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1. Introduction

Various studies have shown that doses to some cardio-vascular substructures may be criti-
cal factors in the observed heart toxicity and early mortality following radiotherapy (RT)
for nonsmall cell lung cancer (NSCLC) patients (Vivekanandan et al., 2017; McWilliam
et al., 2017; RT et al., 2017; Thor et al., 2018). This may be attributed to irradiation of
particular constituents of the cardio-pulmonary system [2-5]. Currently, segmentation of
cardio-pulmonary organs other than the whole heart and lung has been overlooked, and
only these two organs are routinely defined as part of the treatment planning process. RT
planning requires robust and accurate segmentation of organs-at-risk in order to maximize
radiation to the disease location and spare the normal tissue as much as possible. The
introduction of a new set of organs puts requirements on both segmentation accuracy and
segmentation time that would result in an overhead of several hours of manual segmentation
and contour refinement in the clinic.

To facilitate this, we built and validated a multi-label Deep Learning Segmentation
(DLS) framework for accurate auto-segmentation of cardio-pulmonary substructures. The
DLS framework utilized a deep convolutional neural network architecture to segment 12
cardio-pulmonary substructures (Feng et al., 2010) from Computed Tomography (CT)
scans of 217 patients previously treated with thoracic RT. The segmented substructures
are: Heart, Pericardium, Atria, Ventricles, Descending Aorta (DA), Left Atrium (LA),
Right Atrium (RA), Left Ventricle (LA), Right Ventricle (RV), Inferior Vena Cava (IVC),
Superior Vena Cava (SVC) and Pulmonary Artery (PA). We evaluate our framework using
a hold-out dataset of 24 CT scans by calculating volumetric-based as well as dose-volume
histogram (DVH) based validation metrics. The proposed model reduces substructure seg-
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mentation time for a new patient from about one hour of manual segmentation to approx-
imately 10 seconds. We demonstrate that the model is robust against variability in image
quality characteristics, including the presence/absence of contrast. Resulting segmenta-
tion accuracy was judged adequate for extracting dose-volume histogram information for
patient outcomes analyses following RT, with no statistical difference discovered between
auto-generated and expert contour evaluation metrics.

2. Methods

Experimental data consisted of computerized tomography (CT) scans of 241 patients ob-
tained from our institutional clinic. This data consisted of contrast as well as non-contrast
enhanced images of varying imaging quality and resolution across different scanners. Man-
ual expert segmentation for 12 organs-at-risk cardio-pulmonary structures was considered
ground truth and used for model training, testing and validation.

Our approach leverages the deep neural network architecture of (Chen et al., 2018).
Convolutional neural networks (CNNs) and encoder-decoder neural networks have been
successfully employed for medical image segmentation tasks (Isensee et al., 2018), (Oktay
et al., 2018), (Jin et al., 2018), (Oktay et al., 2018). The Deeplab encoder-decoder network
architecture with atrous separable convolutions consists of spatial pyramid pooling that
encodes multi-scale contextual information to capture spatial anatomical information of
contiguous structures. Dense feature maps extracted in the last encoder network path
consist of detailed semantic information. The decoder network is able to robustly recover
structure boundaries through bilinear upsampling at a factor of 4 while applying atrous
convolutions to reduce features before semantic labeling. We trained the network using
ResNet-101(He et al., 2016) as the encoder network backbone with learning rate = 0.01
using policy learning rate scheduler (Liu et al., 2015), crop size=513 × 513, batch size =
8, loss = cross-entropy, output stride = 16 for 50 epochs for dense label prediction. Our
approach has been implemented using the Pytorch DL framework.

We quantitatively evaluated the auto-generated segmentations by comparing the DSC
Score and 95th Percentile Hausdorff Distance (HD95 (mm)) of 24 patients against expert
clinical segmentations. Additionally, we calculated the difference in RT DVH metrics be-
tween auto-generated and expert contours. The wilcoxon rank-sum test was performed to
determine any statistical difference between the metrics.

3. Experiments and Results

Figure 1 displays the DSC Score results for 24 hold-out validation CT images. Our achieved
DSC accuracies are comparable to the state-of-the-art multi-atlas (Luo et al., 2019) and deep
learning methods (Dormer and et al., 2018) for segmenting cardio-pulmonary substructures
from CT images.The highest segmentation accuracy was observed for the heart (median
DSC = 0.96, median HD95= 3.48 mm), while the remaining structures achieving median
accuracy (0.81 ≤ DSC ≤ 0.94) and (6 mm ≤ HD95 ≤ 3 mm), with highest HD95 surface
distance accuracy observed for DA.

Table 1 displays the percentage difference between the DVH metrics and their associated
P-values for six substructure contours that are found to be critical for determining heart
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Figure 1: Median Dice Similarity Coefficient (DSC) Score results of 24 thoracic RT CT im-
ages comparing auto-generated DLS contours against manually segmented expert
contours for 12 cardio-pulmonary sub-structures.

toxicity. These metrics were calculated using the RT treatment plan generated by physicists
for each patient. None of the structure DVH metric differences were found to be statistically
significant, with all P-values > 0.05. This indicates that the auto-generated segmentations
are clinically acceptable for outcome analysis and RT treatment planning in the clinic.

Structure (metric) DLS to Expert Contour Difference (%) P-value

Atria D45% (Gy) 0.00 (-5.19 8.86) 0.89
Heart V2 (%) 0.00 (0.00 0.01) 0.93
Heart V50 (%) 0.00 (-0.05 0.10) 0.83
Left Atrium Dmax (Gy) 0.00 (-0.28 0.31) 0.90
Left Atrium V63-V69 (%) -0.06 (-0.25 0.75) 0.92
Pericardium MOH55% (Gy) 1.76 (0.24 4.10) 0.69
Superior Vena Cava D90% (Gy) 0.00 (-1.51 0.09) 0.83
Ventricles MOH5% (Gy) -0.14 (-4.53 1.66) 0.98

Table 1: Comparing Dose Volume Histogram (DVH) metrics of auto-generated DLS con-
tours against Expert contours for 6 structures. Median and inter-quartile range of
percentage differences between the two contours is presented, which is calculated
as: (DLS V olume− Expert V olume/Expert V olume) × 100.

4. Conclusion

We propose a model for auto-segmentation of cardio-pulmonary substructures from contrast
and non-contrast enhanced CT images. We validated our approach by quantitatively com-
paring resulting contours against expert delineation, and further demonstrated no statistical
difference when used for dose-volume histogram calculations. Resulting segmentations can
effectively be utilized to study the effect of heart toxicity and clinical outcomes, as well as
used as input to RT treatment planning. We have applied our approach to auto-segment ad-
ditional 283 treatment planning CT scans to study heart toxicity outcomes in non-advanced
lung patients. The developed cardio-pulmonary segmentation models are being integrated
into deep learning tools within the open-source CERR (Deasy et al., 2003) platform.
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