
Workshop track - ICLR 2017

FACTORIZATION TRICKS FOR LSTM NETWORKS

Oleksii Kuchaiev
NVIDIA
okuchaiev@nvidia.com

Boris Ginsburg
NVIDIA
bginsburg@nvidia.com

ABSTRACT

We present two simple ways of reducing the number of parameters and acceler-
ating the training of large Long Short-Term Memory (LSTM) networks: the first
one is ”matrix factorization by design” of LSTM matrix into the product of two
smaller matrices, and the second one is partitioning of LSTM matrix, its inputs
and states into the independent groups. Both approaches allow us to train large
LSTM networks significantly faster to the state-of the art perplexity. On the One
Billion Word Benchmark we improve single model perplexity down to 24.29.

1 INTRODUCTION

LSTM networks (Hochreiter & Schmidhuber, 1997) have been successfully used in language model-
ing (Jozefowicz et al., 2016; Shazeer et al., 2017), speech recognition (Xiong et al., 2016), machine
translation (Wu et al., 2016), and many other tasks. However, these networks have millions of
parameters, and require weeks of training on multi-GPU systems.

We introduce two modifications of LSTM cell with projection, LSTMP (Sak et al., 2014), to reduce
the number of parameters and speed-up training. The first method, factorized LSTM (F-LSTM)
approximates big LSTM matrix with a product of two smaller matrices. The second method, group
LSTM (G-LSTM) partitions LSTM cell into the independent groups. We test F-LSTM and G-LSTM
architectures on the task of language modeling using One Billion Word Benchmark (Chelba et al.,
2013). As a baseline, we used BIGLSTM model without CNN inputs described by Jozefowicz et al.
(2016). We train all networks for 1 week on a DGX-1 system with 8 Tesla P100 GPUs, after which
BIGLSTM’s evaluation perplexity was 31.0, while both new models got to much better perplexity:
28.11 for F-LSTM and 28.17 for G-LSTM. We trained G-LSTM with 4 group for one additional
week on a single DGX-1 and achieved new single-model state-of-the-art perplexity of 24.29.

1.1 LONG SHORT-TERM MEMORY OVERVIEW

Learning long-range dependencies with Recurrent Neural Networks (RNN) is challenging due to
the vanishing and exploding gradient problems (Bengio et al., 1994; Pascanu et al., 2013). To ad-
dress this issue, the LSTM cell has been introduced by Hochreiter & Schmidhuber (1997), with the
following recurrent computations:

LSTM : ht−1, ct−1, xt → ht, ct. (1)
where xt is input, ht is cell’s state, and ct is cell’s memory. We consider LSTM cell with projection
of size p, LSTMP, where Equation 1 is computed as follows (Sak et al., 2014; Zaremba et al., 2014).
First, cell gates (i, f, o, g) are computed: i

f
o
g

 =

sigm
sigm
sigm
tanh

T

(
xt

ht−1

)
(2)

where xt ∈ Rp, ht ∈ Rp, and T : R2p → R4n is an affine transform T = W ∗ [xt, ht−1] + b.

Next state ht ∈ Rp and memory ct ∈ Rn are computed using following equations:
ct = f � ct−1 + i� g; ht = P (o� tanh(ct))

where P : Rn → Rp is a linear projection. The major part of LSTMP cell computation is in
computing affine transform T because it involves multiplication with 4n × 2p matrix W . Thus we
focus on reducing the number of parameters in W .

1



Workshop track - ICLR 2017

1.2 RELATED WORK

The partition of layer into parallel groups have been introduced by Krizhevsky et al. (2012) in
AlexNet, where some convolutional layers have been divided into two groups to split the model
between two GPUs. Multi-group convnets have been widely used to reduce network weights and
required compute, for example by Esser et al. (2016). This multi-group approach was extended to the
extreme in Xception architecture by Chollet (2016). The idea of factorization of large convolutinal
layer into the stack of layers with smaller filters was used, for example, in VGG networks (Simonyan
& Zisserman, 2014), and in ResNet “bottleneck design” (He et al., 2016). Denil et al. (2013) have
shown that it is possible to train several different deep architectures by learning only a small number
of weights and predicting the rest. In case of LSTM networks, ConvLSTM (Shi et al., 2015), has
been introduced to better exploit possible spatiotemporal correlations, which is conceptually similar
to grouping.

2 MODELS

2.1 FACTORIZED LSTM CELL

Factorized LSTM (F-LSTM) replaces matrix W by the product of two smaller matrices that essen-
tially try to approximate W as W ≈ W2 ∗W1, where W1 is of size 2p × r, W2 is r × 4n, and
r < p <= n (”factorization by design”). The key assumption here is that W can be well approxi-
mated by the matrix of rank r. Such approximation contains less LSTMP parameters than original
model - (r ∗ 2p+ r ∗ 4n) versus (2p ∗ 4n) and, therefore, can be computed faster and synchronized
faster in the case of distributed training.

Figure 1: Language model using: (a) 2 regular LSTM layers, (b) 2 F-LSTM layers, and (c) 2 G-
LSTM layers with 2 group in each layer. Equations inside cells show what kind of affine transforms
are computed by those cells at each time step. Here d = (x, h) for models without groups and
d1 = (x1, h1), d2 = (x2, h2) for model with two groups; and time index dropped for clarity.

2.2 GROUP LSTM CELL

This approach is inspired by groups in Alexnet (Krizhevsky et al., 2012). We postulate that some
parts of the input xt and hidden state ht can be thought of as independent feature groups. For
example, if we use two groups, then both xt and ht are effectively split into two vectors concatenated
together xt = (x1

t , x
2
t ) and ht = (h1

t , h
2
t ), with hi

t only dependent on xi
t, h

i
t−1 and cell’s memory

state. Therefore, for k groups Equation 2 changes to: i
f
o
g

 =


sigm
sigm
sigm
tanh

T 1

(
x1
t

h1
t−1

)
, ...,

sigm
sigm
sigm
tanh

T k

(
xk
t

hk
t−1

) (3)

where, T j is a group j’s affine transform from R2p/k to R4n/k. The partitioned T will now have
k ∗ 4n∗2p

k∗k parameters. This cell architecture is well suited for model parallelism since every group
computation is independent. An alternative interpretation of G-LSTM layers is demonstrated in

2



Workshop track - ICLR 2017

Table 1: One Billion Words benchmark evaluation results after 1 week of training using one DGX-1

Model Perplexity Step Num of RNN parameters Words/sec

BIGLSTM baseline 31.001 584.6K 83,951,616 20.3K
BIG F-LSTM F512 28.11 1.217M 51,445,760 42.9K
BIG G-LSTM G-4 28.17 1.128M 33,619,968 41.1K
BIG G-LSTM G-16 34.789 850.4K 21,037,056 41.7K

the Figure 1 (c). While this might look similar to ensemble (Shazeer et al., 2017) or multi-tower
(Ciregan et al., 2012) models, the key differences are: (1) input to different groups is different
and assumed independent, and (2) instead of computing ensemble output, it is concatenated into
independent pieces.

3 EXPERIMENTS AND RESULTS

For testing we used the task of learning the joint probabilities over word sequences of arbitrary
lengths n: P (w1, ..., wn) =

∏n
i=1 P (wi|w1, ..., wi−1), such that “real” sentences have high prob-

abilities compared to the random sequences of words. Figure 1 (a) shows the typical LSTM-based
model, where first the words are embedded into the low dimensional dense input for RNN, then the
“context” is learned using RNNs via number of steps and, finally, the softmax layer converts RNN
output into the probability distribution P (w1, ..., wn). We test the following models:

• BIGLSTM - model with projections but without CNN inputs from Jozefowicz et al. (2016)

• BIG F-LSTM F512 - with intermediate rank of 512 for LSTM matrix W ,

• BIG G-LSTM G-4, with 4 groups in both layers

• BIG G-LSTM G-16, with 16 groups in both layers.

We train all models on DGX-1 with 8 GP100 GPUs for one ween using Adagrad optimizer, projec-
tion size of 1024, cell size of 8192, mini-batch of 128 per GPU, sampled softmax with 8192 samples
and 0.2 learning rate. Note that the use of projection is crucial as it helps to keep down embedding
and softmax layer sizes. Table 1 summarizes our experiments.

Judging from the training loss Plots 2 in Appendix, it is clearly visible that at the same step count,
model with more parameters wins. However, given the same amount of time, factorized models train
faster. While the difference between BIGLSTM and BIG G-LSTM-G4 is clearly visible, BIG G-
LSTM-G4 contains 2.4 less RNN parameters than BIGLSTM, trains 2 times faster and, as a results,
achieves better evaluation perplexity within the same training time budget (1 week). Since BIG G-
LSTM-G4 result looks almost as good as BIG F-LSTM-F512 but it has fewer parameters, we let it
run for 1 more week to achieve new single model state-of-the art perplexity of 24.29.

Our code is available at https://github.com/okuchaiev/f-lm

3.1 FUTURE RESEARCH

While one might go further and try to approximate transform T using arbitrary feed forward neural
network with 2p inputs and 4n outputs, during our initial experiments we did not see immediate
benefits of doing so. Hence, it remains a topic of future research.

It might be possible to reduce the number of RNN parameters even further by stacking G-LSTM
layers with increasing group counts on top of each other. In our second, smaller experiment, we
replace the second layer of BIG G-LSTM-G4 network by the layer with 8 groups instead of 4, and
call it BIG G-LSTM-G4-G8. We let both BIG G-LSTM-G4 and BIG G-LSTM-G4-G8 ran for 1
week on 4 GPUs each and achieved perplexities of 29.09 and 28.47 correspondingly. Hence, the
model with “hierarchical” groups did not lose much accuracy, ran faster and got better perplexity.
Such “hierarchical” group layers look intriguing as they might provide a way for learning different
levels of abstractions but this remains a topic of future research.

3

https://github.com/okuchaiev/f-lm


Workshop track - ICLR 2017

REFERENCES

Yoshua Bengio, Patrice Simard, and Paolo Frasconi. Learning long-term dependencies with gradient
descent is difficult. IEEE transactions on neural networks, 5(2):157–166, 1994.

Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp Koehn, and Tony
Robinson. One billion word benchmark for measuring progress in statistical language modeling.
arXiv preprint arXiv:1312.3005, 2013.

François Chollet. Xception: Deep learning with depthwise separable convolutions. arXiv preprint
arXiv:1610.02357, 2016.

Dan Ciregan, Ueli Meier, and Jürgen Schmidhuber. Multi-column deep neural networks for image
classification. In Computer Vision and Pattern Recognition (CVPR), 2012 IEEE Conference on,
pp. 3642–3649. IEEE, 2012.

Misha Denil, Babak Shakibi, Laurent Dinh, Nando de Freitas, et al. Predicting parameters in deep
learning. In Advances in Neural Information Processing Systems, pp. 2148–2156, 2013.

Steven K Esser, Paul A Merolla, John V Arthur, Andrew S Cassidy, Rathinakumar Appuswamy,
Alexander Andreopoulos, David J Berg, Jeffrey L McKinstry, Timothy Melano, Davis R Barch,
et al. Convolutional networks for fast, energy-efficient neuromorphic computing. Proceedings of
the National Academy of Sciences, pp. 201604850, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and Yonghui Wu. Exploring the
limits of language modeling. arXiv preprint arXiv:1602.02410, 2016.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. In Advances in neural information processing systems, pp. 1097–1105,
2012.

Razvan Pascanu, Tomas Mikolov, and Yoshua Bengio. On the difficulty of training recurrent neural
networks. ICML (3), 28:1310–1318, 2013.

Hasim Sak, Andrew W Senior, and Françoise Beaufays. Long short-term memory recurrent neural
network architectures for large scale acoustic modeling. In Interspeech, pp. 338–342, 2014.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-kin Wong, and Wang-chun Woo.
Convolutional lstm network: A machine learning approach for precipitation nowcasting. In
Proceedings of the 28th International Conference on Neural Information Processing Systems,
NIPS’15, pp. 802–810, Cambridge, MA, USA, 2015. MIT Press. URL http://dl.acm.
org/citation.cfm?id=2969239.2969329.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey,
Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. Google’s neural machine trans-
lation system: Bridging the gap between human and machine translation. arXiv preprint
arXiv:1609.08144, 2016.

Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Mike Seltzer, Andreas Stolcke, Dong
Yu, and Geoffrey Zweig. Achieving human parity in conversational speech recognition. arXiv
preprint arXiv:1610.05256, 2016.

Wojciech Zaremba, Ilya Sutskever, and Oriol Vinyals. Recurrent neural network regularization.
arXiv preprint arXiv:1409.2329, 2014.

4

http://dl.acm.org/citation.cfm?id=2969239.2969329
http://dl.acm.org/citation.cfm?id=2969239.2969329


Workshop track - ICLR 2017

APPENDIX: TRAINING LOSS FOR 4 LSTM-LIKE MODELS

Figure 2: Y-axis: same for (A) and (B) - training loss log-scale, X-axis: for (A) - step, or mini-batch
count, for (B) - hours (w.g. wall time) of training. BIGLSTM baseline, BIG G-LSTM-G4, BIG
G-LSTM-G16, and BIG F-LSTM-F512 all trained for exactly one week. It is clearly visible, that at
the same step count, the model with more parameters wins. On the other hand, factorized models
can do significantly more iterations in the given amount of time and therefore get to the better results
given same amount of time. (full extent of X-axis for both (A) and (B) is 1 week).

5


	Introduction
	Long Short-Term Memory overview
	Related Work

	Models
	Factorized LSTM cell
	Group LSTM cell

	Experiments and Results
	Future research


