
AlgoNet: C∞ Smooth Algorithmic Neural Networks

for Solving Inverse Problems

Felix Petersen
University of Konstanz

felix.petersen@uni.kn

Christian Borgelt
University of Salzburg

christian@borgelt.net

Oliver Deussen
University of Konstanz

oliver.deussen@uni.kn

Abstract

Artificial neural networks revolutionized many areas of computer science in recent
years since they provide solutions to a number of previously unsolved problems. On
the other hand, for many problems, classic algorithms exist, which typically exceed
the accuracy and stability of neural networks. To combine these two concepts, we
present a new kind of neural networks—algorithmic neural networks (AlgoNets).
These networks integrate smooth versions of classic algorithms into the topology
of neural networks. Our novel reconstructive adversarial network (RAN) enables
solving inverse problems without or with only weak supervision.

1 Introduction

Artificial Neural Networks are employed to solve numerous problems, not only in computer science
but also in all other natural sciences. Yet, the reasoning for the topologies of neural networks seldom
reaches beyond empirically-based decisions.

In this work, we present a novel approach to designing neural networks—algorithmic neural networks
(short: AlgoNet). Such networks integrate algorithms as algorithmic layers into the topology of
neural networks. However, propagating gradients through such algorithms is problematic, because
crisp decisions (conditions, maximum, etc.) introduce discontinuities into the loss function. If one
passes from one side of a crisp decision to the other, the loss function may change in a non-smooth
fashion—it may “jump.” That is, the loss function suddenly improves (or worsens, depending on
the direction) without these changes being locally noticeable anywhere but exactly at these “jumps.”
Hence, a gradient descent based training, regardless of the concrete optimizer, cannot approach
these “jumps” in a systematic fashion, since neither the loss function nor the gradient provides any
information about these “jumps” in any place other than exactly the location at which they occur.
Therefore, a smoothing is necessary, such that information about the direction of improvement
becomes exploitable by gradient descent also in the area surrounding the “jump.” That is, by
smoothing, e.g., an if, one can smoothly, by gradient descent, undergo a transition between the two
crisp cases using only local gradient information.

Generally, for end-to-end trainable neural network systems, all components should at least be C0

smooth, i.e., continuous, to avoid “jumps.” However, having Ck smooth, i.e., k times differentiable
and then still continuous components with k ≥ 1 is favorable. This property of higher smoothness
allows for higher-order derivatives and thus prevents unexpected behavior of the gradients. Hence, we
designed smooth approximations to basic algorithms where the functions representing the algorithms
are ideally C∞ smooth. That is, we designed pre-programmed neural networks (restricted to smooth
components) with the structure of given algorithms.

Such algorithmic layers (Sec. 3) can assist in finding an appropriate solution for (ill-posed) inverse
problems. For that, we introduce the Reconstructive Adversarial Network (RAN) in (Sec. 3).

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada.

2 Related Work

Related work [1]–[3] in neural networks focused on dealing with crisp decisions by passing through
gradients for the alternatives of the decisions. There is no smooth transition between the alternatives,
which introduces discontinuities in the loss function that hinder learning, which of the alternatives
should be chosen. TensorFlow contains a sorting layer (tf.sort) as well as a while loop construct
(tf.while_loop). Since the sorting layer only performs a crisp relocation of the gradients and the
while loop has a crisp exit condition, there is no gradient with respect to the conditions in these layers.
Concurrently, we developed a smooth sorting layer and a smooth while loop.

Theoretical work by DeMillo et al. [4] proved that any program could be modeled by a smooth
function. Consecutive works [5]–[7] provided approaches for smoothing programs using, i.a.,
Gaussian smoothing [6], [7].

3 Algorithmic Layers

Algorithmic layers, i.e., smooth approximations, exist for any Turing computable algorithm [8]. To
design a smooth algorithmic layer, all discrete cases (e.g., conditions of if statements or loops) have
to be replaced by continuous or smooth functions. The essential property is that the implementation
is differentiable with respect to all internal choices and does not—as in previous work—only
carry the gradients through the algorithm [1]. For example, an if statement can be replaced by a
sigmoid-weighted sum of both cases. By using a smooth sigmoid function, the statement is smoothly
interpreted. Hence, the gradient descent method can influence the condition to hold if the content of
the then case reduces the loss and influence the condition to fail if the loss is lower when the else
case is executed. Thus, the partial derivative with respect to a neuron is computed because the neuron
is used in the if statement. In contrast, when propagating back the gradient of the then or the else
case depending on the value of the condition, there is a discontinuity at the points where the value of
the condition changes and the partial derivative of the neuron in the condition equals zero.

The logistic sigmoid function (Eq. 1) is a C∞ smooth replacement for the Heaviside sigmoid function
(Eq. 2), which is equivalent to the if statement. Alternatively, one could use other sigmoid functions,
e.g., the C1 smooth step function x2 − 2 · x3 for x ∈ [0, 1], and 0 and 1 for all values before and after
the given range, respectively.

s1(x, s) =
1

1 + e−x·s
with s = 1 (1) s2(x) =

{

0 if x < 0

1 else
(2)

After designing an algorithmic layer, we can use it to solve for its inverse by using the Reconstructive
Adversarial Neural Network (RAN).

4 Reconstructive Adversarial Networks (RAN)

Reconstructive Adversarial Networks (RAN) use an algorithm that solves for the inverse of a given
problem. For example, they use a smooth renderer for 3D-reconstruction, a smooth iterated function
system (IFS) for solving the inverse-problem of IFS, and a smooth text-to-speech synthesizer
for speech recognition. While RANs could be used in supervised settings, they are designed for
unsupervised or weakly supervised solving of inverse-problems. Their concept is the following:

Input (∈ A) −→ Reconstructor −→ Goal −→ smooth inverse −→ Smooth version of input (∈ B)

This structure is similar to auto-encoders and the encoder-renderer architecture presented by Che et al.
[2]. Such an architecture, however, cannot directly be trained since there is a domain shift between the
input domain A and the smooth output domain B. Thus, we introduce domain translators (a2b and
b2a) to translate between these two domains. Since training is extremely hard with three consecutive
components, of which the middle one is highly restrictive, we use the RAN as a novel training schema
for these components. For that, we also include a discriminator to allow for adversarial training of the
components a2b and b2a. Of our five components four are trainable (the reconstructor R, the domain
translators a2b and b2a, and the discriminator D), and one is non-trainable (the smooth inverse Inv).

2

Figure 1: RAN System overview. The reconstructor receives an object from the input domain A
and predicts the corresponding reconstruction. The reconstruction, then, is validated through our
smooth inverse. The latter produces objects in a different domain, B, which are translated back to the
input domain A for training purposes (b2a). Unlike in traditional GAN systems, the purpose of our
discriminator D is mainly to indicate whether the two inputs match in content, not in style. Our novel
training scheme trains the whole network via five different data paths, including two which require
another domain translator, a2b.

Since, initially, neither the reconstructor nor the domain translators are trained, we are confronted
with a causality dilemma. A typical approach for solving such causality dilemmas is to solve the two
components coevolutionarily by iteratively applying various influences towards a common solution.
Fig. 1 depicts the structure of the RAN, which allows for such a coevolutionary training scheme.

The discriminator receives two inputs, one from space A and one from space B. One of these
inputs (either A or B) receives two values, a real and a fake value; the task of the discriminator is
to distinguish between these two, given the other input. For training, the discriminator is trained to
distinguish between the different path combinations for the generation of inputs. Consecutively, the
generator modules are trained to fool the discriminator. This adversarial game allows training the
RAN.

In the following, we will present this process, as well as its involved losses, in detail. Our optimization
of R, a2b, b2a, and D involves adversarial losses, cycle-consistency losses, and regularization losses.
Specifically, we solve the following optimization:

min
R

min
a2b

min
b2a

max
D

L or in greater detail min
R

min
a2b

min
b2a

max
D

5
∑

i=1

(αi · Li) + Lreg.

where αi is a weight in [0, 1] and L, and Li shall be defined below. Lreg denotes the (optional)
regularization losses imposed on the reconstruction output.

We define b′, b′′ ∈ B and a′, a′′ ∈ A in dependency of a ∈ A according to Fig. 1 as

b′ = a2b(a) b′′ = Inv ◦ R(a) a′ = b2a(b′) a′′ = b2a(b′′).

With that, our losses are (without hyper-parameter weights)

L1 = Ea∼A[logD(a, b′′)] + Ea∼A[log(1−D(a, b′))] + Ea∼A[‖b
′′ − b′‖1]

L2 = Ea∼A[logD(a, b′′)] + Ea∼A[log(1−D(a′′, b′′))] + Ea∼A[‖a
′′ − a‖1]

L3 = Ea∼A[logD(a, b′)] + Ea∼A[log(1−D(a′′, b′))] + Ea∼A[‖a
′ − a‖1] + Ea∼A[‖b

′′ − b′‖1]

L4 = Ea∼A[logD(a, b′′)] + Ea∼A[log(1−D(a′, b′′))] + Ea∼A[‖a
′ − a‖1] + Ea∼A[‖b

′′ − b′‖1]

L5 = Ea∼A[logD(a, b′)] + Ea∼A[log(1−D(a′, b′))] + Ea∼A[‖a
′ − a‖1].

We alternately train the different sections of our network in the following order:

1. The discriminator D
2. The translation from B to A (b2a)
3. The components that perform a translation from A to B (R+Inv, a2b)

For each of these sections, we separately train the five losses L1,L2,L3,L4, and L5. In our
experiments, we used one Adam optimizer [9] for each trainable component (R, a2b, b2a, and D).

3

5 Experiments

Input Prediction Alt. view Input Prediction Alt. view

Figure 2: Single-view reconstruction results from the UT
Zappos50K dataset [10] (camera-captured images). With an
increased supervision, our method achieves significantly better
results.

For our experiments we
developed an unsupervised
3D reconstruction method using
a C∞ smooth 3D mesh renderer
[11]. Our reconstructor is a
network mapping from one or
multiple images to a set of 3D
coordinates, and our smooth
inverse is a smooth 3D mesh
renderer. As domain translators,
we used the pix2pix network
as well as a convolutional and
deconvolutional ResNet [12].

Describing the smooth renderer
in great detail would exceed the
scope of this paper. The main
differences to common ray tracers
are that our renderer performs a
smooth rasterization and a smooth
occlusion handling / z-buffer.

Training the RAN with the scheme described in Sec. 4, we achieved first results on unsupervised
3D reconstruction trained only on camera-captured images. Some qualitative results for that are
presented in Fig. 2. Other inverse problems that we experimented on are speech recognition as well
as the inverse problem of iterated function systems.

6 Discussion and Conclusion

We presented AlgoNets as a new kind of layers for neural networks and RANs as a novel technique
for solving ill-posed inverse problems. Concurrent with their benefits, AlgoNets, such as the
aforementioned rendering layer, can get computationally very expensive. On the other hand, the
rendering layer is very powerful since it allows training a 3D reconstruction without 3D supervision
using the RAN. Since the RAN is a very complex architecture that requires a very specific training
paradigm, it can also take relatively long to train it. To accommodate this issue, we found that by
increasing some loss weights and introducing a probability of whether the computation is executed,
the training time can be reduced by a factor of two or more.

The AlgoNet can also be used in such a way that algorithmic layers solve sub-problems of a given
problem to assist a neural network in solving a larger problem. This principle could also be used in
the realm of explainable artificial intelligence [13] by adding residual algorithmic layers into neural
networks and then analyzing the neurons of the trained AlgoNet. For that, network activation and/or
network sensitivity can indicate the relevance of the residual algorithmic layer. To compute the
network sensitivity of an algorithmic layer, the gradient with respect to additional weights (constant
equal to one) in the algorithmic layer could be computed. By that, similarities between classic
algorithms and the behavior of neural networks could be inferred. An alternative approach would be
to gradually replace parts of trained neural networks with algorithmic layers and analyzing the effect
on the new model accuracy.

In the future, we will develop a high-level smooth programming language to improve smooth
representations of higher-level programming concepts. Adding trainable weights to the algorithmic
layers to improve the accuracy of smooth algorithms and/or allow the rest of the network to influence
the behavior of the algorithmic layer is subject to future research. Another future objective is the
exploration of neural networks not with a fixed but instead a smooth topology.

4

References

[1] Mart’in Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Y. Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh
Levenberg, Dandelion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,
Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay
Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,
and Xiaoqiang Zheng, TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems, 2015.
[Online]. Available: https://www.tensorflow.org/; https://www.tensorflow.org/api_
docs/python/tf/sort; https://www.tensorflow.org/api_docs/python/tf/while_loop;;

[2] C. Che, F. Luan, S. Zhao, K. Bala, and I. Gkioulekas, “Inverse Transport Networks,” Sep. 2018. [Online].
Available: http://arxiv.org/abs/1809.10820.

[3] P. Henderson and V. Ferrari, “Learning to Generate and Reconstruct 3D Meshes with only 2D Supervision,”
Jul. 2018. [Online]. Available: https://arxiv.org/abs/1807.09259.

[4] R. A. DeMillo and R. J. Lipton, “Comments on “Defining Software by Continuous Smooth Functions,”
IEEE Transactions on Software Engineering, vol. 19, no. 3, pp. 307–309, 1993, ISSN: 00985589. DOI:
10.1109/32.221140.

[5] Y. Nesterov, “Smooth minimization of non-smooth functions,” Mathematical Programming, vol. 103,
no. 1, pp. 127–152, 2005, ISSN: 00255610. DOI: 10.1007/s10107-004-0552-5.

[6] S. Chaudhuri and A. Solar-Lezama, “Smoothing a Program Soundly and Robustly,” in Computer Aided
Verification, G. Gopalakrishnan and S. Qadeer, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg,
2011, pp. 277–292, ISBN: 978-3-642-22110-1.

[7] Y. Yang and C. Barnes, “Approximate Program Smoothing Using Mean-Variance Statistics, with
Application to Procedural Shader Bandlimiting,” Jun. 2017. [Online]. Available: https://arxiv.
org/abs/1706.01208.

[8] F. Petersen, C. Borgelt, and O. Deussen, “AlgoNet: $Cˆ\infty$ Smooth Algorithmic Neural Networks,”
May 2019. [Online]. Available: http://arxiv.org/abs/1905.06886.

[9] D. P. Kingma and J. Ba, “Adam: {A} Method for Stochastic Optimization,” CoRR, vol. abs/1412.6, 2014.
[Online]. Available: http://arxiv.org/abs/1412.6980.

[10] A. Yu and K. Grauman, “Fine-Grained Visual Comparisons with Local Learning,” in Computer Vision
and Pattern Recognition (CVPR), Jun. 2014.

[11] F. Petersen, A. H. Bermano, O. Deussen, and D. Cohen-Or, “Pix2Vex: Image-to-Geometry Reconstruction
using a Smooth Differentiable Renderer,” Mar. 2019. [Online]. Available: http://arxiv.org/abs/
1903.11149.

[12] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-Image Translation with Conditional Adversarial
Networks,” Nov. 2016. [Online]. Available: https://arxiv.org/abs/1611.07004.

[13] L. H. Gilpin, D. Bau, B. Z. Yuan, A. Bajwa, M. Specter, and L. Kagal, “Explaining Explanations: An
Overview of Interpretability of Machine Learning,” May 2018. [Online]. Available: https://arxiv.
org/abs/1806.00069.

5

	Introduction
	Related Work
	Algorithmic Layers
	Reconstructive Adversarial Networks (RAN)
	Experiments
	Discussion and Conclusion

