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Abstract

In this paper we propose to use a denoising autoencoder (DAE) prior to simulta-
neously solve a linear inverse problem and estimate its noise parameter. Existing
DAE-based methods estimate the noise parameter empirically or treat it as a tunable
hyper-parameter. We instead propose autoencoder guided EM, a probabilistically
sound framework that performs Bayesian inference with intractable deep priors.
We show that efficient posterior sampling from the DAE can be achieved via
Metropolis-Hastings, which allows the Monte Carlo EM algorithm to be used. We
demonstrate competitive results for signal denoising, image deblurring and image
devignetting. Our method is an example of combining the representation power of
deep learning with uncertainty quantification from Bayesian statistics.

1 Introduction

A variety of inverse problems, including sensor denoising [27] and image restoration [2], can be
formulated as recovering a latent signal x from noisy observations y = Hx + n, where H is
the observation model and n is the noise. Model-based reconstruction methods [13, 20, 35] use
priors to constrain the solution space. More recently, data-driven deep priors have been shown to
outperform traditional analytic priors [24]. Here we adopt the unsupervised learning approach: unlike
discriminative learning which requires task-specific data and training, deep priors trained with a DAE
[36] can be used in a plug-and-play way [3, 4, 25], without fine-tuning for specific tasks H .

The noise level of n is essential for controlling the strength of prior. For example, data corrupted by
large noises should be handled with strong priors. For real data, the noise level is usually unknown (i.e.
noise-blind) and needs to be estimated. Although deep priors are able to capture highly sophisticated
data distribution, they often lack the analytic tractability for statistical inference. As a result, many
DAE-based methods either treat the noise level as a tunable hyper-parameter [3, 39], or empirically
compute an adaptive estimate during gradient based optimization [4], without correctness guarantee.

In this paper, we propose a probabilistic framework that combines DAE priors with tractable inference.
The latent signal x and the noise level are estimated simultaneously. We rely on the observation that a
trained DAE captures the score of data distribution (gradient of log density) [1]. The key component
of our method is that the intractable posterior distribution of x can be efficiently sampled with a
Metropolis-Hastings [16] sampler. As a consequence, the maximum likelihood estimate (MLE) of
the noise level can be obtained using the Monte Carlo EM algorithm [40]. The solution of x can be
constructed from the converged samples, e.g. a minimum mean squared error (MMSE) estimator can
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be computed from the posterior mean. We call our method autoencoder guided EM (AGEM), it is an
example of marrying unsupervised deep learning with statistical inference.

One important implication of our method is that, with the aid of sampling-based approximate inference
methods, a deep prior defined by a DAE can operate analytically much like closed-form priors. We
demonstrate our proposed method on signal denoising, image deblurring and image devignetting,
and conduct thorough ablation studies. Our approach outperforms the state-of-the-art DAE-based
methods on all three tasks. In summary, the main contributions of this paper are:

• The solution of a linear inverse problem and noise level estimation are unified in a proba-
bilistically sound framework, which can be solved using the Monte Carlo EM algorithm.

• The Monte Carlo E-step performs efficient posterior sampling with a special Metropolis-
Hastings algorithm, despite using an implicit prior defined by a DAE.

• The solution to the problem can be constructed from posterior samples according to Bayesian
decision theory. Using a quadratic loss, the posterior mean provides an MMSE estimator.

2 Background

Using the above notation, we say a linear inverse problem has a known noise level Σ, if

y = Hx+ n, n ∼ N (0,Σ). (1)

A wide range of problems can be covered by this formulation. For example, for image denoising,
H is the identity operator. If x is convolved with some kernel, H is the Toeplitz matrix [15] of that
kernel. The solution of (1) can be obtained by considering the (log) posterior distribution:

log Pr(x | y,Σ) = log Pr(y | x,Σ) + log Pr(x) + const. (2)

we can view log Pr(y | x,Σ) as a data term determined by model (1), and log Pr(x) as a prior term.
The data term ensures that x agrees with the observation y, and the prior term regularizes x to lie
in some desired solution space. For various types of data (e.g. images), many analytic priors have
been proposed [17, 21, 30]. In this paper, we are interested in data-driven deep priors, as they can
benefit from large amount of data and require less handcrafting. Specifically, we focus on deep priors
defined by a DAE. Since a DAE uses unsupervised training, it can directly capture the probability
distribution of x and does not rely on the context of task H (i.e. plug-and-play), which makes it more
general and widely applicable than other context-dependent priors.

DAE prior. A DAE is trained to minimize the following denoising criterion:

LDAE = Ex,η[`(x, r(x+ η))], (3)

where `(·) is the loss function, r(·) is the reconstruction function defined by the DAE, and η is a
stochastic noise. The expectation is taken over the discrete training set of x and the noise distribution.
Besides the plug-and-play property, a DAE also provides good analytic property, as we show below.

Alain and Bengio [1] proved the theorem that if a DAE is trained with quadratic loss and isotropic
Gaussian noise η ∼ N (0, σ2

trI), the optimal reconstruction function r∗(x) satisfies

r∗(x) = x+ σ2
tr∇x log Pr(x) + o(σ2

tr), as σtr → 0, (4)

where Pr(x) is the training data distribution, and o(·) is the little-o notation. We see that the
reconstruction error r∗(x)− x captures the score (gradient of log density), which enables gradient-
based optimization to be used for (2). With this theorem, multiple DAE-based methods for solving
(1) have been proposed. DAEP [3] seeks the maximum-a-posterior (MAP) estimator

xMAP = argmaxx log Pr(y | x,Σ) + log Pr(x). (5)

It uses the negative square magnitude of reconstruction error −‖r(x) − x‖2 as a proxy prior, as
it vanishes at the maxima of Pr(x). DMSP [4] proposes a Bayes estimator for a specific utility
function by smoothing Pr(x) with the Gaussian kernelN (0, σ2

trI), then makes use of an exact version
(without the little-o) of (4).
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Plug-and-play ADMM. Another DAE-based approach that does not rely on (4) originates from
the fact that DAE can be used as a denoiser [8, 41]. The plug-and-play ADMM method [5] converts
(5) into a constrained optimization problem:

(xMAP,xMAP) = argmax(x,v) log Pr(y | x,Σ) + log Pr(v),

subject to x = v.
(6)

This maximizer can then be found by repeatedly solving a sequence of subproblems:

the x-subproblem: x(k+1) = argmaxx log Pr(y | x,Σ)− λ
2 ‖x− v

(k) + u(k)‖2, (7)

the v-subproblem: v(k+1) = argmaxv log Pr(v)− λ
2 ‖v − (x(k+1) + u(k))‖2, (8)

update: u(k+1) = u(k) + x(k+1) − v(k+1). (9)

Here λ is a positive hyper-parameter. The x-subproblem (7) has an analytic solution, while the
v-subproblem (8) can be interpreted as a denoising step. An off-the-shelf denoiser can be used
[35] to implicitly define Pr(v). Specifically, the DAE can be used to replace (8) as v(k+1) =
r(x(k+1) + u(k)). Under mild conditions [5], the iterates (7)-(9) converge to the correct solution.

3 Method

The previous discussion assumes the noise level Σ in the data term

log Pr(y | x,Σ) = − 1
2 (y −Hx)>Σ−1(y −Hx)− 1

2 log|Σ|+ const. (10)

to be known in advance. In particular, DAEP and ADMM require a known Σ; DMSP proposes
an empirical scheme, where unknown Σ is estimated from the current iterate of x during gradient
descent. It also has to introduce a utility function that leads to Gaussian smoothed log-likelihood,
causing Σ to be overestimated (shown later in experiments). More discussions on these baselines are
provided in Section A of the supplementary. Here we propose a generic algorithm for solving x and
unknown Σ simultaneously using a DAE prior. Our method is probabilistically sound.

We start by computing the MLE of Σ. Since x is a latent variable, it needs to be marginalized out:

Pr(y | Σ) =

∫
Pr(y,x | Σ) dx =

∫
Pr(y | x,Σ) Pr(x) dx, (11)

where we used the independence between x and Σ. The integral in (11) is intractable, as the prior
Pr(x) is defined by a neural network (DAE). To proceed, we invoke the EM algorithm [12] to
maximize the expected complete-data log-likelihood Q(Σ,Σ(τ)):

Q(Σ,Σ(τ)) = Ex∼Pr(x|y,Σ(τ)) log Pr(y,x | Σ)

= Ex∼Pr(x|y,Σ(τ)) log Pr(y | x,Σ) + log Pr(x),
(12)

since the prior Pr(x) does not contain Σ, the M-step is not affected by the intractability of Pr(x).
However, the E-step still needs to deal with Pr(x) as it enters the posterior distribution via

Pr(x | y,Σ(τ)) = Z−1 Pr(y | x,Σ(τ)) Pr(x), (13)

where Z is the partition function. A key component of our method is that the posterior (13) can be
efficiently sampled if the prior Pr(x) is defined by a DAE, as we will show in Section 3.1. Therefore,
the Monte Carlo EM algorithm can be used to compute the MLE of Σ. The E-step generates n
samples {x(i)}ni=1 from the posterior distribution (13), and the M-step evaluates the new Σ(τ+1) by

Σ(τ+1) = argmaxΣ

n∑
i=1

log Pr(y | x(i),Σ) =
1

n

n∑
i=1

(y −Hx(i))(y −Hx(i))>. (14)

In many situations, Σ will be constrained to be either diagonal or isotropic. In either case, the solution
of (14) should be determined within the constraint. It is also straightforward to extend our analysis to
the multiple-y case, where all y share the same noise level Σ. We provide discussions on these cases
in Section B of the supplementary. The E-step and M-step are repeated until convergence.
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3.1 Sampling from the posterior distribution

The posterior distribution (13) can be sampled using the Metropolis-Hastings (MH) algorithm. As we
shall see, the unknown partition function Z cancels out, and the theorem (4) can convert the DAE-
based prior Pr(x) into tractable terms in this setting. MH requires a proposal distribution q(· | x(i)).
For simplicity, we first consider a Gaussian proposal N (x(i), σ2

propI), where I is the identity matrix
and σprop is a hyper-parameter. A sample x∗ is drawn from the proposal x∗ ∼ q(· | x(i)), and is
accepted as x(i+1) = x∗ with probability min(1, α), where

α =
Pr(x∗ | y,Σ(τ))q(x(i) | x∗)
Pr(x(i) | y,Σ(τ))q(x∗ | x(i))

, (15)

or otherwise rejected as x(i+1) = x(i). We can rewrite (15) as

logα = log Pr(x∗ | y,Σ(τ))− log Pr(x(i) | y,Σ(τ)) (16)

= log Pr(y | x∗,Σ(τ))− log Pr(y | x(i),Σ(τ)) + log Pr(x∗)− log Pr(x(i)) (17)

=
(
H
x(i) + x∗

2
− y

)>
Σ(τ)−1

H(x(i) − x∗) + log Pr(x∗)− log Pr(x(i)), (18)

where we used the Gaussian symmetry q(· | x∗) = q(x∗ | ·) in the first step, the Bayes rule (13) in
the second step, and the likelihood (10) in the last step. If x∗ is close to x(i) (e.g. σprop is sufficiently
small), we can use theorem (4) to approximate the log prior difference term in (18):

log Pr(x∗)− log Pr(x(i)) ≈ ∇x log Pr(x)
∣∣
x(i) · (x∗ − x(i)) (19)

≈ σ−2
tr (r(x(i))− x(i))>(x∗ − x(i)), (20)

where the first step is a linear approximation, r(·) is the reconstruction function of a DAE trained
with noise η ∼ N (0, σ2

trI). We see that α can be efficiently computed using a trained DAE.

3.2 Efficient proposal distribution

In MH, using a fixed proposal distribution can lead to slow mixing of the Markov chain. To make
sampling more efficient, the Metropolis-adjusted Langevin algorithm (MALA) [14] uses the gradient
of log posterior to guide the sampler to high density regions, by adopting a special proposal qMALA:

qMALA(x | x(i)) = N (x(i) + 1
2σ

2
prop∇x log Pr(x | y,Σ(τ))

∣∣
x(i) , σ

2
propI). (21)

Section C of the supplementary provides some intuitions behind MALA. Interestingly, the gradient
of log posterior can also be approximated using a DAE:

∇x log Pr(x | y,Σ(τ)) = ∇x log Pr(y | x,Σ(τ)) +∇x log Pr(x) (22)

≈ H>Σ(τ)−1
(y −Hx) + σ−2

tr (r(x)− x). (23)

With the asymmetric proposal qMALA, the ratio of proposals q when computing α is no longer 1. The
quantity log qMALA(x(i) | x∗)− log qMALA(x∗ | x(i)), which can be readily computed from (21) and
(23), needs to be added to (18) in order to evaluate the acceptance ratio α.

3.3 Implementation

The previous subsections discussed how to obtain the MLE of Σ. To obtain the estimated signal
x̂, notice that the samples drawn during the last E-step come from the posterior distribution Pr(x |
y,Σ(τ)). In principle, the Bayes estimator of common loss functions can be constructed from the
posterior samples according to Bayesian decision theory (e.g. posterior mean for MSE, posterior
median for L1 loss), our method is not restricted to any particular loss function. A simple choice is
to use the posterior mean, which provides an MMSE estimator. The primary reason for doing so is
computational: later in Table 2, we compare the posterior mean and median. Their performances are
close, but the mean is easier to compute. Another reason is that many applications care about MSE
(e.g. PSNR for images), hence MMSE estimator is arguably more suitable. We abbreviate this method
as AGEM. Another method is to run ADMM with the estimated Σ to obtain an MAP estimator,
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Algorithm 1 Estimate latent signal x and noise level Σ with the proposed methods AGEM and
AGEM-ADMM. τ is the EM iteration number, initialized as 0. Σ(1) is initialized as σ2

trI .

1: Train a DAE with quadratic loss and noise η ∼ N (0, σ2
trI)

2: repeat τ ← τ + 1

3: Initialization: If τ = 1, x(1)
τ ← 0, otherwise x(1)

τ ← x
(nMH)
τ−1

4: E-step: Draw nMH samples {x(i)
τ }nMH

i=1 with MALA, discard the first 1/5 samples as burn-in
5: M-step: Use {x(i)

τ }nMH
i=nMH/5

to compute Σ(τ+1)

6: until τ = nEM

7: [AGEM] Compute x̂← average of {x(i)
τ }nMH

i=nMH/5
; return (x̂,Σ(nEM))

8: [AGEM-ADMM] Use ADMM and noise level Σ(nEM) to compute x̂; return (x̂,Σ(nEM))

which we abbreviate as AGEM-ADMM. Since ADMM does not depend on the approximation (4)
and is based on MAP rather than MMSE, it serves as an alternative option that may perform better
than AGEM. Our proposed methods are summarized in Algorithm 1. The pseudocode reflects some
implementation details, which we discuss below.

Number of iterations: We use nEM to denote the total number of EM iterations, and nMH to denote
the number of samples drawn in every E-step. We empirically find that setting nEM to around 20 is
sufficient for convergence, meanwhile nMH should be large enough to achieve good mixing.

Initialization: MALA requires Σ to be initialized. We empirically find that, as long as the initializa-
tion is not too far from truth, it has little impact on final results. In our implementation we initialize
Σ as the training noise σ2

trI . As for the initial sample x(1), for the first E-step we initialize it as zero;
starting from the second E-step, the last sample from the previous E-step is used to initialize x(1).
This allows sampling to start from a high density region, rather than start from scratch.

Burn-in: As any MH sampler, MALA needs to run many iterations until it converges to the stationary
distribution. These initial samples are discarded, known as “burn-in”. In our implementation, we
discard the first 1/5 samples. These discarded samples are not used in the M-step or for computing x̂.

The time complexity of AGEM is linear to the number of EM iterations nEM, the number of drawn
samples per iteration nMH, and the dimension of x. The space complexity of AGEM is linear to the
dimension of x. Note that it is not necessary to store all nMH samples to compute Σ(τ+1) (line 5) or
x̂ (line 7), as both can be computed by accumulating a partial sum, and discarding the used samples.

4 Related work

Noise level estimation is a crucial step for many image processing tasks, as many existing algorithms
[7, 11, 29] require known noise level. Traditional noise estimation methods rely on handcrafted
features or priors [17, 22, 26]. Recently, deep neural networks are used to solve a wide range of inverse
problems in imaging [24]. Zhang et al. proposed CNNs for denoising [45] and super-resolution [46]
that can deal with arbitrary known noise levels. In [43] they proposed denoising CNN to estimate
noise levels, but their method is only applicable to an identity transformation H = I . Bigdeli et
al. [4] proposed a deep autoencoder prior for multiple image restoration tasks with unknown noise,
based on a particular utility function. Our method extend the above idea to general linear inverse
problems, and we adopt the maximum likelihood principle, not limited to any subjective choices.

To simultaneously estimate the noise level Σ and recover the latent variable x, jointly maximizing
the likelihood with respect to (x,Σ) will lead to overfitting [18]. Jin et al. [18] performed Bayes
risk minimization based on a smooth utility function to prevent overfitting. A more general and
objective approach is to instead marginalize out the latent variable x, and perform MLE of the model
parameter Σ using the EM algorithm, as in [34, 37]. While previous work [21, 30] used tractable
priors, our method performs sampling and inference with an intractable data-driven prior, combining
the flexibility and representation power of deep learning with Bayesian statistics.

Our method adopts a similar philosophy as the plug-and-play ADMM literature [35]. As pointed out
by [9], the ADMM method divides an MAP estimation problem into an L2 regularized inversion step
and a denoising step, where the prior can be implicitly defined by an off-the-shelf denoiser [7, 11].
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This allows us to use pre-trained deep architectures [6, 13, 28, 44] to overcome the limitations of
traditional priors. In a similar vein, Shah and Hegde [31] proposed to use an implicit adversarial
prior. A disadvantage of using implicitly defined priors is that we often lose their probabilistic
interpretations, making it hard to perform model inference and requires careful parameter tuning [38].
Our framework solves this problem by using a DAE prior, which provides good analytic property.

Our method is built on the key observation by [1] that the reconstruction error of a DAE captures
the score of input density. This property allows DAE to be used as image priors [32, 39, 48] to
capture natural image statistics. Most relevant to us are [3, 4], where the reconstruction error is
used in gradient-based optimization for image restoration. Among these, we are the first to be able
to provide an MMSE estimator. Alain and Bengio [1] showed how to use MH to sample from the
prior distribution defined by a DAE. Nguyen et al. [25] improved sampling in high dimensions with
MALA for diverse image generation. We borrow the above ideas and show that DAE-based posterior
sampling can be used in the Monte Carlo E-step to estimate model parameters.

5 Experimental results

We compare our approach with state-of-the-art DAE-based methods, including DMSP, DAEP, and
ADMM, on various noise-blind tasks: signal denoising, image deblurring and image devignetting. We
also compare to some non-DAE-based methods on specific tasks, but we do not strive for ubiquitous
superior performance over task-specific methods, as the main advantage of DAE-based methods lies
in their plug-and-play nature and task-agnostic generality. For each task, we train a single DAE and
use it to evaluate all methods, so that they compete fairly. Since DAEP and ADMM require a noise
level, we estimate it with DMSP, denoted by “DAEP+NE” and “ADMM+NE” (Noise Estimation).

All DAEs are trained by SGD with momentum 0.9 under the L2 reconstruction loss, early stopping is
based on validation loss. As all baseline methods assume isotropic noise, we follow this restriction in
this section for comparison purpose, and demonstrate general noise in Section E of the supplementary.
For testing, nEM and nMH are set to sufficiently large values for stable convergence. We note that
since the tasks are noise-blind, the hyper-parameters should not be tuned for each tested noise level.
Instead, they are chosen to achieve the best x̂ reconstruction using validation sets when Σ = σ2

trI , and
remain fixed for the rest experiments. Chosen values and more details are reported in each subsection.
We implement and train DAEs using PyTorch [33], all experiments were run on a Ubuntu server with
two Titan X GPUs. Our code and all simulated datasets will be made available online.

Signal denoising. Consider 50-dimensional signals lying on a latent 2D manifold, and corrupted
by isotropic Gaussian noise Σ = σ2

nI . We generate a 6000-sample dataset according to the following
equation, where α, β ∼ Uniform(2, 5), e = exp(1), and xk is the k-th coordinate of the 50-
dimensional signal (Section D of the supplementary provides visualization of this manifold):

xk = 0.01(α+ β)2 sin[α sin(ke) + β sin(ke+ 1) + 0.5(α+ β)], k = 1, ..., 50. (24)

This 2D manifold is highly nonlinear. Among 6000 samples, 1000 samples are selected as the
validation set and another 1000 samples as the test set. The rest are used for DAE training. The DAE
is a multilayer perceptron with ReLU activations and 3 hidden layers, each containing 2000 neurons.
Following [3], our DAE does not have a bottleneck as an explicit low-dimensional latent space is not
required for our purpose. It is trained for 500 epochs with noise σtr = 0.01 and learning rate 0.1.

For testing, we consider four different noise levels σn ∈ {0.01, 0.02, 0.03, 0.04}. We compute
the root-mean-square error (RMSE) between the recovered signal x̂ and the noiseless signal x by√
‖x̂− x‖2/50, and report its mean and standard deviation (stdev.) on the test set. We set nEM = 10,

nMH = 1000, σprop is chosen by a grid search on [0.001, 0.5]. We find σprop = 0.01 achieves the best
average RMSE on the validation set. Table 1 shows the results (values are scaled by 100). Our best
method outperforms all baseline methods significantly statistically (p < 0.05), and our estimated σn
(in square brackets) are closer to the true values comparing to DMSP. AGEM-ADMM performs well
under small noises. Indeed, since ADMM uses the trained DAE for denoising, it works well if σn is
close to the training noise σtr. However, as DMSP overestimates σn especially when σn is small, it
misses the “operating region” of ADMM, leading to ADMM+NE’s inferior performance.

Ablation study. We study the behavior of AGEM in detail under the settings of the previous
experiment. We explore different σprop, initial noise levels Σ(1), strategies to construct the recovered
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Table 1: Signal denoising, average RMSE of the test set. Standard deviations are in parentheses,
estimated noise levels are in square brackets. Best performances are in bold. (All values are in 10−2).

σn: 1.00 2.00 3.00 4.00

Method mean std. mean std. mean std. mean std.

DAEP+NE [3] 0.73 (0.10) 0.98 (0.13) 1.16 (0.20) 1.31 (0.27)
ADMM+NE [35] 0.37 (0.28) 0.60 (0.36) 0.93 (0.55) 1.59 (3.49)

DMSP [4] 0.50 (0.22) 0.74 (0.29) 0.99 (0.45) 1.36 (0.95)
[1.62] (0.14) [2.19] (0.22) [3.07] (0.35) [4.11] (0.75)

AGEM 0.51 (0.15) 0.70 (0.25) 0.86 (0.39) 1.16 (0.64)
[1.19] (0.13) [1.93] (0.26) [2.96] (0.38) [4.03] (0.52)

AGEM-ADMM 0.33 (0.23) 0.57 (0.34) 0.91 (0.53) 1.43 (2.05)

Table 2: Ablation study, average RMSE of the test set. Noise level is Σ = σ2
nI , where σn =

3.00× 10−2. Estimated noise levels are in square brackets. (All values are in 10−2).

mean std. mean std. mean std. mean std. mean std.

σprop: 0.01 0.10 1.00 10.0 100
34.1 (12.7) 1.20 (0.40) 0.86 (0.39) does not does not

[34.2] (12.7) [2.87] (0.40) [2.96] (0.38) converge converge

Σ(1): 0.5I 1.0I 2.0I 4.0I 8.0I
does not 0.86 (0.39) 0.87 (0.40) 0.86 (0.39) does not
converge [2.96] (0.38) [2.96] (0.37) [2.96] (0.37) converge

misc. mean median last first Gaussian
0.86 (0.39) 0.87 (0.39) 1.57 (0.38) 1.58 (0.40) 7.61 (4.43)

[2.96] (0.38) [2.96] (0.37) [2.96] (0.38) [2.96] (0.38) [9.51] (3.82)

x̂, and compare MALA with the symmetric Gaussian proposal. We set the test noise level σn = 0.03,
all hyper-parameters remain unchanged except for the hyper-parameter being studied.

Table 2 summarizes the results (values are scaled by 100 for better display). The first row shows
results using different σprop. If σprop is too small, the results are incorrect, as it takes impractically
many samples to achieve good mixing. If σprop is too large, new samples deviate from high density
regions, and the algorithm fails to converge as no new samples are accepted. Therefore, besides
using a validation set to choose a fixed σprop, another possible strategy is to dynamically increase
σprop while keeping the algorithm convergent. We leave this for future investigation. The second
row shows results using different noise level initializations. We see that as long as the initialization
is within a good range, the results are stable. In practice one can try a wide range of initializations
to seek convergence. The third row compares different strategies for constructing the recovered x̂.
“Mean”/“median” uses the coordinate-wise mean/median of the samples, while “last”/“first” uses
the last/first sample, all from the last iteration. “Mean” and “median” achieve similar performances,
while “last” and “first” have worse RMSE, as a single sample fails to represent the central tendency
of the entire posterior distribution. Finally, “Gaussian” stands for using symmetric Gaussian proposal
during the E-step. Comparing to “mean” which uses MALA, we see the Gaussian proposal gives
incorrect results, as it fails to exploit gradient information and is stuck at local maxima.

Image deblurring. We perform image deblurring with the STL-10 unlabeled dataset [10], which
contains 105 colored 96×96 images. They are converted to grayscale and normalized to [0, 1]. We
select the last 400 images, the first/second half of which is used as the validation/test set. The rest are
used for DAE training. The DAE uses the full convolutional, residual architecture from [43], where
the input is added to the final layer’s output. It is trained for 250 epochs with noise σtr = 0.02 and
learning rate 0.01. We empirically find that DAEs trained with smaller noises do not perform as well.

For testing, images are blurred using a 5 × 5 Gaussian filter with σ = 0.6. The noise is spatially
uniform Σ = σ2

nI , where σn ∈ {0.01, 0.02, 0.03, 0.04}. We set nEM = 10, nMH = 300, σprop is set
to 0.02 using the same selection method as signal denoising, except RMSE is replaced by PSNR. The
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Table 3: Average PSNR for image deblurring. Estimated noise levels are in square brackets.

σn: 0.01 0.02 0.03 0.04

Method mean std. mean std. mean std. mean std.

DAEP+NE [3] 33.13 (1.39) 27.77 (0.89) 25.48 (0.70) 24.30 (0.61)
ADMM+NE [35] 32.43 (3.08) 29.48 (3.16) 27.87 (2.97) 25.78 (3.16)

DMSP [4] 33.60 (2.46) 30.89 (2.14) 28.93 (2.18) 27.40 (2.33)
[0.017] (1e-3) [0.023] (2e-3) [0.031] (3e-3) [0.041] (4e-3)

AGEM 34.79 (2.00) 31.42 (1.81) 29.47 (1.92) 28.00 (2.10)
[0.014] (1e-3) [0.021] (2e-3) [0.030] (3e-3) [0.040] (3e-3)

AGEM-ADMM 33.75 (2.77) 30.00 (3.20) 28.00 (2.88) 26.05 (3.51)

Hyper-Laplacian [21] 33.28 (0.65) 30.26 (0.40) 29.28 (0.35) 28.82 (0.35)
CSF [30] 32.97 (0.68) 29.94 (0.41) 29.02 (0.37) 28.61 (0.36)

Ground Truth Blurred DAEP+NE
32.49 / 33.13

ADMM+NE
32.77 / 32.43

DMSP
32.57 / 33.60

AGEM
34.09 / 34.79

Figure 1: Visual comparison for image deblurring with σn = 0.01. Numbers above the images are:
PSNR of the image / average PSNR of the test set (in dB). Zoom in for more details.

mean/stdev. of PSNR and estimated σn on the test set are reported in Table 3. AGEM consistently
outperforms all baseline methods significantly statistically (p < 0.01), and its estimated σn are closer
to true values than DMSP. We also compare with some analytic priors [21, 30]. Although these priors
are specifically designed for image deconvolution, our generic approach outperforms them except
for σn = 0.04, indicating that our trained DAE learns the distribution of natural images well, and
DAE-based methods are indeed relevant in practice. Some visual examples are provided in Fig. 1. A
convergence visualization is provided in Fig. 2, which shows the stability of our approach.

Image devignetting. Vignetting is a prevalent artifact in photography that brightness attenuates
away from the center [47]. We perform image devignetting with the CelebA dataset [42], which
contains 0.2 million 218×178 colored face images, and a predefined train/val/test split. We normalize
images to [0, 1] and train a DAE with the entire training set. We use the same DAE architecture as
image deblurring. It is trained for 125 epochs with noise σtr = 0.02 and learning rate 0.1.

We select the first 100 images from the predefined val/test set as our validation/test set. The
transformation is based on the Kang-Weiss [19] vignetting model

p(r) =
1− αr

[1 + (r/f)2]2
. (25)

The intensity of a pixel, whose distance to the center is r, is multiplied by p(r). We set α = 0.001, f =
160 to achieve a realistic vignetting effect. H is then a diagonal matrix if images are reshaped into

1 2 3 4 5 6 7 8 9 10
EM epoch

0.015
0.020
0.025
0.030
0.035
0.040

E
st

.N
oi

se

1 2 3 4 5 6 7 8 9 10
EM epoch

26
28
30
32
34

PS
N

R

0.010
0.020
0.030
0.040

Figure 2: Convergence visualization for image deblurring. Left: average estimated noise level; right:
mean PSNR. The legend shows the true noise level σn. Stable convergence is quickly reached. Each
EM epoch draws 300 MCMC samples.
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Table 4: Average PSNR for image devignetting. Estimated noise levels are in square brackets.

σn: 0.015 0.02 0.025 0.03

Method mean std. mean std. mean std. mean std.

DAEP+NE [3] 33.76 (0.71) 31.19 (0.69) 29.16 (0.64) 27.51 (0.58)
ADMM+NE [35] 34.10 (1.62) 32.95 (1.56) 31.60 (1.56) 29.96 (1.68)

DMSP [4] 35.78 (0.99) 34.43 (0.94) 33.26 (0.94) 32.18 (1.03)
[0.022] (1e-3) [0.024] (1e-3) [0.027] (1e-3) [0.032] (1e-3)

AGEM 36.34 (0.65) 34.76 (0.68) 33.58 (0.77) 32.55 (0.88)
[0.017] (1e-3) [0.020] (1e-3) [0.024] (1e-3) [0.029] (1e-3)

AGEM-ADMM 36.16 (1.54) 34.56 (1.53) 32.87 (1.54) 31.07 (1.60)

LIE [23] 29.61 (1.72) 29.43 (1.43) 29.23 (1.16) 29.05 (0.95)
SIVC [47] 29.55 (0.87) 29.44 (0.78) 29.33 (0.71) 29.22 (0.64)

Ground Truth Vignetted DAEP+NE
33.88 / 33.76

ADMM+NE
32.32 / 34.10

DMSP
35.05 / 35.78

AGEM
36.12 / 36.34

Figure 3: Visual comparison for image devignetting with σn = 0.015. Numbers above the images
are: PSNR of the image / average PSNR of the test set (in dB). Zoom in for more details.

column vectors. We consider spatially uniform Σ = σ2
nI , where σn ∈ {0.015, 0.02, 0.025, 0.03}.

We set nEM = 10, nMH = 200, σprop is set to 0.02 using the same selection method as image
deblurring. The mean/stdev. of PSNR and estimated σn on the test set are reported in Table 4. AGEM
consistently outperforms all baseline methods significantly statistically (p < 0.01), and its estimated
σn are closer to true values than DMSP. We also compare with existing methods [23, 47] that do not
rely on the known model p(r). They are outperformed by model-based methods, as p(r) contains
essential information for reconstruction performance. Some visual examples are provided in Fig. 3.

6 Concluding remarks

In this paper, we propose a probabilistic framework that uses DAE prior to simultaneously solve
linear inverse problems and estimate noise levels, based on the Monte Carlo EM algorithm. We
show that during the Monte Carlo E-step, efficient posterior sampling can be performed, as the
reconstruction error of DAE captures the gradient of log prior. Our framework allows us to use
deep priors trained by unsupervised learning for a wide range of tasks, including signal denoising,
image deblurring and image devignetting. Experimental results show that our method outperforms
the previous state-of-the-art DAE-based methods. However, this study is not without limitations.
Since our method is based on sampling, it usually takes several times longer than non-sampling-based
methods to achieve stable convergence. A possible direction for future research is to extend our
framework to nonlinear inverse problems. We are also considering using other forms of deep priors.
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