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Abstract

Accurate segmentation of data, derived from intra-oral scans (I0S), is a crucial step in a computer-
aided design (CAD) system for many clinical tasks, such as implantology and orthodontics in mod-
ern dentistry. In order to reach the highest possible quality, a segmentation model may process a
point cloud derived from an IOS in its highest available spatial resolution, especially for perform-
ing a valid analysis in finely detailed regions such as the curvatures in border lines between two
teeth. In this paper, we propose an end-to-end deep learning framework for semantic segmentation
of individual teeth as well as the gingiva from point clouds representing I0S. By introducing a non-
uniform resampling technique, our proposed model is trained and deployed on the highest available
spatial resolution where it learns the local fine details along with the global coarse structure of 10S.
Furthermore, the point-wise cross-entropy loss for semantic segmentation of a point cloud is an
ill-posed problem, since the relative geometrical structures between the instances (e.g. the teeth)
are not formulated. By training a secondary simple network as a discriminator in an adversarial
setting and penalizing unrealistic arrangements of assigned labels to the teeth on the dental arch,
we improve the segmentation results considerably. Hence, a heavy post-processing stage for rela-
tional and dependency modeling (e.g. iterative energy minimization of a constructed graph) is not
required anymore. Our experiments show that the proposed approach improves the performance of
our baseline network and outperforms the state-of-the-art networks by achieving 0.94 IOU score.
Keywords: Deep learning, 3D point cloud, intra-oral scan, semantic segmentation.

1. Introduction

The emergence of digital equipment for extra-oral (e.g. X-ray panoramic, cephalometric and cone
beam computed tomography) and intra-oral imaging (e.g. laser or structured light projection scan-
ners) has been a driving force for developing computer-aided design (CAD) systems to analyze the
imaging data for highly accurate treatment planning. The purpose of this paper is to explore a seg-
mentation methodology based on deep learning for providing useful clinical information to support
better treatment. For supporting an automated clinical workflow in implantology and orthodontic
fields, such a CAD system should be able to resolve some fundamental issues of which accurate
semantic segmentation of teeth and gingiva (gums) from imaging data is highly desirable. Here, the
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Figure 1: Block diagram of the proposed method in training mode.

semantic segmentation problem for intra-oral scans (IOS) refers to assigning a label, based on the
Federation Dentaire Internationale (FDI) standard. In more technical details, this involves labeling
all points as belonging to a specific tooth crown or as belonging to gingiva within the recorded 10S
point cloud. Each point is represented by a coordinate in the 3D Cartesian coordinate system which
is not universal (i.e. the latter can be different between two 10S). The FDI specifies 32 labels for
adult dentition, referring to 16 teeth in each upper and lower jaw. In this study, we treat the teeth on
the upper and lower jaw in the same way, so that we only employ 16 separate labels to be classified.
This changes the problem to finding 16 classes (+1 extra for the gingiva), which facilitates better
learning.

To bring artificial intelligence (AI) into modern dentistry, we improve IOS semantic segmenta-
tion by means of end-to-end learning of a segmentation model. Building an accurate segmentation
model involves two aspects of complexity. Firstly, complexity originates from the dentition (teeth
arrangement) and data acquisition. Since the shape of two adjacent tooth crowns (e.g. two mo-
lar teeth) may appear to be similar, assigning a correct label demands additional information such
as relative position with respect to other teeth on the dental arch. Furthermore, presence of ab-
normalities in dentition and shape deformation, makes IOS segmentation a challenging task for a
segmentation model. An examples of such an abnormality may be lacking teeth (e.g. wisdom teeth).
Additional challenges may arise from acquisition issues such as partially missing data (e.g. because
of occlusion in scanning), lack of a universal coordinate system, presence of noise, outliers, etc. The
interaction of these challenges is important for successfully applying computer vision algorithms.

The second aspect of complexity relates to the 3D geometrical representation of data by a
point cloud that is not well suited to the decent deep learning models that are highly performant
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on 2D/3D images. Application of such deep learning models (e.g. CNN-based architectures) to
point cloud analysis would require three main issues to be addressed. These are: (1) data irregu-
larity,(2) permutation-invariance and (3) resampling-invariance. These issues are discussed briefly
below.

Irregularity of the point cloud means that the data elements are not organized on a 2D/3D grid,
like the data in 2D/3D images. This mainly originates from the pseudorandom nature of recording
(sampling) of the external surface of an object, recorded by e.g. a laser scanner. The irregularity
results in an ineffective use of convolutional filters for capturing the spatial-local correlation in
data (Li et al., 2018), as they work best on organized data.

Permutation-invariance refers to the geometrically unordered presentation of a point cloud. If
we present a point cloud by a matrix in which each row contains a point, alternating the order of
the rows does not change the data semantics, while it does affect the numerical computation in deep
learning architectures.

Resampling-invariance is a property that means random selection of a sufficiently large subset
of the points, preserving the global structure of the object captured by the overall point cloud. The
IOS data contains tens of thousands of points. The number of points can vary considerably between
two scans, or even between different acquisition runs of the same object. Processing such large-
scale and variable-size data is challenging for a deep learning model. Hardware limitations (e.g.
memory of the GPU) and working with fixed-rank matrices require a resampling stage. However, a
naive resampling approach can invoke the loss of important information and is highly application-
dependent.

Since 2016, several studies have investigated point cloud analysis by artificial neural networks
(ANNSs) for object classification/segmentation tasks. PointNet (Qi et al., 2017) and DeepSets (Ra-
vanbakhsh et al., 2016) are two pioneering works from recent years, based on the multi-layer per-
ceptron (MLP) network, recently followed by other researchers (Le and Duan, 2018; Li et al., 2018).
Available deep learning models include some inventive techniques for the joint handling of the first
two mentioned issues (i.e. irregularity and permutation invariance), while still addressing the third
issue by applying a uniform resampling for fixing the number of points. Although such an approach
is sufficient for many applications like object classification (e.g. classifying the chairs vs. tables), it
does not preserve the finer details of data which is important for the segmentation tasks (e.g. classi-
fying a point close to the borderline of a tooth and gingiva). This last issue if not addressed, causes
significant performance loss in semantic segmentation tasks.

In this paper, we propose an end-to-end learning framework for IOS segmentation based on
recent point cloud deep learning models. Our contribution is threefold.

1. To the best of our knowledge, this is the first end-to-end learning study, proposed for I0S
point cloud segmentation.

2. We propose a unique non-uniform resampling mechanism, combined with a compatible loss
function, for training and deploying a deep network. The non-uniform resampling facilitates
the training and deployment of the network on a fixed-size resampled point cloud which
contains different levels of spatial resolution, involving both local, fine details and the global
shape structure.

3. In addition to a point-wise classification loss, we employ an adversarial loss for empowering
the segmentation network to learn the realistic layout of the labeling space and improving the

559



DEEP LEARNING APPROACH TO SEMANTIC SEGMENTATION IN 3D POINT CLOUD 10S

classification of points by involving the high-level semantics and preserving the valid arrange-
ment of the teeth labels on the dental arch. In contrast to the existing similar approaches, the
discriminator network is applied only to the statistics which are computed from the spatial
distributions of labels and the predictions. Consequently, only a shallow network is employed
as discriminator that facilitates the training.

2. Related work

Related literature has been divided into two parts: conventional IOS segmentation methods and
available deep learning solutions for geometric point cloud IOS analysis.

Conventional I0S segmentation approaches: The existing literature on I0S segmentation
is extensive and based on conventional computer graphic/vision algorithms. Among the proposed
methods, one generic approach is first projecting the 3D I0S mesh on one or multiple 2D plane(s)
and then applying standard computer vision algorithms. Afterwards, the processed data is projected
back into the 3D space. For example, Kondo e? al. (Kondo et al., 2004) proposes gradient orientation
analysis and Wongwaen et al. (Wongwaen and Sinthanayothin, 2010) applies a boundary analysis
on a 2D projected panoramic depth images for finding teeth boundaries. Most of other studies are
based on curvature analysis (Yuan et al., 2010; Kumar et al., 2011; Yaqi and Zhongke, 2010; Yamany
and El-Bialy, 1999; Zhao et al., 20006), fast marching watersheds (Li et al., 2007), morphological
operations (Zhao et al., 2006), 2D (Grzegorzek et al., 2010) and 3D (Kronfeld et al., 2010) active
contour (snake) analysis and tooth-target harmonic fields (Zou et al., 2015) for segmenting the
teeth and gingiva. Some other works follow a semi-automatic approach by manually setting a
threshold(Kumar et al., 2011), picking some representative points (Yamany and El-Bialy, 1999), or
interactively involve a human operator for the analysis (Yaqi and Zhongke, 2010; Zhao et al., 2006).
Such a method is always limited by having to find the best handcrafted features, the manual tuning
of several parameters, and also the inherent limitation of handcrafted CAD systems.

Deep learning approaches: The available deep learning approaches for structured learning
on geometric point clouds can be roughly categorized into four types: feature-based deep neural
networks (DNNs), volumetric, 2D projection and point cloud methods. Feature-based DNNs first
extract a set of standard shape features (e.g. based on computer graphic algorithms) and then apply a
neural network (e.g. a CNN) for feature classification (Guo et al., 2015; Fang et al., 2015). The per-
formance of this approach is limited to the discriminating properties of the handcrafted features (Qi
et al., 2017). The volumetric approach, first voxelizes the shape and then applies 3D CNN models
on the quantized shape into a 3D grid space (Wu et al., 2015; Qi et al., 2016). As expected, the
spatial quantization constrains such a method’s performance, especially when fine, high-frequency
details need to be preserved in shape curvatures for accurate prediction. The 2D projection ap-
proach first renders the 3D data into one/multiple 2D plane(s) and then applies the 2D convolution
operator for the 2D-image pixel classification and then the processed data is projected back into the
3D data (Kalogerakis et al., 2017). Point cloud deep learning models work directly with raw point
clouds (Qi et al., 2017; Ravanbakhsh et al., 2016; Li et al., 2018; Le and Duan, 2018). Each point
has some attributes, mainly their 3D coordinates and sometimes other attributes like the normal of a
surface they may represent, color, etc. Currently, point cloud deep learning models are a very active
research track. This last approach does not suffer from some shortcomings that occur when using
handcrafted features, quantization errors or high processing demands, as is the case with earlier
mentioned approaches.
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In this paper, we have setup our methodology and experiments for teeth semantic segmentation
based on the PointCNN model (Li et al., 2018). The PointCNN model is based on a X—Conv
operator, which weighs and permutes the input points and their corresponding features, prior to
processing them by a typical convolution operator. The field of view of each X—Conv operator
consists of a fixed set of k-nearest neighbour (KNN) points. The outcome of the X —Conv operation
is the aggregation and projection of KNN point features into a representative set of points, after
which a typical convolution is applied to them. The PointCNN has a lower amount of parameters
and has been shown to be effective for learning local correlations from point cloud data (Li et al.,
2018). This is beneficial, because it is less prone to severe overfitting on a small dataset.

3. Method

The block diagram for our proposed method is shown in Figure 1. In the following section, we will
discuss our proposed framework in three parts: preprocessing and data augmentation, non-uniform
resampling, and model architecture.

3.1. Data augmentation

The training data are augmented by random 3D rotations, point ordering permutations, adding arti-
ficial noise (in the form of jittering) to the positions of each point, and instance dropouts. Here, the
dropout of instances means randomly removing all points that belong to a specific tooth from the
point cloud in each batch of the training data. This helps the network to learn the labels that may
be lacking and do not occur in the training set. The only preprocessing that is applied to the input
point cloud is normalization of coordinate information within a scan to have a zero mean and unit
variance.

3.2. Non-uniform resampling

Because of the mentioned resampling-invariance property of the point cloud, training a deep learn-
ing model on whole set of points of an IOS point would lead to potential issues, such as the variable-
rank matrices (the number of points in our IOS datasets may vary in amount between [100k, 310k])
as well as the hardware limitations (such as available memory) for processing of the large-scale point
cloud. Applying a patch-classification technique which is common for large-size 2D/3D images,
would degrade the quality of results because the extracted patches (i.e. a local subset of points) lack
global-structure contents. Furthermore, it would also miss the existing strong dependency between
the label of each point and its location in the point cloud. Unfortunately, as we already mentioned,
the alternative solution based on uniform resampling does not lead to an accurate analysis of data at
its highest available resolution. Recently, various non-uniform resampling methods have been pro-
posed by means of optimization of different metrics that preserve high-frequency contents (Chen
et al., 2018; Huang et al., 2013) or local directional density (Skrodzki et al., 2018). However, the
effectiveness of using such data abstraction methods on the performance of a deep network cannot
be easily established and is in contrast with our interest in designing an end-to-end learning scheme
that works directly on the raw data. It is preferable to have such an abstraction of information be
performed by the network itself with respect to its objective function. Our proposed non-uniform
resampling method is based on the Monte Carlo sampling technique and results in a locally-dense
and globally-sparse subset of points for training the deep learning model.
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We now state the problem more formally. We assume a matrix representation for the point cloud
(X = [x1,x2,...,xn]) with N points of which each point has D attributes. The point x; € RP and the
point cloud X € RV*P where D = 3 for the 3D geometric points. By introducing a radial basis
function (RBF), denoted by %", which is positioned on a randomly chosen point (X, € X), the
geometrical similarity (spatial distance) to the point x 7., can be measured with a weighted distance
metric, as specified in Eq.(1). In accordance with the foveation as defined in the work of Ciresan et
al. (Ciresan et al., 2012), we call this point the fovea. The RBF kernel is specified by:

2
e%/(xiaxfuvea> :exp<_Hx129Z;va>7 (1)

where o is a free parameter that controls the bandwidth (compactness) of the kernel. By resampling,
we aim to choose a subset Y out of X with M points (M < N) that has a dense sampling around the
fovea and a sparse sampling for farther locations. According to Monte Carlo sampling, by randomly
drawing (with replacement) a point x; from the set X, we accept to insert such a point into the subset
Y, only if JZ (xi, X fovea) > 15 is satisfied, otherwise it is rejected. The variable rs is a random number
from a uniform distribution within the unity interval according to the Monte Carlo technique. This
process continues until M — 1 unique points are accepted. Algorithm 1 in the Appendix shows these
steps in detail. Hence, the resampled subset ¥ has M total points at different levels of granularity
(see Figure 2). By random selection of the fovea in every training batch, the model trains on the
whole point cloud in its highest available resolution with a fixed number of points. It worths to
mention that as the point cloud is normalized to have variance of unity, the uniform-resampling and
patch sampling both can be considered as two extreme cases of our proposed algorithm by setting
o > 1 and 0 < 1, respectively.

3.3. Model architecture

Our proposed model includes two networks: the segmentation network (') and the discriminator
network (2). The PointCNN (Li et al., 2018) architecture is used for implementing the . network.
The inputs to the S network are the resampled points and its output is a 17-element vector for each
point, which represents the class probability.

Weighted point-wise cross entropy loss: Training the segmentation network by computing an
equally weighted loss for each point in the input non-uniform resampled data is not efficient. Since
the resampled point set contains various levels of granularity, equally penalizing the output errors
for dense and sparse regions prevents the model from optimally adapting its convolutional kernels
to capture the fine-detailed content in the data, as the error on sparse points increases relatively
equally. Figure 2 shows the uncertainty values for each point, predicted by the network with an
equally weighted loss function. As expected, the sparse regions with a lower sampling rate yield a
high uncertainty during the learning process because the missing context makes it difficult for the
model to perform as accurately as it performs in dense regions. For optimizing the performance
of the learning algorithm, we have to trade-off the preservation of the sparse points (which contain
the global dental arch structure) and learning of the fine-curvature in point cloud data by parameter
tuning. To do so, we apply different weights per point which are computed with the distance metric
of the RBF kernel (Eq.(1)). By assuming the posterior probability vector (P;) for point i, which is
computed at the output softmax layer of the segmentation network with the transfer function of .
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and its parameters 8 o, the weighted loss value (.£},) for each point i is formulated by:

L
Pi=[pit,....pi] = 7 (x,07), where Y pjj=1 with 0<p; <1,
=1

M L (2)
gp:_zwi'zyi'log(l’ij)7 and Wi:t%/(xivxfovea)-
=1 =1

Here, the y; represents the one-hot encoded target label for the point i with x; in 3D coordinates. In
our experiments, L = 17 and M = 3 - 10* denote the number of labels and the number of resampled
points, respectively.

Adpversarial loss Training the segmentation network only by applying a standard pixel-wise (voxel
or point-wise) cross-entropy loss function has an important shortcoming. The label of each point in
the cloud has a high dependency to the label of its adjacent points. For example, if a point belongs
to an incisor tooth, its adjacent points can only belong to the same or another incisor, a canine tooth
or to the gingiva, but certainly not belong to a molar tooth. Although such a strong structural con-
straint exists in the data, it is ignored when the optimization problem is only formulated by Eq. (2).
As discussed in (Ghafoorian et al., 2018), the semantic segmentation is inherently not a pixel-
based (point-wise) classification problem, hence such a formulation is ill-posed. For improving the
higher-level semantic consistencies, Luc et al. (Luc et al., 2016) employed an adversarial training
in addition to a supervised training of the segmentation network. According to such an approach, a
discriminator network provides supervisory signal (feedback) to the segmentation network based on
differences between distributions of labels and predictions. Such an effective mechanism was later
followed for medical image analysis (Dai et al., 2018; Huo et al., 2018; Kohl et al., 2017; Moeskops
et al., 2017; Xue et al., 2018; Yang et al., 2017).

In (Ghafoorian et al., 2018), the authors use a discriminator network to discriminate between
the generated labels from a segmentation network and the ground truth labels. Furthermore, they
propose using an embedded loss (distance between the features of the hidden layer in the discrim-
inator network) for stability of the training. For point-cloud semantic segmentation, we follow a
similar approach, but instead of a heavy training of the discriminator directly on the input space
(point cloud and labels) and defining an embedded loss, we first compute two statistical parameters
from both the predicted labels and real labels. Afterwards, by training a shallow MLP network as
a discriminator, we facilitate the segmentation network’s ability to produce a more realistic predic-
tion. The statistics that we used simply consist of the mean and variance of the coordinates of all
points with the same label, as given by the segmentation network, which leads to:

M M

ﬂj:Zpij-x,- and A}:Zpij-(xi—ﬂj)z, jZl,Z,...,L—l (3)
i=1 i=1

Ut 1y = [, 68 | B2 63 || oo | 1,67 ). 4

Here, the || denotes a vertical vector concatenation (stacking). As mentioned earlier, L denotes the
number of labels in the data. The stacked feature set (1) represents a soft computation of the central
positions of teeth and their variance (i.e. their soft bounding boxes) in the 3D space, according to
the predicted labels (p;;). The statistical mean and variance are computed only for L — 1 classes of
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Low uncertainty

Figure 2: Example of uniform vs. non-uniform resampling (left). The fovea is shown by a red dot.
The uncertainty of the prediction for dense and sparse regions (right).

teeth. In computing the high-level semantic features (statistics), we ignore the gingiva class, since its
point cloud is almost spread across the whole input space and the applied non-uniform resampling
stage alters its resulting statistics severely across training batches. By replacing the p;; values in
Eq. 3 with the one-hot encoded values of the ground truth labels (y;), the counterpart feature-set of
1, denoted by wu, is obtained. For any absent label in the point cloud, we simply insert a vector
consisting of zeros instead. The feature set u represents a realistic statistical measurement of the
labeled data.

The discriminator network (£) aims to discriminate between feature set w and @. The network
consists of two cascaded parts. The first part estimates an affine transformation and is applied to a
input 96-element input vector. The second part consists of 3-layer MLP network which maps the
transformed input vector into a scalar value by a sigmoidal activation function at its output node. In
effect, the network tries to produce the scalar 1 at its output if the network is applied on u, while
the scalar O should be produced if the network is applied on @. The architecture of the first part of
the network is identical to what is proposed in the PointNet model (Qi et al., 2017), called a T-Net.
More details about the T-Net can be found in (Qi et al., 2017). In an adversarial setting for training
the network D and network S, the discriminator loss (.£5) for the network & with parameters 64
and an adversarial loss for the network .#, can be written as:

Znrav(8:05,05) =Eq [logZ(a)]. &)

Hence, the total loss for the segmentation network is a contribution of the losses %), in Eq.(2)
and Z4, in Eq. (5). To avoid the need for manual hyper-parameter tuning for the contribution
weights (1) between two loss terms, we follow the work by Kendall ef al. (Kendall et al., 2017) and
involve adaptive loss weighting. After initializing A = [A1, 4] with a vector of ones, we add the
regularization term % (A ) to the total loss function for the segmentation network (%), giving:

1 1

o2 Dt L+ (), where AN =07 17 (6)
1

<
57 R

Inference on the whole point cloud: Since the segmentation network is trained on non-uniformly
resampled data, for prediction on the whole point cloud we need to extract several subsets of points
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according to the non-uniform resampling algorithm. Afterwards, the prediction of all points in the
original point cloud is obtained by aggregating all the estimated labels for the extracted subsets. The
pseudocode of Algorithm 2 in the Appendix describes this procedure in detail.

4. Experiment and Results
4.1. Data

Our dataset consists of 120 optical scans of dentitions from 60 adults subjects, each containing one
upper and one lower jaw scan. The dataset includes scans from healthy dentitions and a variety of
abnormalities among subjects. The optical scan data was recorded by a 3Shape d500 optical scanner
(3Shape AS, Copenhagen, Denmark). On average, an IOS contains 180k points (varying in range
between [100k, 310k]). All optical scans were manually segmented and their respective points were
categorized into one of the 32+1 classes by a dental professional and reviewed and adjusted by
one dental expert (DAM) with Meshmixer 3.4 (Autodesk Inc, San Rafael CA, USA). Labeling of
the tooth categories was performed according to the international tooth numbering standard (FDI).
Segmentation of each optical scan took 45 minutes on average, which shows its intensive laborious
task for a human.

4.2. Experimental setup

The performance of the model is evaluated by fivefold cross-validation and the results are compared
making use of the average Jaccard Index, also known as intersection over union (IoU). On top of the
IoU, we report the precision and recall for our multi-class segmentation problem. For computing
the precision and recall, each class is treated individually (one-versus-all), as a binary problem
and finally the the average scores are reported. Our experiments are partitioned into three parts:
(1) benchmarking the performance of the PointCNN in comparison with two other state-of-the-
art deep learning models capable of I0S segmentation. These models include PointNet (Qi et al.,
2017) and PointGrid (Le and Duan, 2018); (2) Evaluating the impact of applying the non-uniform
resampling versus using naive uniform resampling. For the purpose of fair comparison, the number
of resampled points are kept identical (M = 30k); (3) Evaluating the effectiveness of involving the
adversarial loss.

All models are trained utilizing stochastic gradient descent and the Adam learning adaptation
technique for 1000 epochs with batch size of one. The initial learning rate is equal to 5e—3, which
decreases each 20K iterations by a factor of 0.9. We empirically adjust the free parameter of the
resampling kernel (see Eq.(1)) to 0.4 (i.e. o = 0.4). Since the point cloud is normalized to have a
unit variance, we have found that the resampled point cloud by such a chosen setting of o would
encompass at least two teeth in its dense region.

4.3. Results

Table 1 depicts the obtained results from our different experimental setups. Figure 3 in the Appendix
shows visualizations of a number of exemplary results from our proposed model. As we can observe
from Tablel, the PointCNN performs better than two other state-of-the-art models when a naive
uniform resampling is applied. This is mostly because of the inclusion of the spatial-correlation
information by the X — Conv operator in the PointCNN and its lower amount of parameters, which
is less prone to overfitting. The PointGrid which samples points inside a predefined grid utilizes
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Table 1: Performance of the proposed model within different experimental setups in comparison
with state-of-the-art models.

Method Metric Exec.time (sec.)

Network Arch. Non-uniform | Adv. setting | IoU | Precision | Recall
PointNet (Qi et al., 2017) - - .76 73 .65 0.19
PointGrid (Le and Duan, 2018) - - .80 75 .70 0.88
PointCNN (Li et al., 2018) - - .88 .87 .83 0.66
Proposed (I) v - 91 .90 .87 6.86
Proposed (II) - v 91 91 .89 0.66
Proposed (I1I) v Ve 94 93 90 6.86

convolutional operators, but its performance is still limited to the spatial resolution of the spatial
quantization grid. The PointNet performance is also constrained, as it omits processing of spatial
correlations in the point cloud. With the choice of basing of our method on PointCNN, we show the
effectiveness of applying non-uniform resampling and the adversarial loss. The last two techniques
improve the results. Finally, incorporating both techniques simultaneously, the highest performance
is achieved.

5. Discussion and conclusion

In this paper, we propose an end-to-end learning approach for semantic segmentation of teeth and
gingiva from point clouds derived from IOS data. Our segmentation network is based on PointCNN,
which has been proposed for point cloud classification/segmentation tasks. For analysis of point
clouds in their original spatial resolution (resulting in predictions for all points), we propose a non-
uniform resampling mechanism and a compatible loss weighting, based on foveation and Monte
Carlo sampling. This resampling approach includes both local, fine-detail information and the
sparse global structure of data, which is essential for an accurate prediction of each individual point
in absence of a universal coordinate system. Furthermore, by involving the high-level data seman-
tics, through training a discriminator network for learning the realistic layout of labels in data, the
results are improved. As a consequence, a heavy post-processing stage (e.g. applying conditional
random fields (CRF) on a constructed graph) is not required for incorporating dependencies and
locality constraints into the model. By computing the statistics (mean and variance) from spatial
distributions of labels and their predictions and feeding them into the discriminator, the adversarial
training of the segmentation network is facilitated since for processing such an abstract data only
a shallow network can be employed as discriminator. Here, computing the mean and variance of
labels and the predictions can be considered generic enough that does not violate the end-to-end
learning scheme of the method as using such statistics (operations) is common even within a CNN
(e.g. batch normalization operation).
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dix

Algorithm 1: Non-uniform resampling

input : point cloud
output: non-uniform resampled point cloud

X+ {x1,x%2,..., 28} ; // whole point cloud
Y0, // initialized empty set
Xpex~X, // randomly draw one sample as fovea
Function Z (x7,X) :
While\Y‘ <M; // check the size of Y
do
Xi+—x~X; // randomly draw sample
rs ~ uniform (0,1) ; // draw a random value
if 2 (xi,xp) >rs; // The RBF kernel Eqg. 1
then
if x; ¢ Y then
‘ Y « x;UY; // insert to the subset
end
end
end
return Y

Algorithm 2: Inference on the whole point cloud

input : point cloud
output: predicted label per point

X+ {x1,x2,...,x8} ; // whole point cloud
Function /nference (X) :
U+0; // initialized an empty set
Py < Onx17 // initialized probability vectors
while |U| < [X| do
X~ {x eX \ X ¢ U} ; // select fovea out of the unprocessed points
Y — Z(x5,X) 5 // non-uniform resampling (Algorithm 1)
Pr=7(Y,05); // prediction of % Net.
{xi} + {x eY|H (xp,x) < O'} ; // only dense region is valid
Px(x;) = Px(x;) + Pr(x;) 3 // Aggregate the probabilities
U<+ {xi}u{U}; // Mark as processed
end
return argmax(Px) ; // labels on whole point cloud

570



DEEP LEARNING APPROACH TO SEMANTIC SEGMENTATION IN 3D POINT CLOUD 10S

() (b)

(d)

(©)

®

(©)

(@ ()

@ G

Figure 3: (a-h) Examples of segmentation by our proposed method. (i) Example of a failure case
when the adversarial loss is not involved in the training of the segmentation network.
The assigned label inside the circle is unrealistic (i.e. invalid). Consequently, the model
assigned a set of invalid labels to other neighbouring teeth (inside the red rectangle) by
their maximum likelihood. (j) Ground truth.
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