly powerful, flexible and robust, recent work has repeatedly demonstrated their flaws,
showing how they struggle to generalize in a systematic manner [50], overly adhere to superficial and
potentially misleading statistical associations instead of learning true causal relations [1, 42], strongly
depend on large amounts of data and supervision [25, 51], and sometimes behave in surprising and
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Figure 1: The Neural State Machine is a graph network that simulates the computation of an automaton. For the
task of VQA, the model constructs a probabilistic scene graph to capture the semantics of a given image, which
it then treats as a state machine, traversing its states as guided by the question to perform sequential reasoning.

worrisome ways [26, 20]. The sheer size and statistical nature of these models that support robustness
and versatility are also what hinder their interpretability, modularity, and soundness.

Motivated to alleviate these deficiencies and bring the neural and symbolic approaches more closely
together, we propose the Neural State Machine, a differentiable graph-based model that simulates
the operation of an automaton, and explore it in the domain of visual reasoning and compositional
question answering. Essentially, we proceed through two stages: modeling and inference. Starting
from an image, we first generate a probabilistic scene graph [43, 49] that captures its underlying
semantic knowledge in a compact form. Nodes correspond to objects and consist of structured
representations of their properties, and edges depict both their spatial and semantic relations. Once
we have the graph, we then treat it as a state machine and simulate an iterative computation over
it, aiming to answer questions or draw inferences. We translate a given natural language question
into a series of soft instructions, and feed them one-at-a-time into the machine to perform sequential
reasoning, using attention to traverse its states and compute the answer.

Drawing inspiration from Bengio’s consciousness prior [12], we further define a set of semantic
embedded concepts that describe different entities and aspects of the domain, such as various kinds
of objects, attributes and relations. These concepts are used as the vocabulary that underlies both the
scene graphs derived from the image as well as the reasoning instructions obtained from the question,
effectively allowing both modalities to “speak the same language”. Whereas neural networks typically
interact directly with raw observations and dense visual features, our approach encourages the model
to reason instead in a semantic and factorized abstract space, which enables the disentanglement of
structure from content and improves its modularity.

We demonstrate the value and performance of the Neural State Machine on two recent Visual Question
Answering (VQA) datasets: GQA [41] which focuses on real-world visual reasoning and multi-step
question answering, as well as VQA-CP [3], a recent split of the popular VQA dataset [2, 27] that
has been designed particularly to evaluate generalization. We achieve state-of-the-art results on
both tasks under single-model settings, substantiating the robustness and efficiency of our approach
in answering challenging compositional questions. We then construct new splits leveraging the
associated structured representations provided by GQA and conduct further experiments that provide
significant evidence for the model’s strong generalization skills across multiple dimensions, such
as novel compositions of concepts and unseen linguistic structures, validating its versatility under
changing conditions.

Our model ties together two important qualities: abstraction and compositionality, with the respective
key innovations of representing meaning as a structured attention distribution over an internal vo-
cabulary of disentangled concepts, and capturing sequential reasoning as the iterative computation
of a differentiable state machine over a semantic graph. We hope that creating such neural form
of a classical model of computation will encourage and support the integration of the connection-
ist and symbolic methodologies in AI, opening the door to enhanced modularity, versatility, and
generalization.
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Figure 2: Question examples along with answers predicted by the NSM. The questions involve diverse reasoning
skills such as multi-step inference, relational and spatial reasoning, logic and comparisons.

2 Related work

Our model connects to multiple lines of research, including works about compositionality [14,
38], concept acquisition [36, 82], and neural computation [28, 63, 7], which have explored the
incorporation of structural priors into neural networks to promote interpretability and generalization.
Recent research about scene graphs [43, 85] and graph networks [10] is also relevant to our work,
where we propose a novel method for neural graph traversal that is more suitable than prior approaches
to our goal of performing sequential reasoning, as it eliminates the need in this case for costly state
updates, as in [56, 48, 77].

We explore our model in the context of VQA, a challenging multimodal task that has gained substantial
attention in recent years [27, 80, 40]. Prior work commonly relied on dense visual features produced
by either CNNs [84, 87] or object detectors [5], with a few recent models that use the relationships
among objects to augment those features with contextual information from each object’s surroundings
[53, 76, 67]. We move further in this direction, performing iterative reasoning over inferred scene
graphs, and in contrast to prior models, incorporate higher-level semantic concepts to represent both
the visual and linguistic modalities in a shared and sparser manner that facilitates their interaction.
For further discussion of related work please refer to the supplementary material, where we provide
greater detail and additional information.

3 The Neural State Machine

The Neural State Machine is a graph-based network that simulates the computation of a finite
automaton [37], and is explored here in the context of VQA, where we are given an image and a
question and asked to provide an answer. We go through two stages – modeling and inference, the
first to construct the state machine, and the second to simulate its operation.

In the modeling stage, we transform both the visual and linguistic modalities into abstract representa-
tions. The image is decomposed into a probabilistic graph that represents its semantics – the objects,
attributes and relations in the depicted visual scene (section 3.2), while the question is converted into
a sequence of reasoning instructions (section 3.3) that have to be performed in order to answer it.

In the inference stage (section 3.4), we treat the graph as a state machine, where the nodes, the objects
within the image, correspond to states, and the edges, the relations between the objects, correspond
to transitions. We then simulate a serial computation by iteratively feeding the machine with the
instructions derived from the question and traversing its states, which allows us to perform sequential
reasoning over the semantic visual scene, as guided by the question, to arrive at the answer.

We begin with a formal definition of the machine. In simple terms, a state machine is a computational
model that consists of a collection of states, which it iteratively traverses while reading a sequence of
inputs, as determined by a transition function. In contrast to the classical deterministic versions, the
neural state machine defines an initial distribution over the states, and then performs a fixed number

3



of computation steps N , recurrently updating the state distribution until completion. Formally, we
define the neural state machine as a tuple (C, S,E, {ri}Ni=0, p0, δ):

• C the model’s alphabet, consisting of a set of concepts, embedded as learned vectors.
• S a collection of states.
• E a collection of directed edges that specify valid transitions between the states.
• ri a sequence of instructions, each of dimension d, that are passed in turn as an input to the

transition function δ.
• p0 : S → [0, 1] a probability distribution of the initial state.
• δS,E : pi × ri → pi+1 a state transition function: a neural module that at each step i

considers the distribution pi over the states as well as an input instruction ri, and uses it to
redistribute the probability along the edges, yielding an updated state distribution pi+1.

3.1 Concept vocabulary

In contrast to many common networks, the neural state machine operates over a discrete set of
concepts. We create an embedded concept vocabulary C for the machine (initialized with GloVe
[69]), that will be used to capture and represent the semantic content of input images. The vocabulary
is grouped into L+ 2 properties such as object identity CO = C0 (e.g. cat, shirt), different types of
attributes CA =

⋃L
i=1 Ci (e.g. colors, materials) and relations CR = CL+1 (e.g. holding, behind),

all derived from the Visual Genome dataset [49] (see section 6.3 for details). We similarly define a
set of embeddings D for each of the property types (such as “color” or “shape”).

In using the notion of concepts, we draw a lot of inspiration from humans, who are known for
their ability to learn concepts and use them for tasks that involve abstract thinking and reasoning
[11, 9, 30, 68]. In the following sections, rather than using raw and dense sensory input features
directly, we represent both the visual and linguistic inputs in terms of our vocabulary, finding the
most relevant concepts that they relate to. By associating such semantic concepts with raw sensory
information from both the image and the question, we are able to derive higher-level representations
that abstract away from irrelevant raw fine-grained statistics tied to each modality, and instead capture
only the semantic knowledge necessary for the task. That way we can effectively cast both modalities
onto the same space to facilitate their interaction, and, as discussed in section 4, improve the model’s
compositionality, robustness and generalization skills.

3.2 States and edge transitions

In order to create the state machine, we construct a probabilistic scene graph that specifies the objects
and relations in a given image, and serves us as the machine’s state graph, where objects correspond
to states and relations to valid transitions. Multiple models have been proposed for the task of scene
graph generation [85, 86, 16, 89]. Here, we largely follow the approaches of Yang et al. [86] and
Chen et al. [16] in conjunction with a variant of the Mask R-CNN object detector [34] proposed by
Hu et al. [39]. Further details regarding the graph generation can be found in section 6.4.

By using such a graph generation model, we can infer a scene graph that consists of: (1) A set of
object nodes S from the image, each accompanied by a bounding box, a mask, dense visual features,
and a collection of discrete probability distributions {Pi}Li=0 for each of the object’s L+ 1 semantic
properties (such as its color, material, shape, etc.), defined over the concept vocabulary {Ci}Li=0
presented above; (2) A set of relation edges between the objects, each associated with a probability
distribution PL+1 of its semantic type (e.g. on top of, eating) among the concepts in CL+1, and
corresponding to a valid transition between the machine’s states.

Once we obtain the sets of state nodes and transition edges, we proceed to computing structured
embedded representations for each of them. For each state s ∈ S that corresponds to an object in the
scene, we define a set of L+ 1 property variables {sj}Lj=0 and assign each of them with

sj =
∑

ck∈Cj

Pj(k)ck

Where ck ∈ Cj denotes each embedded concept of the jth property type and Pj refers to the
corresponding property distribution over these concepts, resulting in a soft-binding of concepts to
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Figure 3: A visualization of object masks from the inferred scene graphs, which form the basis for our model.

each variable. To give an example, if an object is recognized by the object detector as likely to be e.g.
red, then its color variable will be assigned to an averaged vector close to the embedding of the “red”
concept. Edge representations are computed in a similar manner, resulting in matching embeddings
of their relation type: e′ =

∑
ck∈CL+1

PL+1(k)ck for each edge e ∈ E.

Consequently, we obtain a set of structured representations for both the nodes and the edges that
underlie the state machine. Note that by associating each object and relation in the scene with
not one, but a collection of vectors that capture each of their semantic properties, we are able to
create disentangled representations that encapsulate the statistical particularities of the raw image and
express it instead through a factorized discrete distribution over a vocabulary of embedded semantic
concepts, aiming to encourage and promote higher compositionality.

3.3 Reasoning instructions

In the next step, we translate the question into a sequence of reasoning instructions (each expressed
in terms of the concept vocabulary C), which will later be read by the state machine to guide its
computation. The translation process consists of two steps: tagging and decoding.

We begin by embedding all the question words using GloVe (dimension d = 300). We process
each word with a soft tagger function that either translates it into the most relevant concept in our
vocabulary or alternatively keeps it intact, if it does not match any of them closely enough. Formally,
for each embedded word wi we compute a similarity-based distribution

Pi = softmax(wT
i WC)

Where W is initialized to the identity matrix and C denotes the matrix of all embedded concepts
along with an additional learned default embedding c′ to account for structural or other non-content
words.

Next, we translate each word into a concept-based representation:

vi = Pi(c
′)wi +

∑
c∈C\{c′}

Pi(c)c

Intuitively, a content word such as apples will be considered mostly similar to the concept apple
(by comparing their GloVe embeddings), and thus will be replaced by the embedding of that term,
whereas function words such as who, are, how will be deemed less similar to the semantic concepts
and hence will stay close to their original embedding. Overall, this process allows us to normalize, or
contextualize, the question, by transforming content words to their matching concepts, while keeping
function words mostly unaffected.

Finally, we process the normalized question words with an attention-based encoder-decoder, drawing
inspiration from [40]: Given a question of M normalized words VM×d = {vi}Mi=1, we first pass it
through an LSTM encoder, obtaining the final state q to represent the question. Then, we roll-out
a recurrent decoder for a fixed number of steps N + 1, yielding N + 1 hidden states {hNi=0}, and
transform each of them into a corresponding reasoning instruction:

ri = softmax(hiV T )V

Here, we compute attention over the normalized question words at each decoding step. By repeating
this process for all N + 1 steps, we decompose the question into a series of reasoning instructions
that selectively focus on its various parts, accomplishing the goal of this stage.
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3.4 Model simulation

Figure 4: A visualization of
a graph traversal step, where
attention is being shifted from
one node to its neighbor along
the most relevant edge.

Having all the building blocks of the state machine ready, the graph
of states S and edges E, the instruction series {ri}Ni=0, and the con-
cept vocabulary C =

⋃L+1
i=0 Ci, we can now simulate the machine’s

sequential computation. Basically, we will begin with a uniform ini-
tial distribution p0 over the states (the objects in the image’s scene),
and at each reasoning step i, read an instruction ri as derived from
the question, and use it to redistribute our attention over the states
(the objects) by shifting probability along the edges (their relations).

Formally, we perform this process by implementing a neural module
for the state transition function δS,E : pi × ri → pi+1. At each step
i, the module takes a distribution pi over the states as an input and
computes an updated distribution pi+1, guided by the instruction ri.
Our goal is to determine what next states to traverse to (pi+1) based
on the states we are currently attending to (pi). To achieve that, we
perform a couple of steps.

Recall that in section 3.2 we define for each object a set of L+ 1 variables, representing its different
properties (e.g. identity, color, shape). We further assigned each edge with a variable that similarly
represents its relation type. Our first goal is thus to find the instruction type: the property type that is
most relevant to the instruction ri – basically, to figure out what the instruction is about. We compute
the distribution Ri = softmax(rTi ◦D) over the L+2 embedded properties D, defined in section 3.1.
We further denote Ri(L+ 1) ∈ [0, 1] that corresponds to the relation property as r′i, measuring the
degree to which that reasoning instruction is concerned with semantic relations (in contrast to other
possibilities such as e.g. objects or attributes).

Once we know what the instruction ri is looking for, we can use it as a guiding signal while traversing
the graph from the current states we are focusing on to their most relevant neighbors. We compare
the instruction to all the states s ∈ S and edges e ∈ E, computing for each of them a relevance score:

γi(s) = σ
( L∑
j=0

Ri(j)(ri ◦Wjs
j)
)

(1)

γi(e) = σ
(
ri ◦WL+1e

′) (2)

Where σ is a non-linearity, {sj}Lj=0 are the state variables corresponding to each of its properties,
and e′ is the edge variable representing its type. We then get relevance scores between the instruction
ri and each of the variables, which are finally averaged for each state and edge using Ri.

Having a relevance score for both the nodes and the edges, we can use them to achieve the key goal
of this section: shifting the model’s attention pi from the current nodes (states) s ∈ S to their most
relevant neighbors – the next states:

psi+1 = softmaxs∈S(Ws · γi(s)) (3)

pri+1 = softmaxs∈S(Wr ·
∑

(s′,s)∈E

pi(s
′) · γi((s′, s))) (4)

pi+1 = r′i · pri+1 + (1− r′i) · psi+1 (5)
Here, we compute the distribution over the next states pi+1 by averaging two probabilities psi+1 and
pri+1: the former is based on each potential next state’s own internal properties, while the latter
considers the next states contextual relevance, relative to the current states the model attends to.
Overall, by repeating this process over N steps, we can simulate the iterative computation of the
neural state machine.

After completing the final computation step, and in order to predict an answer, we use a standard
2-layer fully-connected softmax classifier that receives the concatenation of the question vector q as
well as an additional vector m that aggregates information from the machine’s final states:

m =
∑
s∈S

pN (s)
( L∑
j=0

RN (j) · sj
)

(6)
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Figure 5: A visualization of the NSM’s reasoning process: given an image and a question (left side), the model
first builds a probabilistic scene graph (the blue box and the image on the right), and translates the question into
a series of instructions (the green and purple boxes, where for each instruction we present its closest concept (or
word) in vector space (section 3.1)). The model then performs sequential reasoning over the graph, attending to
relevant object nodes in the image’s scene as guided by the instructions, to iteratively compute the answer.

Where m reflects the information extracted from the final states as guided by the final reasoning
instruction rN : averaged first by the reasoning instruction type, and then by the attention over the
final states, as specified by pN .

Overall, the above process allows us to perform a differentiable traversal over the scene graph,
guided by the sequence of instructions that were derived from the question: Given an image and a
question, we have first inferred a graph to represent the objects and relations in the image’s scene, and
analogously decomposed the question into a sequence of reasoning instructions. Notably, we have
expressed both the graph and the instructions in terms of the shared vocabulary of semantic concepts,
translating them both into the same “internal language". Then, we simulate the state machine’s
iterative operation, and over its course of computation, are successively shifting our attention across
the nodes and edges as we ground each instruction in the graph to guide our traversal. Essentially,
this allows us to locate each part of the question in the image, and perform sequential reasoning over
the objects and relations in the image’s scene graph until we finally arrive at the answer.

4 Experiments

We evaluate our model (NSM) on two recent VQA datasets: (1) The GQA dataset [41] which focuses
on real-world visual reasoning and compositional question answering, and (2) VQA-CP (version
2) [3], a split of the VQA dataset [27] that has been particularly designed to test generalization
skills across changes in the answer distribution between the training and the test sets. We achieve
state-of-the-art performance both for VQA-CP, and, under single-model settings, for GQA. To further
explore the generalization capacity of the NSM model, we construct two new splits for GQA that test
generalization over both the questions’ content and structure, and perform experiments based on them
that provide substantial evidence for the strong generalization skills of our model across multiple
dimensions. Finally, performance diagnosis, ablation studies and visualizations are presented in
section 6.2 to shed more light on the inner workings of the model and its qualitative behavior.

Both our model and implemented baselines are trained to minimize the cross-entropy loss of the
predicted candidate answer (out of the top 2000 possibilities), using a hidden state size of d = 300
and, unless otherwise stated, length of N = 8 computation steps for the MAC and NSM models.
Please refer to section 6.5 for further information about the training procedure, implementation
details, hyperparameter configuration and data preprocessing, along with complexity analysis of the
NSM model. The model has been implemented in Tensorflow, and will be released along with the
features and instructions for reproducing the described experiments.
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Table 1: GQA scores for the single-model settings, including official baselines and top submissions

Model Binary Open Consistency Validity Plausibility Distribution Accuracy
Human [41] 91.20 87.40 98.40 98.90 97.20 - 89.30
Global Prior [41] 42.94 16.62 51.69 88.86 74.81 93.08 28.90
Local Prior [41] 47.90 16.66 54.04 84.33 84.31 13.98 31.24
Language [41] 61.90 22.69 68.68 96.39 87.30 17.93 41.07
Vision [41] 36.05 1.74 62.40 35.78 34.84 19.99 17.82
Lang+Vis [41] 63.26 31.80 74.57 96.02 84.25 7.46 46.55
BottomUp [5] 66.64 34.83 78.71 96.18 84.57 5.98 49.74
MAC [40] 71.23 38.91 81.59 96.16 84.48 5.34 54.06
SK T-Brain* 77.42 43.10 90.78 96.26 85.27 7.54 59.19
PVR* 77.69 43.01 90.35 96.45 84.53 5.80 59.27
GRN 77.53 43.35 88.63 96.18 84.71 6.06 59.37
Dream 77.84 43.72 91.71 96.38 85.48 8.40 59.72
LXRT 77.76 44.97 92.84 96.30 85.19 8.31 60.34
NSM 78.94 49.25 93.25 96.41 84.28 3.71 63.17

4.1 Compositional question answering

We begin by testing the model on the GQA task [41], a recent dataset that features challenging
compositional questions that involve diverse reasoning skills in real-world settings, including spatial
reasoning, relational reasoning, logic and comparisons. We compare our performance both with
baselines, as appear in [41], as well as with the top-5 single and top-10 ensemble submissions to the
GQA challenge.1 For single-model settings, to have a fair comparison, we consider all models that,
similarly to ours, did not use the strong program supervision as an additional signal for training, but
rather learn directly from the questions and answers.

As table 1 shows, we achieve state-of-the-art performance for a single-model across the dataset’s
various metrics (defined in [41]) such as accuracy and consistency. For the ensemble setting, we
compute a majority vote of 10 instances of our model, achieving the 3rd highest score compared to
the 52 submissions that have participated in the challenge1 (table 2), getting significantly stronger
scores compared to the 4th or lower submissions.

Note that while several submissions (marked with *) use the associated functional programs that GQA
provides with each question as a strong supervision during train time, we intentionally did not use
them in training our model, but rather aimed to learn the task directly using the question-answer pairs
only. These results serve as an indicator for the ability of the model to successfully address questions
that involve different forms of reasoning (see section 6 for examples), and especially multi-step
inference, which is particularly common in GQA.

4.2 Generalization experiments

Motivated to measure the generalization capacity of our model, we perform experiments over three
different dimensions: (1) changes in the answer distribution between the training and the test sets, (2)
contextual generalization for concepts learned in isolation, and (3) unseen grammatical structures.

First, we measure the performance on VQA-CP [3], which provides a new split of the VQA2 dataset
[27], where the answer distribution is kept different between the training and the test sets (e.g. in the
training set, the most common color answer is white, whereas in the test set, it is black). Such settings
reduce the extent to which models can circumvent the need for genuine scene understanding skills
by exploiting dataset biases and superficial statistics [1, 44, 27], and are known to be particularly
difficult for neural networks [51]. Here, we follow the standard VQA1/2 [27] accuracy metric for this
task (defined in [3]). Table 3 presents our performance compared to existing approaches. We can see
that NSM surpasses alternative models by a large margin.

We perform further generalization studies on GQA, leveraging the fact that the dataset provides
grounding annotations of the question words. For instance, a question such as “What color is the book
on the table?" is accompanied by the annotation {4 : (“book”, n0), 7 : (“table”, n1)} expressing the
fact that e.g. the 4th word refers to the book object node. These annotations allow us to split the

1The official leaderboard mixes up single-model and ensemble results – we present here separated scores for
each track.
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Table 2: GQA ensemble

Model Accuracy
Kakao* 73.33
270 70.23
NSM 67.25
LXRT 62.71
GRN 61.22
MSM 61.09
DREAM 60.93
SK T-Brain* 60.87
PKU 60.79
Musan 59.93

Table 3: VQA-CPv2

Model Accuracy
SAN [87] 24.96
HAN [60] 28.65
GVQA [3] 31.30
RAMEN [74] 39.21
BAN [46] 39.31
MuRel [15] 39.54
ReGAT [52] 40.42
NSM 45.80

Table 4: GQA generalization

Model Content Structure
Global Prior 8.51 14.64
Local Prior 12.14 18.21
Vision 17.51 18.68
Language 21.14 32.88
Lang+Vis 24.95 36.51
BottomUp [5] 29.72 41.83
MAC [40] 31.12 47.27
NSM 40.24 55.72

Figure 6: Our new generalization splits for GQA, evaluating generalization over (1) content: where test
questions ask about novel concepts, and (2) structure: where test questions follow unseen linguistic patterns.

training set in two interesting ways to test generalization over both content and structure (see figure 6
for an illustration of each split):

Content: Since the annotations specify which objects each question refers to, and by using the GQA
ontology, we can identify all the questions that are concerned with particular object types, e.g. foods,
or animals. We use this observation to split the training set by excluding all question-answer pairs
that refer to these categories, and measure the model’s generalization over them. Note however, that
the object detector module described in section 3.2 is still trained over all the scene graphs including
those objects – rather, the goal of this split is to test whether the model can leverage the fact that it
was trained to identify a particular object in isolation, in order to answer unseen questions about that
type of object without any further question training.
Structure: We can use the annotations described above as masks over the objects (see figure 6 for
examples), allowing us to divide the questions in the training set into linguistic pattern groups. Then,
by splitting these groups into two separated sets, we can test whether a model is able to generalize
from some linguistic structures to unseen ones.

Table 4 summarizes the results for both settings, comparing our model to the baselines released for
GQA [41], all using the same training scheme and input features. We can see that here as well, NSM
performs significantly better than the alternative approaches, testifying to its strong generalization
capacity both over concepts it has not seen any questions about (but only learned in isolation), as
well as over questions that involve novel linguistic structures. In our view, these results point to
the strongest quality of our approach. several prior works have argued for the great potential of
abstractions and compositionality in enhancing models of deep learning [8, 10]. Our results suggest
that incorporating these notions may indeed be highly beneficial to creating models that are more
capable in coping with changing conditions and can better generalize to novel situations.

5 Conclusion

In this paper, we have introduced the Neural State Machine, a graph-based network that simulates the
operation of an automaton, and demonstrated its versatility, robustness and high generalization skills
on the tasks of real-world visual reasoning and compositional question answering. By incorporating
the concept of a state machine into neural networks, we are able to introduce a strong structural
prior that enhances compositinality both in terms of the representation, by having a structured graph
to serve as our world model, as well as in terms of the computation, by performing sequential
reasoning over such graphs. We hope that our model will help in the effort to integrate symbolic and
connectionist approaches more closely together, in order to elevate neural models from sensory and
perceptual tasks, where they currently shine, into the domains of higher-level abstraction, knowledge
representation, compositionality and reasoning.

9



References
[1] Aishwarya Agrawal, Dhruv Batra, and Devi Parikh. Analyzing the behavior of visual question answering

models. In EMNLP, pp. 1955–1960, 2016.

[2] Aishwarya Agrawal, Jiasen Lu, Stanislaw Antol, Margaret Mitchell, C Lawrence Zitnick, Devi Parikh, and
Dhruv Batra. VQA: Visual question answering. International Journal of Computer Vision, 123(1):4–31,
2017.

[3] Aishwarya Agrawal, Dhruv Batra, Devi Parikh, and Aniruddha Kembhavi. Don’t just assume; look and
answer: Overcoming priors for visual question answering. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 4971–4980, 2018.

[4] Igor Aleksander. The consciousness of a neural state machine. In International Conference on Artificial
Neural Networks, pp. 212–217. Springer, 1994.

[5] Peter Anderson, Xiaodong He, Chris Buehler, Damien Teney, Mark Johnson, Stephen Gould, and Lei Zhang.
Bottom-up and top-down attention for image captioning and VQA. arXiv preprint arXiv:1707.07998,
2017.

[6] Jacob Andreas. Measuring compositionality in representation learning. arXiv preprint arXiv:1902.07181,
2019.

[7] Jacob Andreas, Marcus Rohrbach, Trevor Darrell, and Dan Klein. Neural module networks. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 39–48, 2016.

[8] Jacob Andreas, Dan Klein, and Sergey Levine. Learning with latent language. In Proceedings of the 2018
Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers), pp. 2166–2179, 2018.

[9] Lawrence W Barsalou, W Kyle Simmons, Aron K Barbey, and Christine D Wilson. Grounding conceptual
knowledge in modality-specific systems. Trends in cognitive sciences, 7(2):84–91, 2003.

[10] Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius Zambaldi, Mateusz
Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, et al. Relational inductive
biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

[11] George Bealer. A theory of concepts and concept possession. Philosophical Issues, 9:261–301, 1998.

[12] Yoshua Bengio. The consciousness prior. arXiv preprint arXiv:1709.08568, 2017.

[13] Lera Boroditsky. How language shapes thought. Scientific American, 304(2):62–65, 2011.

[14] Léon Bottou. From machine learning to machine reasoning. Machine learning, 94(2):133–149, 2014.

[15] Remi Cadene, Hedi Ben-Younes, Matthieu Cord, and Nicolas Thome. Murel: Multimodal relational
reasoning for visual question answering. arXiv preprint arXiv:1902.09487, 2019.

[16] Tianshui Chen, Weihao Yu, Riquan Chen, and Liang Lin. Knowledge-embedded routing network for scene
graph generation. arXiv preprint arXiv:1903.03326, 2019.

[17] Edward Choi, Angeliki Lazaridou, and Nando de Freitas. Compositional obverter communication learning
from raw visual input. arXiv preprint arXiv:1804.02341, 2018.

[18] Noam Chomsky. Aspects of the Theory of Syntax, volume 11. MIT press, 2014.

[19] Noam Chomsky. The language capacity: architecture and evolution. Psychonomic bulletin & review, 24
(1):200–203, 2017.

[20] Abhishek Das, Harsh Agrawal, Larry Zitnick, Devi Parikh, and Dhruv Batra. Human attention in visual
question answering: Do humans and deep networks look at the same regions? Computer Vision and Image
Understanding, 163:90–100, 2017.

[21] Ali Farhadi, Ian Endres, Derek Hoiem, and David Forsyth. Describing objects by their attributes. In 2009
IEEE Conference on Computer Vision and Pattern Recognition, pp. 1778–1785. IEEE, 2009.

[22] Jerry A Fodor. The language of thought, volume 5. Harvard university press, 1975.

[23] Mikel L Forcada and Rafael C Carrasco. Finite-state computation in analog neural networks: steps towards
biologically plausible models? In Emergent neural computational architectures based on neuroscience, pp.
480–493. Springer, 2001.

10



[24] Zhe Gan, Chuang Gan, Xiaodong He, Yunchen Pu, Kenneth Tran, Jianfeng Gao, Lawrence Carin, and
Li Deng. Semantic compositional networks for visual captioning. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pp. 5630–5639, 2017.

[25] Marta Garnelo, Kai Arulkumaran, and Murray Shanahan. Towards deep symbolic reinforcement learning.
arXiv preprint arXiv:1609.05518, 2016.

[26] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial examples.
arXiv preprint arXiv:1412.6572, 2014.

[27] Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the V in VQA
matter: Elevating the role of image understanding in visual question answering. In CVPR, pp. 6325–6334,
2017.

[28] Alex Graves, Greg Wayne, and Ivo Danihelka. Neural Turing machines. arXiv preprint arXiv:1410.5401,
2014.

[29] Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-Barwińska,
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[77] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua Bengio.
Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

[78] Julia Vogel and Bernt Schiele. Semantic modeling of natural scenes for content-based image retrieval.
International Journal of Computer Vision, 72(2):133–157, 2007.

[79] Lev Semenovich Vygotsky. Thought and language. Annals of Dyslexia, 14(1):97–98, 1964.

[80] Peng Wang, Qi Wu, Chunhua Shen, and Anton van den Hengel. The vqa-machine: Learning how to
use existing vision algorithms to answer new questions. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn,
volume 4, 2017.

[81] Jason Weston, Sumit Chopra, and Antoine Bordes. Memory networks. arXiv preprint arXiv:1410.3916,
2014.

[82] Qi Wu, Chunhua Shen, Lingqiao Liu, Anthony Dick, and Anton Van Den Hengel. What value do explicit
high level concepts have in vision to language problems? In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 203–212, 2016.

[83] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim
Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine translation system: Bridging
the gap between human and machine translation. arXiv preprint arXiv:1609.08144, 2016.

[84] Caiming Xiong, Stephen Merity, and Richard Socher. Dynamic memory networks for visual and textual
question answering. In International conference on machine learning, pp. 2397–2406, 2016.

[85] Danfei Xu, Yuke Zhu, Christopher B Choy, and Li Fei-Fei. Scene graph generation by iterative message
passing. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, volume 2,
2017.

[86] Jianwei Yang, Jiasen Lu, Stefan Lee, Dhruv Batra, and Devi Parikh. Graph r-cnn for scene graph generation.
arXiv preprint arXiv:1808.00191, 2018.

13



[87] Zichao Yang, Xiaodong He, Jianfeng Gao, Li Deng, and Alex Smola. Stacked attention networks for image
question answering. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pp. 21–29, 2016.

[88] Kexin Yi, Jiajun Wu, Chuang Gan, Antonio Torralba, Pushmeet Kohli, and Josh Tenenbaum. Neural-
symbolic vqa: Disentangling reasoning from vision and language understanding. In Advances in Neural
Information Processing Systems, pp. 1031–1042, 2018.

[89] Rowan Zellers, Mark Yatskar, Sam Thomson, and Yejin Choi. Neural motifs: Scene graph parsing with
global context. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
5831–5840, 2018.

14


	Introduction
	Related work
	The Neural State Machine
	Concept vocabulary
	States and edge transitions
	Reasoning instructions
	Model simulation

	Experiments
	Compositional question answering
	Generalization experiments

	Conclusion
	Supplementary material
	Related work (full version)
	Ablation studies
	Concept vocabulary
	Scene graph generation
	Implementation and training details


