
Learning to solve the credit assignment problem

Benjamin J. Lansdell
Department of Bioengineering

University of Pennsylvania
Philadelphia, PA 19104

lansdell@seas.upenn.edu

Prashanth R. Prakash
Department of Bioengineering

University of Pennsylvania
Philadelphia, PA 19104

Konrad P. Kording
Department of Bioengineering

University of Pennsylvania
Philadelphia, PA 19104

Abstract

Backpropagation is driving today’s artificial neural networks. However, despite ex-
tensive research, it remains unclear if the brain implements this algorithm. Among
neuroscientists, reinforcement learning (RL) algorithms are often seen as a realistic
alternative. However, the convergence rate of such learning scales poorly with the
number of involved neurons. Here we propose a hybrid learning approach, in which
each neuron uses an RL-type strategy to learn how to approximate the gradients that
backpropagation would provide. We show that our approach learns to approximate
the gradient, and can match the performance of gradient-based learning on fully
connected and convolutional networks. Learning feedback weights provides a
biologically plausible mechanism of achieving good performance, without the need
for precise, pre-specified learning rules.

1 Introduction

It is unknown how the brain solves the credit assignment problem when learning: how does each
neuron know its role in a positive (or negative) outcome, and thus know how to change its activity to
perform better next time? Biologically plausible solutions to credit assignment include those based on
reinforcement learning (RL) algorithms [4]. In these approaches a globally distributed reward signal
provides feedback to all neurons in a network. However these methods have not been demonstrated
to operate at scale. For instance, variance in the REINFORCE estimator scales with the number of
units in the network. This drives the hypothesis that learning in the brain must rely on additional
structures beyond a global reward signal.

In artificial neural networks, credit assignment is performed with gradient-based methods computed
through backpropagation. This is significantly more efficient than RL-based algorithms. However
there are well known problems with implementing backpropagation in biologically realistic neural
networks. For instance backpropagation requires a feedback structure with the same weights as the
feedforward network to communicate gradients (so-called weight transport). Yet such structures are
not observed in neural circuits. Despite this, backpropagation is the only method known to solve
learning problems at scale. Thus modifications or approximations to backpropagation that are more
plausible have been the focus of significant recent attention [8, 3]. Notably, it turns out that weight
transport can be avoided by using fixed, random feedback weights, through a phenomenon called
feedback alignment [8]. However feedback alignment does not work in larger, more complicated
network architectures (such as convolutional networks).

33rd Conference on Neural Information Processing Systems (NeurIPS 2019), Vancouver, Canada. Real Neurons
& Hidden Units Workshop.

Here we propose to use an RL algorithm to train a feedback system to enable learning. We propose
to use a REINFORCE-style perturbation approach to train a feedback signal to approximate what
would have been provided by backpropagation. We demonstrate that our model learns as well
as regular backpropagation in small models, overcomes the limitations of fixed random feedback
weights ("feedback alignment") on more complicated feedforward networks, and can be utilized in
convolutional networks. Our method illustrates a biologically realistic way the brain could perform
gradient descent-like learning.

2 Method

Let an N hidden-layer network be given by ŷ = f(x) ∈ Rp, composed of a set of layer-wise
summation and non-linear activations hi = f i(hi−1) = σ

(
W ihi−1

)
, for hidden layer states

hi ∈ Rni , non-linearity σ and with input h0 = x and output hN+1 = ŷ. Define L as the loss
function L(x,y), where the data (x,y) ∈ D are drawn from a distribution ρ. Our aim is then to
minimize: Eρ [L(x,y)] . Backpropagation computes the error signal ẽi in a top-down fashion:

ei =

{
∂L/∂ŷ ◦ σ′(W ihi−1), i = N + 1;(
(W i+1)Tei+1

)
◦ σ′(W ihi−1), 1 ≤ i ≤ N . (1)

Let the loss gradient term be denoted as λi = ∂L
∂hi = (W i+1)Tei+1. Here we replace λi with an

approximation, with its own parameters to be learned: λi ≈ g(hi, ẽi+1;B), for parameters B. We
will use ẽi to denote the gradient signal backpropagated through the synthetic gradients, and ei for the
true gradients. To estimate B we use stochasticity inherent to biological neural networks. For each
input each unit produces a noisy response: hit = σ

(∑
kW

i
·kh

i−1
t

)
+ chξ

i
t, for independent Gaussian

noise ξi ∼ ν = N (0, I) with standard deviation ch > 0. This then generates a noisy loss L̃(x,y, ξ)

and a baseline loss L(x,y) = L̃(x,y, 0). We will use the noisy response to estimate gradients, that
then allow us to optimize the baseline L. This is achieved by linearizing the loss: L̃ ≈ L+ ∂L

∂hi
j
chξ

i
j .

This gives E((L̃ − L)chξ
i
j |x,y) ≈ c2h

∂L
∂hi

j
|x,y, with expectation taken over the noise distribution

ν(ξ). Thus we obtain an estimator of the loss gradient: λ̂i := (L̃(x,y, ξ)− L(x,y)) ξ
i

ch
.

3 Applications

3.1 Fully connected networks solving MNIST

To demonstrate the method can be used to solve simple supervised learning problems we use node
perturbation with a four-layer network and MSE loss to solve MNIST (Fig. 1). We approximate loss
gradients as follows: g(hi, ẽi+1;B) = (Bi+1)T ẽi+1. The feedback parameters Bi+1 are estimated
by solving the least squares problem: B̂i+1 = argminBE‖BT ẽi+1−λ̂i‖22,where λ̂ is the perturbation-
based estimator derived above. B is updated with each mini-batch using stochastic gradient-descent
to minimize this loss.1 Updates to W i are made using the synthetic gradients ∆W i = ηẽihi−1, for
learning rate η. We observed that the system is able to provide a close correspondence between the
feedforward and feedback matrices in both layers of the network (Fig. 1a). The relative error between
Bi and Wi is lower than what is observed for feedback alignment, suggesting that this co-adaptation
of Wi and Bi is indeed beneficial. We observe that the alignment (the angle between the estimated
gradient and the true gradient, proportional to eTWBT ẽ) is lower for node perturbation than for
feedback alignment (Fig. 1b). Recent studies have shown that sign congruence of the feedforward and
feedback matrices is all that is required to achieve good performance [10]. Here the sign congruence
is also higher in node perturbation (Fig. 1c). Finally, the learning performance of node perturbation
is comparable to backpropagation (Fig. 1d) – achieving close to 3% test error. These suggest node
perturbation for learning feedback weights can be used in deep networks.

1We can prove this converges to the true weights when applied to either non-linear shallow network or a deep
linear network, though these results are omitted here for brevity. These details are provided in the supplementary
material.

2

10 1

100

101

|W
B
|/
|W

|

0

20

40

60

80

50

75

100

10 1

100

101

|W
B
|/
|W

|

0

20

40

60

80

50

75

100

100

101

102

la
ye

r
1

la
ye

r
2

node perturbation

feedback alignment

backprop

sign congruencealignment with true gradientrelative error test error

%
%

%

10000 2000

iteration (x103)

10000 2000

iteration (x103)

10000 2000

iteration (x103)

10000 2000

iteration (x103)

an
gl

e
an

gl
e

ch =10-4

ch =10-3

ch =10-2

ch =10-1

A B C D

2.6%
3.5%

4.3%

Figure 1: Node perturbation in small 4-layer network (784-50-20-10 neurons), for varying noise levels
c, compared to feedback alignment and backpropagation. (A) Relative error between feedforward
and feedback matrix. (B) Angle between true gradient and synthetic gradient estimate for each layer.
(C) Percentage of signs in Wi and Bi that are in agreement. (D) Test error for node perturbation,
backpropagation and feedback alignment. Curves show mean plus/minus standard error over 5 runs.
Hyperparameters found through random search.

A) C)B)

0 1 2 3 4 5 6 7 8 9

ADAM

feedback alignment

backpropagation

node perturbation

output

output

input

input

ADAM

feedback alignment

backpropagation

node perturbation

0 200 400 600 800 1000

500

600

700

800

900

1000

lo
ss

backpropagation

feedback alignment

node perturbation

ADAM

matched

iteration (x103)

Figure 2: Results with five-layer MNIST autoencoder network. a) Mean loss plus/minus standard
error over 10 runs. Dashed lines represent training loss, solid lines represent test loss. b) Latent
space activations, colored by input label for each method. c) Sample outputs for each method.
Hyperparameters found through random search.

3.2 Auto-encoding MNIST

A known shortcoming of feedback alignment is in auto-encoding networks with tight bottleneck
layers [8]. To see if our method has the same shortcoming we examine a simple auto-encoding
network with MNIST input data (size 784-200-2-200-784, MSE loss). We also compare the method
to the ‘matching’ learning rule [9], in which updates toB match updates toW . As expected, feedback
alignment performs poorly. Node perturbation actually performs better than backpropagation, and
comparable to ADAM (Fig. 2a). In fact ADAM begins to overfit, while node perturbation does
not. The matched learning rule performs similarly to backpropagation. These results are surprising
at first glance. Perhaps, similar to feedback alignment, learning feedback weights strikes the right
balance between providing a useful signal to learn, and constraining the updates to be sufficiently
aligned with B, acting as a type of regularization [8]. The noise added when estimating the feedback
weights may also serve to regularize the latent representation, as, indeed, the latent space learnt
by node perturbation shows a more evenly distributed separation of digits. While, in contrast, the
representations learnt by backprop and ADAM show more structure, and feedback alignment does
not learn a useful representation at all (Fig. 2b,c). These results show that node perturbation is able
to successfully communicate error signals through thin layers of a network as needed.

3

3.3 Convolutional neural networks solving CIFAR10

Finally we test the method on a convolutional neural network (CNN) solving CIFAR10. The CNN has
the architecture Conv(3x3, 1x1, 32), MaxPool(3x3, 2x2), Conv(5x5, 1x1, 128), MaxPool(3x3, 2x2),
Conv(5x5, 1x1, 256), MaxPool(3x3, 2x2), FC 2048, FC 2048, Softmax(10), with hyperparameters
found through random search. For this network we learn feedback weights direct from the output
layer to each earlier layer: g(hi, ẽi+1; θi) = (Bi+1)T ẽN (similar to ‘direct feedback alignment’).
Here this was solved by gradient-descent. We obtain a test accuracy of 75.2%. When compared with
fixed feedback weights (test accuracy of 72.5%) and backpropagation (test accuracy of 77.2%), we
see it is advantageous to learn feedback weights. This shows the method can be used in a CNN, and
can solve challenging computer vision problems without weight transport.

4 Discussion

Here we implement a perturbation-based synthetic gradient method to train neural networks. We
show that this hybrid approach can be used in both fully connected and convolutional networks. By
removing both the symmetric feedforward, feedback weight requirement imposed by backpropagation
this approach is a step towards more biologically-plausible deep learning. In contrast to many
perturbation-based methods, this hybrid approach can solve large-scale problems. We thus believe
this approach can provide powerful and biologically plausible learning algorithms.

While previous research has provided some insight and theory for how feedback alignment works
[8, 3, 2] the effect remains somewhat mysterious, and not applicable in some network architectures.
Recent studies have shown that some of these weaknesses can be addressed by instead imposing sign
congruent feedforward and feedback matrices [10]. Yet what mechanism may produce congruence in
biological networks is unknown. Here we show that the shortcomings of feedback alignment can be
addressed in another way: the system can learn to adjust weights as needed to provide a useful error
signal. Our work is closely related to Akrout et al 2019 [1], which also uses perturbations to learn
feedback weights. However our approach does not divide learning into two phases, and training of
the feedback weights does not occur in a layer-wise fashion.

Here we tested our method in an idealized setting, however it is consistent with neurobiology in two
important ways. First, it involves the separate learning of feedforward and feedback weights. This is
possible in cortical networks where complex feedback connections exist between layers, and where
pyramidal cells have apical and basal compartments that allow for separate integration of feedback
and feedforward signals [5]. Second, noisy perturbations are common in neural learning models.
There are many mechanisms by which noise can be measured or approximated [4, 7], or neurons
could use a learning rule that does not require knowing the noise [6]. While our model involves the
subtraction of a baseline loss to reduce the variance of the estimator, this does not affect the expected
value of the estimator; technically the baseline could be removed or approximated [7]. Thus we
believe our approach could be implemented in neural circuits. There is a large space of plausible
learning rules that can learn feedback signals in order to more efficiently learn. These promise to
inform both models of learning in the brain and learning algorithms in artificial networks. Here we
take an early step in this direction.

References
[1] Mohamed Akrout, Collin Wilson, Peter C Humphreys, Timothy Lillicrap, and Douglas Tweed. Deep

Learning without Weight Transport. ArXiv e-prints, 2019.

[2] Pierre Baldi, Peter Sadowski, and Zhiqin Lu. Learning in the Machine: Random Backpropagation and the
Deep Learning Channel. Artificial Intelligence, 260:1–35, 2018.

[3] Sergey Bartunov, Adam Santoro, Blake Richard, Geoffrey Hinton, and Timothy Lillicrap. Assessing the
scalability of biologically-motivated deep learning algorithms and architectures. ArXiv e-prints, 2018.

[4] Ila R Fiete, Michale S Fee, and H Sebastian Seung. Model of Birdsong Learning Based on Gradient
Estimation by Dynamic Perturbation of Neural Conductances. Journal of neurophysiology, 98:2038–2057,
2007.

[5] Jordan Guerguiev, Timothy P Lillicrap, and Blake A Richards. Towards deep learning with segregated
dendrites. Elife, 6, December 2017.

4

[6] Benjamin James Lansdell and Konrad Paul Kording. Spiking allows neurons to estimate their causal effect.
bioRxiv, pages 1–19, 2018.

[7] Robert Legenstein, Steven M. Chase, Andrew B. Schwartz, Wolfgang Maas, and W. Maass. A Reward-
Modulated Hebbian Learning Rule Can Explain Experimentally Observed Network Reorganization in a
Brain Control Task. Journal of Neuroscience, 30(25):8400–8410, 2010.

[8] Timothy P Lillicrap, Daniel Cownden, Douglas B Tweed, and Colin J Akerman. Random feedback weights
support learning in deep neural networks. Nature Communications, 7:13276, 2016.

[9] Marco Martinolli, Wulfram Gerstner, and Aditya Gilra. Multi-Timescale Memory Dynamics Extend
Task Repertoire in a Reinforcement Learning Network With Attention-Gated Memory. Front. Comput.
Neurosci., 12(July):1–15, 2018.

[10] Will Xiao, Honglin Chen, Qianli Liao, and Tomaso Poggio. Biologically-Plausible Learning Algorithms
Can Scale to Large Datasets. ArXiv e-prints, 2018.

5

Supplementary Material

A Proofs

We review the key components of the model. Data (x,y) ∈ D are drawn from a distribution ρ. The loss function
is linearized:

L̃ ≈ L+
∂L
∂hi

j

chξ
i
j , (2)

such that

E
(
(L̃ − L)chξij |x,y

)
≈ c2h

∂L
∂hi

j

∣∣∣∣
x,y

,

with expectation taken over the noise distribution ν(ξ). This suggests a good estimator of the loss gradient is

λ̂i := (L̃(x,y, ξ)− L(x,y)) ξ
i

ch
. (3)

Let ẽi be the error signal computed by backpropagating the synthetic gradients:

ẽi =

{
∂L/∂ŷ ◦ σ′(W ihi−1), i = N + 1;(
(B̂i+1)T ẽi+1

)
◦ σ′(W ihi−1), 1 ≤ i ≤ N.

Then parameters Bi+1 are estimated by solving the least squares problem:

B̂i+1 = argminBE
∥∥∥BT ẽi+1 − λ̂i

∥∥∥2
2
. (4)

Under what conditions can we show that B̂i+1 →W i+1 (with enough data)?

One way to find an answer is to define the synthetic gradient in terms of the system without noise added. Then
BT ẽ is deterministic with respect to x,y and, assuming L̃ has a convergent power series around ξ = 0, we can
write

E(λ̂i|x,y) = E

(
1

c2h

[
∂L
∂hi

(chξ
i
j)

2 +

∞∑
m=2

L(m)
ij

m!
(chξ

i
j)

m+1

]
|x,y

)

= (W i+1)T ei+1 + E

(
1

c2h

∞∑
m=2

L(m)
ij

m!
(chξ

i
j)

m+1|x,y

)
.

Taken together these suggest we can prove B̂i+1 →W i+1 in the same way we prove consistency of the linear
least squares estimator.

For this to work we must show the expectation of the Taylor series approximation (2) is well behaved. That is,
we must show the expected remainder term of the expansion:

Eij(ch) = E

[
1

c2h

∞∑
m=2

L(m)
ij

m!
(chξ

i
j)

m+1|x,y

]
,

is finite and goes to zero as ch → 0. This requires some additional assumptions on the problem.

We make the following assumptions:

• A1: the noise ξ is subgaussian,
• A2: the loss function L(x,y) is analytic on D,

• A3: the error matrices ẽn(ẽn)T are full rank, for 1 ≤ n ≤ N + 1,
• A4: the mean of the remainder and error terms is bounded:

E
[
En(ch)(ẽn+1)T

]
<∞,

for 1 ≤ n ≤ N .

Consider first convergence of the final layer feedback matrix, BN+1. In the final layer it is true that eN+1 =
ẽN+1.
Theorem 1. Assume A1-4. For gFA(h

i, ẽi+1;Bi+1) = Bi+1ẽi+1, then the least squares estimator

(B̂N+1)T := λ̂N (eN+1)T
(
eN+1(eN+1)T

)−1

, (5)

solves (4) and converges to the true feedback matrix, in the sense that:

lim
ch→0

plim
T→∞

B̂N+1 =WN+1.

6

Proof. Let L(m)
ij := ∂mL

∂him
j

. We first show that, under A1-2, the conditional expectation of the estimator (5)

converges to the gradient L(1)
Nj as ch → 0. For each λ̂N

j , by A2, we have the following series expanded around
ξ = 0:

λ̂N
j =

1

c2h

∞∑
m=1

L(m)
ij

m!
(chξ

N
j)m+1.

Taking a conditional expectation gives:

E(λ̂N
j |x,y) =(WN+1)T eN+1 + E

[
1

c2h

∞∑
m=2

L(m)
Nj

m!
(chξ

N
j)m+1|x,y

]
.

We must show the remainder term

EN (ch) = E

[
1

c2h

∞∑
m=2

L(m)
Nj

m!
(chξ

N
j)m+1|x,y

]
,

goes to zero as ch → 0. This is true provided each moment E((ξNj)m|x,y) is sufficiently well-behaved. Using
Jensen’s inequality and the triangle inequality in the first line, we have that∣∣∣EN (ch)

∣∣∣ ≤ E

[
1

c2h

∞∑
m=2

∣∣∣∣∣L
(m)
Nj

m!

∣∣∣∣∣ |chξNj |m+1|x,y

]
, ∀(x,y) ∈ D

[monotone convergence] =

∞∑
m=2

∣∣∣∣∣L
(m)
Nj

m!

∣∣∣∣∣ (ch)m−1E
[
|ξNj |m+1

]
[subgaussian] ≤ K

∞∑
m=2

∣∣∣∣∣L
(m)
Nj

m!

∣∣∣∣∣ (ch)m−1(
√
m+ 1)m+1

= O(ch) as ch → 0. (6)

With this in place, we have that the problem (4) is close to a linear least squares problem, since

λ̂N = (WN+1)T eN+1 + EN (ch) + ηN , (7)

with residual ηN = λ̂N − E(λ̂N |x,y). The residual satisfies

E
(
eN+1(ηN)T

)
= E(eN+1(λ̂N)T − eN+1E((λ̂N)T |x,y))

= E
(
eN+1(λ̂N)T − E

(
eN+1(λ̂N)T |x,y

))
= 0. (8)

This follows since eN+1 is defined in relation to the baseline loss, not the stochastic loss, meaning it is measurable
with respect to (x,y) and can be moved into the conditional expectation.

From (7) and A3, we have that the least squares estimator (5) satisfies

(B̂N+1)T = (WN+1)T + (EN (ch) + ηN)(eN+1)T (eN+1(eN+1)T)−1.

Thus, using the continuous mapping theorem

plim
T→∞

(B̂N+1)T = (WN+1)T +

[
plim
T→∞

1

T
(EN (ch) + ηN)(eN+1)T

] [
plim
T→∞

1

T
eN+1(eN+1)T

]−1

[WLLN] = (WN+1)T + E
[
(E(ch) + ηN)(eN+1)T

] [
E(eN+1(eN+1)T)

]−1

[Eq. (8)] = (WN+1)T + E
[
E(ch)(eN+1)T

] [
E(eN+1(eN+1)T)

]−1

[A4 and Eq. (6)] = (WN+1)T +O(ch).
Then we have:

lim
ch→0

plim
T→∞

B̂N+1 =WN+1.

We can use Theorem 1 to establish convergence over the rest of the layers of the network when the activation
function is the identity.

7

Theorem 2. Assume A1-4. For gFA(h
i, ẽi+1;Bi+1) = Bi+1ẽi+1 and σ(x) = x, the least squares estimator

(B̂n)T := λ̂n−1(ẽn)T
(
ẽn(ẽn)T

)−1

1 ≤ n ≤ N + 1, (9)

solves (4) and converges to the true feedback matrix, in the sense that:

lim
ch→0

plim
T→∞

B̂n =Wn, 1 ≤ n ≤ N + 1.

Proof. Define
W̃n(c) := plim

T→∞
B̂n,

assuming this limit exists. From Theorem 1 the top layer estimate B̂N+1 converges in probability to W̃N+1(c).

We can then use induction to establish that B̂j in the remaining layers also converges in probability to W̃ j(c).
That is, assume that B̂j converge in probability to W̃ j(c) in higher layers N + 1 ≥ j > n. Then we must
establish that B̂n also converges in probability.

To proceed it is useful to also define

˜̃e(c)n :=

{
∂L/∂ŷ ◦ σ′(W ihi−1), i = N + 1;(
(W̃ i+1(c))T ˜̃ei+1

)
◦ σ′(W ihi−1), 1 ≤ i ≤ N,

as the error signal backpropagated through the converged (but biased) weight matrices W̃ (c). Again it is true
that ˜̃eN+1 = eN+1.

As in Theorem 1, the least squares estimator has the form:

(B̂n)T = λ̂n−1(ẽn)T
(
ẽn(ẽn)T

)−1

.

Thus, again by the continuous mapping theorem:

plim
T→∞

(B̂n)T =

[
plim
T→∞

1

T
λ̂n−1(ẽn)T

] [
plim
T→∞

1

T
ẽn(ẽn)T

]−1

=

[
plim
T→∞

1

T
λ̂n−1(eN+1)T B̂N+1 · · · B̂n+1

] [
plim
T→∞

1

T
ẽn(ẽn)T

]−1

In this case continuity again allows us to separate convergence of each term in the product:

plim
T→∞

1

T
λ̂n−1(eN+1)T B̂N+1 · · · B̂n+1 =

[
plim
T→∞

1

T
λ̂n−1(eN+1)T

] [
plim
T→∞

B̂N+1

]
· · ·
[
plim
T→∞

B̂n+1

]
(10)

= E(λ̂n−1(eN+1)T)WN+1(c) · · ·Wn+1(c),

= E(λ̂n−1(˜̃en(c))T)

using the weak law of large numbers in the first term, and the induction assumption for the remaining terms. In
the same way

plim
T→∞

1

T
ẽn(ẽn)T = E(˜̃en(c)(˜̃en(c))T).

Note that the induction assumption also implies limc→0
˜̃en(c) = en. Thus, putting it together, by A3, A4 and

the same reasoning as in Theorem 1 we have the result:

lim
ch→0

plim
T→∞

(B̂n)T = lim
c→0

[
(Wn)TE(en(˜̃en(c))T) + E(En−1(c)(˜̃en(c))T

] [
E(˜̃en(c)(˜̃en(c))T)

]−1

= (Wn)T .

Corollary 1. Assume A1-4. For gDFA(h
i, ẽN+1;Bi+1) = Bi+1ẽN+1 and σ(x) = x, the least squares

estimator
(B̂n)T := λ̂n−1(ẽN+1)T

(
ẽN+1(ẽN+1)T

)−1

1 ≤ n ≤ N + 1, (11)

solves (4) and converges to the true feedback matrix, in the sense that:

lim
ch→0

plim
T→∞

B̂n =

n∏
j=N+1

W j , 1 ≤ n ≤ N + 1.

8

Proof. For a deep linear network notice that the node perturbation estimator can be expressed as:

λ̂i = (Wn+1 · · ·WN+1)T eN+1 + En(ch) + ηn, (12)

where the first term represents the true gradient, given by the simple linear backpropagation, the second and
third terms are the remainder and a noise term, as in Theorem 1. Define

V n :=

n∏
j=N+1

Wj .

Then following the same reasoning as the proof of Theorem 1, we have:

plim
T→∞

(B̂n+1)T = (V n+1)T +

[
plim
T→∞

1

T
(En(ch) + ηn)(eN+1)T

] [
plim
T→∞

1

T
eN+1(eN+1)T

]−1

= (V n+1)T + E
[
(E(ch) + ηn)(eN+1)T

] [
E(eN+1(eN+1)T)

]−1

= (V n+1)T + E
[
E(ch)(eN+1)T

] [
E(eN+1(eN+1)T)

]−1

= (V n+1)T +O(ch).

Then we have:
lim

ch→0
plim
T→∞

B̂n+1 = V n+1.

Discussion of assumptions

It is worth making the following points on each of the assumptions:

• A1. In the paper we assume ξ is Gaussian. Here we prove the more general result of convergence for
any subgaussian random variable.

• A2. In practice this may be a fairly restrictive assumption, since it precludes using relu non-linearities.
Other common choices, such as hyperbolic tangent and sigmoid non-linearities with an analytic cost
function do satisfy this assumption, however.

• A3. It is hard to establish general conditions under which ẽn(ẽn)T will be full rank. While it may be
a reasonable assumption in some cases.

Extensions of Theorem 2 to a non-linear network may be possible. However, the method of proof used here is not
immediately applicable because the continuous mapping theorem can not be applied in such a straightforward
fashion as in Equation (10). In the non-linear case the resulting sums over all observations are neither independent
or identically distributed, which makes applying any law of large numbers complicated.

9

	Introduction
	Method
	Applications
	Fully connected networks solving MNIST
	Auto-encoding MNIST
	Convolutional neural networks solving CIFAR10

	Discussion
	Proofs

