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ABSTRACT

We introduce adaptive input representations for neural language modeling which
extend the adaptive softmax of |Grave et al.|(2017)) to input representations of vari-
able capacity. There are several choices on how to factorize the input and output
layers, and whether to model words, characters or sub-word units. We perform a
systematic comparison of popular choices for a self-attentional architecture. Our
experiments show that models equipped with adaptive embeddings are more than
twice as fast to train than the popular character input CNN while having a lower
number of parameters. On the WIKITEXT-103 benchmark we achieve 18.7 per-
plexity, an improvement of 10.5 perplexity compared to the previously best pub-
lished result and on the BILLION WORD benchmark, we achieve 23.02 perplexityE]

1 INTRODUCTION

Language modeling is a basic task in natural language processing, with many applications such as
speech recognition (Arisoy et al., [2012) and statistical machine translation (Schwenk et al., 2012}
Vaswani et al., 2013} Baltescu & Blunsom| 2015). Recently, much progress has been made by neural
methods (Bengio et al.| 2003; Mikolov et al.,2010) based on LSTMs (J6zefowicz et al.,[2016), gated
convolutional networks (Dauphin et al., 2017) and self-attentional networks (Al-Rfou et al., [2018)).

There are different choices for the basic unit we wish to model, including full words (Bengio et al.,
2003)), characters for the input (Kim et al., [2016), or also the output (Merity et al.| 2018)) as well as
sub-words (Buckman & Neubig, [2018; Mielke & Eisner, |2018). Word-based models are particularly
challenging since computing probabilities for all 800K words of the BILLION WORD benchmark is
still a substantial part of the overall computation (Chen et al.,|2016).

A popular approach to lower the computational burden is to structure the output vocabulary so that
not all probabilities need to be computed. The hierarchical softmax does this by introducing latent
variables or clusters to simplify normalization (Goodman, 2001; Morin & Bengiol |2005; [Mikolov
et al.l [2011)). This has been further improved by the adaptive softmax which introduces a variable
capacity scheme for output word embeddings, assigning more parameters to frequent words and
fewer parameters to rare words (Grave et al.,[2017)).

In this paper, we introduce adaptive input embeddings which extend the adaptive softmax to input
word representations. This factorization assigns more capacity to frequent words and reduces the
capacity for less frequent words with the benefit of reducing overfitting to rare words. For a com-
petitive setup on the BILLION WORD benchmark, adaptive input embeddings reduce the number
of parameters in the input and output layers by 23% while achieving higher accuracy over fixed
size embeddings. When the adaptive input representations are tied with an adaptive softmax in the
output, then the number of parameters is reduced by a total of 61%.

Our experiments compare models based on word inputs, character inputs, as well as sub-word units
using a self-attention architecture (Vaswani et al.,|2017). We show that models with adaptive word
representations can outperform very strong character-based models while training more than twice
as fast. We also substantially improve adaptive softmax by introducing additional dropout regular-
ization in the tail projection. On the WIKITEXT-103 benchmark we achieve a perplexity of 18.7, a

'Code and pre-trained models available at http://github.com/pytorch/fairseq
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Figure 1: Ilustration of adaptive input representations. Words are assigned to clusters V; based on
their frequency which determines the size of the representations. Embeddings are projected to a
common dimension d before being fed to the model.

reduction of 10.5 perplexity over the previously best published result. On the larger BILLION WORD
benchmark our best model with adaptive input embeddings achieves 23.02 perplexity, a reduction
of nearly 5 perplexity over the next best previously published result.

2 RELATED WORK

Adaptive word representations are inspired by the adaptive softmax work Grave et al.|(2017) which
first described a GPU friendly way to construct a hierarchical softmax and showed that it performs
very competitively compared to a full softmax, while offering significantly faster speed and a lower
memory footprint.

Merity et al.|(2018)) use a modified version of adaptive softmax which does not reduce the dimen-
sionality of less frequent words in order to be able to share output embeddings with the input. This
setup is akin to a hierarchical softmax with tied weights. We show that variable-sized input embed-
dings can perform better than fixed sized embeddings. Furthermore, this also enables weight sharing
with an adaptive softmax output layer.

Merity et al.| (2018) evaluates both character-based and word-based factorizations but does not di-
rectly compare them to each other. We perform a direct comparison of word-based and character-
based input vocabularies and also compare to a sub-word factorization for both the input and output.
Recently, |Al-Rfou et al.| (2018) demonstrated that self-attentional models can perform very well on
language modeling tasks where the input and output is both characters. We also consider word-based
benchmarks.

3 ADAPTIVE INPUT REPRESENTATIONS

The adaptive softmax exploits the fact that the distribution of word types in natural language follows
a Zipfian distribution in order to improve the computation of the output probabilities. We apply the
same intuition for input word embeddings with the motivation to reduce the number of parameters
which frees up capacity for other parts of the model.

We define a number of clusters that partitions the frequency ordered vocabulary V = V; U
Va,...,Vn_1 UV, such that V; N V; = 0 for Vi, j, and i # j, where V; contains the most fre-
quent words and V), the least frequent words. We will refer to V; as the head and to any subsequent
clusters loosely as tail. We reduce the capacity for each cluster by a factor of k. That is, if words
in V; have dimension d, then words in V,, have dimension k%l. We typically set & = 4 following

Grave et al. (2017).
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Next, we add linear projections Wy € R4*4, . W, € R%*""**d o map the embeddings of each
cluster to dimension d so that the concatenated output of the adaptive input embedding layer can be
easily used by the subsequent model (Figure[I)). We also project V; which already has dimension d.

When presented with a number of input words, the adaptive input embedding layer partitions the
words into the various clusters, performs separate lookups in the embedding tables and then projects
to dimension d, followed by concatenating the embeddings in the original order.

Weight sharing. When the output layer is an adaptive softmax with the same partition of V, d,
and k as the adaptive input layer, then we can tie the weights (Inan et al. [2016; [Press & Wolf,
2017). This further reduces the number of parameters and can simultaneously improve performance
(. We can share both the parameters for the actual words as well as the projections W7y, ..., W,
Sharing the word embeddings is straightforward except for the head where the adaptive softmax has
n — 1 additional embeddings for the remaining clusters which are not shared with the input.

We share all projections, except for the head projection which is not available in the adaptive softmax
since the model output is directly multiplied with the output word embeddings for the head band.
Performance decreased when we added a head projection to the adaptive softmax in the output,
regardless of when it was shared or not. Sharing both the word embeddings as well as the projections
performed very well on WIKITEXT-103 but on BILLION WORD we only share the word embeddings
as we found that this performed better on the validation set.

4 EXPERIMENTAL SETUP

4.1 MODEL

We follow most of the architectural choices described in|Vaswani et al.|(2017) but use only a decoder
network. We add sinusoidal position embeddings to the input layer and stack N = 16 blocks for
both BILLION WORD and WIKITEXT-103. Each block contains two sub-blocks: the first is a multi-
head self-attention module with H = 16 heads. The second sub-block is a feed-forward module
(FEN) of the form ReLU (W1 X + b1 )W + by where Wy € Re*¢rf, W € Réf7*¢ and e = 1024,
eyr = 4096 unless otherwise stated. Different to|Vaswani et al.|(2017) we apply layer normalization
before the self-attention and FFN blocks instead of after, as we find it leads to more effective training.
Sub-blocks are surrounded by a residual connection (He et al.,[2015).

We use a dropout rate of 0.1 and attention dropout of 0.1 for BILLION WORD models, and increase
regularization for WIKITEXT-103 by using dropout 0.3, and 0.1 ReLU dropout as well as attention
dropout 0.1. We use the same hyperparameters for all models trained on the same dataset in order to
enable a like for like comparison. When the dimensionality of the input or output layer differs from
e, then we add a simple linear projection with no bias.

4.2 DATASETS

We experiment on the BILLION WORD benchmark and WIKITEXT-103. BILLION WORD contains
768M word tokens and has a vocabulary of about 800K word types, which corresponds to words
with more than 3 occurrences in the training set (Chelba et al.| 2013)).

The training data of WIKITEXT-103 comprises about 100M tokens and a vocabulary of around 260K,
corresponding to types with more than 3 occurrences in the training data (Merity et al.,[2016). The
dataset is composed of shuffled Wikipedia articles where the context carries across sentences.

4.3 BATCHING

For BILLION WORD we batch individual sentences since the corpus does not contain document
structure. For WIKITEXT-103 we partition the training data into blocks of 512 contiguous tokens
ignoring document boundaries. Evaluation is the same except that we require blocks to contain
complete sentences totaling up to 512 tokensE]

2 Respecting document boundaries may lead to better results and we leave this to future work.
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We limit the number of tokens per GPU to a maximum threshold B per GPU. That is, we add
examples of similar length until we reach this threshold. When we train on multiple GPUs, each
GPU processes B tokens using the same model parameters. This increases the effective batch size
to the product of the number of GPUs and B. For BILLION WORD models we use B = 2048 and
typically train on 32 GPUs, giving an effective batch size of 65K tokens. The smaller vocabulary of
WIKITEXT-103 enables increasing B to 4096 and we train on 8 GPUs. We found that large batch
training is beneficial for this dataset and we therefore accumulate gradient updates over two batches
before committing a parameter update (Ott et al.,[2018al). This gives an effective batch size of 65K
tokens for WIKITEXT-103.

4.4 INPUT AND OUTPUT LAYER HYPERPARAMETERS

Embedding sizes. For fixed size word input layers and softmax output layers we generally use
embeddings of size 512 for WIKITEXT-103. When we use an adaptive softmax in the output and
fixed size word embeddings for the input, then we use dimension 256 for the input embeddings for
BILLION WORD and 64 for WIKITEXT-103. We tuned this choice on the validation set (Appendix
[A). BPE inputs and outputs have embeddings of size 1024.

Character CNN. We model character inputs by convolving the representations of all characters
in a word following |Kim et al.| (2015)) which applies several filters, then max pooling, a number of
highway layers and a projection. Character embeddings have size 128 and we apply seven filters of
size 1x128, 2x256, 3x384, 4x512, 5x512, 6x512, 7x512, where 3x128 indicates a filter processing
three characters that outputs 128 features. We use a single highway layer for WIKITEXT-103, and
two for BILLION WORD. We do not add start of word and end of word markers as they did not
improve validation accuracy. We train on the same pre-processed data as the other models, with
unknown tokens in both the inputs and outputs.

Adaptive input representations and adaptive softmax. We use an adaptive softmax output layer
to train models with large word-based vocabularies. For adaptive word inputs and adaptive softmax,
we use embeddings of size d = 1024 for the head and reduce the size of subsequent clusters by a
factor of k& = 4. For WIKITEXT-103, we have three bands of size 20K (d=1024), 40K (d=256) and
200K (d=64). For BILLION WORD the bands are 60K (d=1024), 100K (d=256), and 640K (d=64).

Sub-word models. We learn a byte-pair encoding (BPE) of 32K codes on the training data of
each benchmark (Sennrich et al.| [2016). After applying the code to the training data we obtain
a vocabulary of 33,337 tokens for WIKITEXT-103 and 32,347 tokens for BILLION WORD. BPE
input/output embeddings have size 1024. The final evaluation is in terms word-level perplexity to
be comparable to other models. The probability of a word is the product of the sub-word units.

4.5 OPTIMIZATION

Different to |Vaswani et al.| (2017)) we use Nesterov’s accelerated gradient method (Sutskever et al.}
2013) with a momentum of 0.99 and we renormalize gradients if their norm exceeds 0.1 (Pascanu
et al.,2013). The learning rate is linearly warmed up from 10~ to 1 for 16K steps and then annealed
using a cosine learning rate schedule with C cycles (Loshchilov & Hutter, 2016). Each cycle runs
for twice the number of updates than the previous cycle and we lower the maximum and minimum
learning rates by a rate M compared to the previous cycle. The initial minimum learning rate is
105 and the maximum is 1.

BILLION WORD models train for a total of 975K updates over C' = 3 cycles, the first cycle takes
137K steps, and we set M = 0.6. The WIKITEXT-103 models train for 286K steps over C' = 4
cycles, the first cycle takes 18K setps and we set M = 0.75. We run experiments on DGX-1
machines with 8 NVIDIA V100 GPUs and machines are interconnected by Infiniband. We also
use the NCCL2 library and the torch.distributed package for inter-GPU communication. We train
models with 16-bit floating point precision, following |Ott et al.| (2018b)).
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Train Time

Test (hours) Parameters
Dauphin et al.|(2017) 31.9 - 428M
Jozefowicz et al.|(2016) 30.0 - 1,040M
Shazeer et al.[(2017) 28.0 - 4371Mf
Char-CNN 25.88 79 366M
Adaptive inputs 25.22 55 331M
Adaptive inputs (large) 23.91 72 465M
Adaptive inputs (very large) 23.02 145 1026M

10 LSTMs + SNM10-SKIP (Shazeer et al., [2016) 23.7 - -

Table 1: Test perplexity on BILLION WORD. Adaptive inputs share parameters with an adaptive
softmax. Training times of Char-CNN and Adaptive input models are measured when training with
64 GPUs.

fdoes not include embedding and softmax layers

Test Train Time Parameters
(hours)
Grave et al.|(2016) 40.8 -
Dauphin et al.|(2017) 37.2 - 229M
Merity et al.[(2018) 33.0 - 151M
Rae et al.| (2018) 29.2 -
Adaptive inputs 18.7 67 247TM

Table 2: Test perplexity on WIKITEXT-103 (cf. Table . Training time is based on 8 GPUs.

5 EXPERIMENTS AND RESULTS

5.1 MAIN RESULTS

For the main results on BILLION WORD, we doubled the batch size by training on 64 GPUs instead
of 32 GPUs. We also consider two larger setups, one where we added four more blocks (N = 20)
and increased the FFN dimension to ey = 6144 (large), and another where we add another four
blocks (N = 24) with efy = 8192 and e = 1536 (very large). All other settings follow and all
models were trained for the same number of steps.

Table [I] compares our models to previous work on BILLION WORD. The adaptive input model
outperforms the best previously reported result at an order of magnitude fewer parameters. Our
large model performs nearly as well as an ensemble of over ten models and achieves a new state
of the art of 24.14 perplexity. Our very large model performs as well as an ensemble of over ten
models and achieves 23.02 perplexity. The Char-CNN model performs 0.6 PPL worse than the
standard adaptive input model even though it trained for over 40% longer.

Table [2] shows our result on WIKITEXT-103 where adaptive inputs achieve 18.7 perplexity. For
this result only, we partition the training data into blocks of 3072 contiguous tokens instead of 512
tokens as for other experiments. During evaluation we require blocks to contain complete sentences
totaling up to 3072 tokens of which the first 2560 tokens serve as context to score the last 512 tokens;
we take care to score all tokens in the test and validation sets. We motivate this choice in

5.2 COMPARISON OF INPUT AND OUTPUT LAYER FACTORIZATIONS

Next, we perform a systematic comparison of different input and output layer factorizations. We
consider a word-based setup with fixed size word input embeddings and a standard word softmax
(SM) where embeddings have either dimension 512 (WIKITEXT-103) or 64 (BILLION WORD). We
consider tying the input and output embeddings (SM-T). Instead of words, we try less sparse sub-
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Train Time

Input Output Valid  Test (hours) Params
SM Embedding Softmax 23.87 2492 57%  476.8M
BPE BPE Embedding BPE Softmax 23.13  24.25 30 270M
BPE-T BPE Embedding BPE Softmax (tied) 22.46 23.45 30 235.7M
SM-T  Embedding Softmax (tied) 22.63 2338 56*%  339.7M
ASM Embedding Adaptive 21.23  22.18 35  263.1M
CNN Char-CNN Adaptive 20.86 21.79 70 266.3M
ADP Adaptive Adaptive 2095 21.74 34 291.3M
ADP-T  Adaptive Adaptive (tied) 19.79 20.51 30 246.9M

Table 3: Test perplexity on WIKITEXT-103 for various input and output layer factorizations. Train-
ing speed was measured on a single 8-GPU machine. (*) indicates a modified training regime
because of large memory requirements: the maximum number of tokens per GPU was lowered to
1024 from 4096 but the same number of updates were performed by processing four batches before
committing a weight update.

T Train time

Input Output Valid est (hours) Params
BPE-T BPE Embedding BPE Softmax (shared) 27.44 27.51 34 2347M
BPE BPE Embedding BPE Softmax 27.02 27.13 35 267.8M
ASM Embedding Adaptive 26.97 27.06 62 532.8M
CNN Char-CNN Adaptive 26.13  26.25 92  365.8M
ADP Adaptive Adaptive 26.38  26.49 65 458.4M
ADP-T  Adaptive Adaptive (shared) 25.51 25.58 43 330.8M

Table 4: Test perplexity on BILLION WORD. Training speed measured on four 8-GPU machines.

word units, both in the input and output, with embeddings of size 1024 (BPE) and shared weights
(BPE-T). Next, we consider replacing the fixed size output representations by an adaptive softmax
(ASM) and characters as input (CNN). Finally, we use both adaptive input word representations
as well as an adaptive softmax (ADP) and a tied version (ADP-T). All models use the same self-
attention architecture described in

Table [3] shows results when training all configurations for the same number of updates. Adaptive
input representations with tied input and output layers (ADP-T) achieve the highest accuracy at the
same speed as the BPE models which have a very small vocabulary (33K versus 260K). CNN is
1 perplexity worse than ADP-T and requires well over twice the training time. It is the slowest
approach, even though it has a fast adaptive softmax in the output. Fixed word embeddings perform
least well (SM). Sub-word units are fast to train and perform better than word models with fixed
sized embeddings. ASM improves over SM and greatly speeds up training. For ASM, we found
that reducing the dimension of the input word embeddings to 64 on WIKITEXT-103 results in better
accuracy (Appendix [A).

Table [ shows that adaptive input representations perform equally well on BILLION WORD com-
pared to other factorizations. ADP-T is 34% faster than ADP because there are fewer parameters
to update. Similar to before, ADP-T trains more than twice as fast as CNN at higher accuracy,
however, the accuracy gap is narrower than for WIKITEXT-103. Regularization is more important
on WIKITEXT-103 while models for BILLION WORD benefit from additional capacity. Because of
this we used input word embeddings of size 256 for ASM.

We also trained CNN without replacing input words outside the vocabulary by an unknown symbol,
however, this only improved validation perplexity by 0.16.
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Figure 2: Loss of models binned by word frequency on the test set of WIKITEXT-103. Bins are not
cumulative.
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Figure 3: Loss of models when binning by the frequency of the previous word measured on
WIKITEXT-103 (cf. Figure ).

5.3 ANALYSIS

Next, we turn to the question of how well models perform on rare words compared to frequent
words. We compute the average loss for each word in the test set and group words by frequency.

Figure [2] shows results on WIKITEXT-103. Tying weights helps all models on rare words, likely
because of regularization effects. Fixed size word embeddings with a word softmax (SM and SM-
T) do not perform well on rare words. This is likely due to underfitting on common words and
we use the largest possible embedding size we could fit on 16GB GPU cards given our batch size
(more experimentation in Appendix [A). BPE and BPE-T perform poorly on rare words because
probabilities are a product of several sub-word units. ADP-T performs best across all frequency
ranges. Figure[3]bins the loss by the frequency of the previous word and shows that CNN does well
when it has rare words in the context, however, ADP-T does best across all bins.

Figure ] shows an equivalent analysis for BILLION WORD. The largest differences between mod-
els is on rare words. CNN performs best on very rare words but is outperformed by ADP in all
other settings. Similar to WIKITEXT-103, BPE and BPE-T perform poorly on rare words. Further
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Figure 4: Loss of models when binning by word frequency on the test set of BILLION WORD. Bins
are not cumulative.

Train Inference Validation Test
block size context size perplexity perplexity
512 0 19.79 20.51
512 480 18.35 19.03
2048 0 18.96 19.53
2048 1536 18.23 18.88
3072 0 18.63 19.34
3072 2560 17.97 18.70

Table 5: Perplexity on WIKITEXT-103 with different context sizes during training and inference.
Training block size is the number of consecutive tokens considered during training. Inference con-
text is the number of tokens provided at evaluation before scoring tokens.

analysis (Appendix [5.3) binning the loss by the frequency of the previous word shows that weight
sharing also helps for BILLION WORD and that CNN does very well on rare words for BILLION
WORD compared to other models.

Table[5]shows the importance of context size for WIKITEXT-103. Training block size is the number
of consecutive tokens that are considered at once during training. Inference context is the number of
tokens that are provided at evaluation before any tokens are scored. Simply increasing the training
block size from 512 to 3072 results in an improvement of nearly 1.2 perplexity with no inference
context window. Increasing the context size at inference time results in an improvement of 0.6
perplexity for the largest training block size.

5.4 ADAPTIVE SOFTMAX VS. FULL SOFTMAX

We also found that adaptive softmax can benefit from additional regularization of rare words. Adap-
tive softmax first projects the model output to the dimension of a particular cluster and then computes
a dot product with the respective word embeddings. We add dropout to the output of the first pro-
jection for all clusters, except for the head. This change enables the adaptive softmax to outperform
a standard softmax over fixed size output word embeddings on WIKITEXT-103 (Table[6).

However, we found that adding dropout in this way is not helpful for larger datasets such as BILLION
WORD. Unfortunately, a standard softmax over 800K words is not tractable and we were unable to
make a comparison. It may be possible to achieve better results by tuning dropout for each band of
the tail and we leave this for future work.
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Tail Validation
dropout  perplexity

Softmax (SM) N/A 23.87
Adaptive (ADP) 0.0 24.74
Adaptive (ADP) 0.2 21.23

Table 6: Perplexity on WIKITEXT-103 when regularizing rare words in adaptive softmax.

6 CONCLUSION

Adaptive input embeddings vary the size of input word embeddings which can improve accuracy
while drastically reducing the number of model parameters. When sharing parameters with an adap-
tive softmax, the number of parameters can be further reduced which improves training speed. We
presented a comparison between different input and output layer factorizations including word in-
puts, character inputs and sub-word units in both the input and output.

Our experiments show that models with adaptive input embeddings train faster compared to char-
acter input CNNs while achieving higher accuracy. We achieve new state of the art results on
WIKITEXT-103 and BILLION WORD. In future work, we will apply variable sized input embed-
dings to other tasks.
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SUPPLEMENTARY MATERIAL

A ADDITIONAL EXPERIMENTS ON WIKITEXT-103

This appendix shows various ablation. Table [7|shows that reducing the capacity of fixed size word
input embddings is beneficial on WIKITEXT-103. The next set of results in Table [/| shows results
for various settings of the SM and SM-T models. We also experimented with sharing the head
projection but found this to perform less well than not sharing it. Finally, Table [8| shows various
band sizes for adaptive input word embbedings.

We also show the performance of Merity et al.| (2018) who use an adaptive softmax with equally
sized word representations and share the input and output embeddings (no dim reduction, tied).

Input Output Dropout Valid PPL. Parameters
256d Embedding  Adaptive 0.3 23.39 314.7M
128d Embedding  Adaptive 0.3 21.51 280.3M
64d Embedding  Adaptive 0.3 21.23 263.1M
32d Embedding  Adaptive 0.3 21.78 254.5M
512d Embedding 512d Softmax (tied) 0.3 22.63 339.7M
512d Embedding 512d Softmax (tied) 04 28.31 339.7M
512d Embedding  512d Softmax 0.3 23.87 476.8
512d Embedding  512d Softmax 04 27.64 476.8
256d Embedding  256d Softmax (tied) 0.3 22.65 270.6M
256d Embedding  256d Softmax 0.3 24.13 339.1M
64d Embedding  512d Softmax 0.3 24.74 356.3M
Adaptive Adaptive (tied emb, not proj) 0.3 20.06 247.3M
Adaptive Adaptive (tied emb/proj not head) 0.3 19.79 246.9M
Adaptive Adaptive (tied emb/proj + head) 0.3 20.06 246.9M
512d Embedding  512d Softmax (tied) 0.3 22.63 339.7M
512d Embedding 512d Adaptive (no dim reduction, tied) 0.3 25.48 340.2M

Table 7: Validation perplexity of our models on WIKITEXT-103.

Softmax cutoff Valid PPL

20k/40k/200k
20k/140k/100k
20k/40k/60k/140k
60k/100k/100k
5k/155k/100k
20k/40k/200k
10k/60k/190k

19.79
20.26
20.53
20.52
20.06
19.99
19.79

Table 8: Validation perplexity on WIKITEXT-103 with tied adaptive inputs & outputs. The bands
signify the number of words belonging to each band. In every case, the first band has dimension
1024, the second band 256, the third band 64 and the fourth band (if it exists) 16.

B ANALYSIS

This appendix extends the analysis in §5.3|by showing a breakdown of the test loss when binning by
the frequency of the previous word.
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Figure 5: Loss of models when binning by the frequency of the previous word measured on BILLION
WORD (cf. Figure[3).
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