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Abstract
From traditional Web search engines to virtual as-
sistants and Web accelerators, services that rely on
online information need to continually keep track
of remote content changes by explicitly request-
ing content updates from remote sources (e.g.,
web pages). We propose a novel optimization ob-
jective for this setting that has several practically
desirable properties, and efficient algorithms for
it with optimality guarantees even in the face of
mixed content change observability and initially
unknown change model parameters. Experiments
on 18.5M URLs crawled daily for 14 weeks show
significant advantages of this approach over prior
art.

1. Introduction
As the Web becomes more and more dynamic, services that
rely on web data face the increasingly challenging problem
of keeping up with online content changes. Whether it be
a continuous-query system (Pandey et al., 2003), a virtual
assistant like Cortana or Google Now, or an Internet search
engine, such a service tracks many remote sources of infor-
mation – web pages or data streams (Pandey et al., 2004).
Users expect these services, which we call trackers, to be
surface the latest information that appears at the sources.
This is easy to do when the remote sources push content
updates to the tracker. Unfortunately, the push model is im-
practical for maintaining databases as large as major search
engines’ indexes (Baeza-Yates & Ribeiro-Neto, 1999) and
conversation agents’ knowledge graphs (Hixon et al., 2015).
Instead, for all sources they track, these services must con-
tinually decide when to re-request (crawl) their data in order
pick up the changes. A policy that makes these decisions
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well solves freshness crawl scheduling problem.

Freshness crawl scheduling has several challenging aspects.
For most sources, the tracker finds out whether they have
changed only when it crawls them. To guess when the
changes happen, and hence should be downloaded, the
tracker needs a predictive model whose parameters are ini-
tially unknown. Thus, the tracker needs to learn these mod-
els and optimize a freshness-related objective when schedul-
ing crawls. For some web pages, however, sitemap polling
and other means can provide trustworthy near-instantaneous
signals that the page has changed in a meaningful way,
though not what the change is exactly. But even with these
remote change observations and known change model pa-
rameters, freshness crawl scheduling remains highly non-
trivial because the tracker cannot react to every individual
predicted or actual change. The tracker’s infrastructure im-
poses a bandwidth constraint on the average daily number
of crawls, usually limiting it to a fraction of the change event
volume. Last but not least, Google and Bing track many
billions of pages (van den Bosch et al., 2015) with vastly
different importance and change frequency characteristics.
The sheer size of this constrained learning and optimiza-
tion problem makes low-polynomial algorithms strongly
preferable, despite the availability of big-data platforms.

This paper presents a holistic approach to freshness crawl
scheduling that handles all of the above aspects in a com-
putationally efficient manner with optimality guarantees
using a type of reinforcement learning (Sutton & Barto,
1998). Different aspects of crawl scheduling have been
studied extensively before, as described in detail in the Re-
lated Work section. Crawl schedule optimization alone,
under various objectives and assuming known model pa-
rameters, has been the focus of many papers since Coffman
et al. (1998). However, even without remote change sensing
and under the known-model assumption, efficient optimiza-
tion has so far been possible only for freshness objectives
that induce policies with practically undesirable behaviors
such as crawl-starving many of the sources forever (Azar
et al., 2018). Learning change-predictive models has re-
ceived much attention as well (e.g., (Cho & Garcia-Molina,
2003b)) but purely as a preprocessing step, without regard to
the learning versus schedule optimization tradeoff. No prior
work has studied joint optimization of all facets of freshness
crawl scheduling that we consider here. Specifically, our
contributions are as follows:
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• We propose a natural freshness optimization objective
based on harmonic numbers, and show how its mathe-
matical properties enable efficient optimal scheduling.

• We derive efficient optimization procedures for
this bandwidth-constrained objective under complete,
mixed, and lacking remote change observability.

• We present a reinforcement learning algorithm that
integrates these approaches with model estimation of
Cho & Garcia-Molina (2003b) and converges to the op-
timal policy, lifting the known-parameter assumption.

• We introduce an approximate crawl scheduling algo-
rithm that requires learning far fewer parameters, and
derive a condition under which its solution is optimal.

2. Problem formalization
In settings we consider, a service we call tracker monitors
a set W of information sources. A source w ∈ W can
be a web page, a data stream, a file, etc, whose content
occasionally changes. To pick up changes from a source,
the tracker needs to crawl it, i.e., download its content.
When source w has changes the tracker hasn’t picked up,
the tracker is stale w.r.t. w; otherwise, it is fresh w.r.t. w.
We assume near-instantaneous crawl operations, and a fixed
set of sources W . Growing W to improve information
completeness (Pandey et al., 2004) is also an important but
distinct problem; we do not consider it here.

Discrete page changes. We define a content change at a
source as an alteration at least minimally important to the
tracker. In practice, trackers compute a source’s content
digest using data extractors, shingles (Broder et al., 1997),
or similarity hashes (Charikar, 2002), and consider content
changed when its digest changes.

Models of change process and importance. We model
each source w ∈ W ’s changes as a Poisson process with
change rate ∆w. Many prior works adopted it for web pages
(Cho & Garcia-Molina, 2000b; Cho & Ntoulas, 2002; Cho
& Garcia-Molina, 2003a;b; 2000a; Wolf et al., 2002; Azar
et al., 2018) as a good balance between fidelity and com-
putational convenience. We also associate an importance
score µw with each source, and denote these parameters
jointly as ~µ. Importance score µw can be thought of as char-
acterizing the time-homogeneous Poisson rate at which the
page is served in response to the query stream, although in
general it can be any positive weight measuring source sig-
nificance (Azar et al., 2018). While scores µw are defined
by, and known to, the tracker, change rates ∆w need to be
learned.

Change observability. For most sources, the tracker can
find out whether the source has changed only by crawling
it. In this case, even crawling doesn’t tell the tracker how
many times the source has changed since the last crawl.
We denote the set of these sources as W− and say that the

tracker receives incomplete change observations about them.
However, for other sources, which we denote as W o, the
tracker may receive near-instant notification whenever they
change, i.e., get complete remote change observations. E.g.,
for web pages these signals may be available from browser
telemetry or sitemaps. Thus the tracker’s set of sources can
be represented as W = W o ∪W− and W o ∩W− = 0.

Bandwidth constraints. Even if the tracker receives com-
plete change observations, it generally cannot afford to do
a crawl upon each of them. The tracker’s network infras-
tructure and considerations of respect to other Internet users
limit its crawl rate (the average number of requests per day);
the total change rate of tracked sources may be much higher.
We call this limit bandwidth constraint R.

Optimizing freshness. The tracker operates in continu-
ous time and starts fresh w.r.t. all sources. Our schedul-
ing problem’s solution is a policy π — a rule that at ev-
ery instant t chooses (potentially stochastically) a source
to crawl or decides that none should be crawled. Exe-
cuting π produces a crawl sequence of time-source pairs
CrSeq = (t1, w1), (t2, w2), . . ., denoted CrSeqw =
(t1, w), (t2, w), . . . for a specific source w. Similarly, the
(Poisson) change process at the sources generates a change
sequence ChSeq = (t′1, w

′
1), (t′2, w

′
2), . . ., where t′i is a

change time of source w′i; its restriction to source w is
ChSeqw. We denote the joint process governing changes at
all sources as P (~∆).

3. Minimizing harmonic staleness penalty
We view maximizing freshness as minimizing costs the
tracker incurs for the lack thereof, and associate the fol-
lowing policy cost Jπ with every scheduling policy π, the
time-averaged expected staleness penalty:

Jπ = lim
T→∞

E
CrSeq∼π,

ChSeq∼P (~∆)

[
1

T

∫ T

0

∑
w∈W

µwC(Nw(t))dt

]
(1)

Here, T is a planning horizon, Nw(t) is the number of
uncrawled changes source w has accumulated by time t,
and C : Z+ → R+ is a penalty function, to be chosen
later, that assigns a cost to every possible number of un-
crawled changes. Note that Nw(t) implicitly depends on
the most recent time w was crawled as well as on change se-
quence ChSeq, so the expectation is taken both over possi-
ble change sequences and possible crawl sequences CrSeq
generatable by π. Minimizing staleness means finding

π∗ = argmin
π∈Π

Jπ, (2)

subject to bandwidth constraints, where Π is a suitably cho-
sen policy class.

Choosing C(n) that is efficient to optimize and induces
”well-behaving” policies is of utmost importance. Cho &
Garcia-Molina (2003a) and Azar et al. (2018) have consid-
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ered Equation 1 with C(n) = 1n>0, i.e., imposing a penalty
if a source had any changes independently of their number,
with Π = {CrSeqw ∼ Poisson(ρw) for all w ∈W |~ρw},
i.e., policies that crawl each source according to a Poisson
process with a source-specific rate ρw. Under a bandwidth
constraint only, they find the optimal policy in this class
very efficiently, in O(|W | log(|W |)) time, but this solution
assigns ρw = 0 for many sources (Azar et al., 2018; Cho
& Garcia-Molina, 2003a). In practice, this may not be ac-
ceptable, as it leaves the tracker stale w.r.t. these sources
forever and therefore raises a question: why does the tracker
monitor these sources at all?

In this paper, we propose and analyze the following penalty:

C(n) = H(n) =

n∑
i=1

1

n
if n > 0, and 0 if n = 0 (3)

H(n) for n > 0 is known as the n-th harmonic number and
has several desirable properties as staleness penalty:

It is strictly monotonically increasing. Thus, it penalizes the
tracker for every change that happened at a source since the
previous crawl, not just the first one as in (Cho & Garcia-
Molina, 2003a).

It is discrete-concave, providing diminishing penalties. This
reflects the intuition that while all undownloaded changes
at a source matter, the first one matters most, as it marks the
transition from freshness to staleness.

”Good” policies w.r.t. this objective don’t starve any source:

Proposition 1. Under C(n) = H(n), any policy that
crawls each source at a fixed Poisson rate ρw and assigns
ρw > 0 to each w with µw,∆w > 0 is strictly preferable to
any such policy that assigns ρw = 0 to any such source.

Proof. See the supplement. This is a direct consequence of
Proposition 2: any policy π with ρw = 0 has Jπ =∞. �

C(n) = H(n) allows for efficiently finding optimal poli-
cies under practical policy classes. Indeed, C(n) = H(n)
isn’t the only penalty function satisfying the above prop-
erties. For instance, C(n) = nd for 0 < d < 1 and
C(n) = logd(1 + n) for d > 1 behave similarly. However,
optimizing these alternatives turns out much less efficient.

4. Optimization under known change process
We now derive procedures for optimizing Equation 1 with
C(n) = H(n) (Equation 3) under the bandwidth constraint
for sources with incomplete and complete change observa-
tions, assuming that we know the change process parameters
~∆ exactly. In Section 5 we will lift the known-parameters
assumption. We assume ~µ, ~∆ > 0, because sources that are
unimportant or never change don’t need to be crawled.

4.1. Case of incomplete change observations
When the tracker’s only way to find out about changes at a
source is crawling it, we consider the class of randomized
memoryless policies that sample crawl times for each source
according to a Poisson process with parameter ρw:

Π− = {CrSeqw ∼ Poisson(ρw) ∀w ∈W−|~ρ ≥ 0} (4)

This policy class reflects the intuition that, since each source
changes according to a Poisson process, i.e., roughly peri-
odically, it should also be crawled roughly periodically. In
fact, as Azar et al. (2018) show, any π ∈ Π− can be de-
randomized into a deterministic policy that is approximately
periodic for each w. Since every π ∈ Π− is fully deter-
mined by the corresponding vector ~ρ, we can easily express
a bandwidth constraint on π ∈ Π− as

∑
w∈W− ρw = R.

To optimize over Π−, we first express the cost function from
Equation 1 in terms of Π−’s policy parameters ~ρ ≥ 0:
Proposition 2. For π ∈ Π−, Jπ from Eq. 1 is equivalent to

Jπ = −
∑

w∈W−
µw ln

(
ρw

∆w + ρw

)
(5)

Proof. See the Supplement. Note that Jπ =∞ if ρ = 0 for
any w ∈W−. The proof proceeds via a series of algebraic
manipulations and relies on properties of Poisson processes,
particularly their memorylessness. �

Thus, finding π∗ ∈ Π− can be formalized as follows:
Problem 1. [Finding π∗ ∈ Π−]

INPUT: bandwidth R > 0; positive importance and change
rate vectors ~µ, ~∆ > 0.

OUTPUT: Crawl rates ~ρ = (ρw)w∈W− maximizing

J
π

= −Jπ =
∑

w∈W−
µw ln

(
ρw

∆w + ρw

)
(6)

subject to∑
w∈W−

ρw = R, ρw ≥ 0 for all w ∈W−.

The next result readily identifies the optimal solution to this
problem:

Proposition 3. For ~µ, ~∆ > 0, policy π∗ ∈ Π− parameter-
ized by ~ρ∗ > 0 that satisfies{

ρw =
−∆w+

√
∆2
w+ 4µw∆w

λ

2 , for all w ∈W−∑
w∈W− ρw = R

(7)

is unique, minimizes the harmonic penalty Jπ in Equation
3, and is therefore optimal in Π−.

Proof. See the Supplement. The main insight is that for
any ~µ, ~∆ > 0 the Lagrange multiplier method, which gives
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rise to Equation system 7, identifies the only maximizer of
J
π

= −Jπ (Equation 6) in the region ~ρ > 0, which must
therefore correspond to π∗ ∈ Π−. Crucially, that solution
always has λ > 0. �

Equation system 7 is non-linear, but the r.h.s. of equations
involving λ monotonically decreases in λ > 0, so, e.g.,
bisection search (Burden & Faires, 1985) on λ > 0 can find
~ρ∗ as in Algorithm 1.

Algorithm 1: LAMBDACRAWL-INCOMLOBS: find-
ing the optimal crawl scheduling policy π∗ ∈ Π−

under incomplete change observations (Problem 1)

Input: R ≥ 0 – bandwidth;
~µ > 0, ~∆ > 0 – importance and change rates;
ε > 0 – desired precision on λ

1 ; Output: ~ρ – vector of crawl rates for each source.

2 lower bound λ←[
|W−|2 min

w∈W−{∆w}min
w∈W−{µw}

|W−|max
w∈W−{∆w}R+R2

3 upper bound λ←[
|W−|2 max

w∈W−{∆w}max
w∈W−{µw}

|W−|min
w∈W−{∆w}R+R2

4 λ←[ BisectionSearch(lower bound λ, upper bound λ, ε)
5 // see, e.g., Burden & Faires (1985)

6 foreach w ∈W− do ρw ←[
−∆w+

√
∆2
w+ 4µw∆w

λ

2

7 Return ~ρ

Proposition 4. LAMBDACRAWL-INCOMLOBS
(Algorithm 1) finds an arbitrarily close approxi-
mation to Problem 1’s optimal solution in time

O(log2(
upper bound λ−lower bound λ

ε )|W−|).

Proof. See the Supplement. The key step is showing that
the solution λ is in [lower bound λ, upper bound λ]. �

4.2. Case of complete change observations
When the tracker receives an observation every time a source
changes, the policy class Π− in Equation 4 is clearly subop-
timal, because it completely ignores change signals when
deciding when to crawl a source. At the same time, crawling
every source on every change signal is unviable, because
the total change rate of all sources

∑
w∈W ∆w can easily

exceed bandwidth R. These extremes suggest a policy class
whose members trigger crawls for only a fraction of the
observations, dictated by a source-specific probability pw:

Πo ={for all w ∈W o, whenever change observation ow
arrives, crawl w with probability pw |0 ≤ ~p ≤ 1}

As with Π−, to find π∗ ∈ Πo we first express Jπ from Equa-
tion 1 in terms of Πo’s policy parameters ~p = (pw)w∈W o :

Proposition 5. For π ∈ Πo, Jπ from Eq. 1 is equivalent to

Jπ = −
∑
w∈W o

µw ln (pw) (8)

if ~p > 0 and Jπ =∞ if pw = 0 for any w ∈W o.

Proof. See the Supplement. The key insight is that under
any π ∈ Πo, the number of w’s uncrawled changes at time
t is geometrically distributed with parameter pw. �

Under any π ∈ Πo, the crawl rate ρw of any source w is
related to its change rate ∆w: every time w changes we
get an observation and crawl w with probability pw. Thus,
ρw = pw∆w. However, since pw is a probability, we must
have 0 ≤ pw ≤ 1. Also, bandwidth R >

∑
w∈W o ∆w

isn’t sensible, because with complete change observations
the tracker doesn’t benefit from more crawls than there are
changes. Thus, we frame finding π∗ ∈ Πo as follows:

Problem 2. [Finding π∗ ∈ Πo]

INPUT: bandwidth R s.t. 0 < R ≤
∑
w∈W o; importance

and change rate vectors ~µ, ~∆ > 0.

OUTPUT: Crawl probabilities ~p = (pw)w∈W o maximizing

J
π

= −Jπ =
∑
w∈W o

µw ln (pw) (9)

subject to∑
w∈W o

pw∆w = R, 0 ≤ pw ≤ 1 for all w ∈W o

Solving Problem 2 requires non-linear optimization under
inequality constraints, which, in general, could take time
exponential in the constraint number. Our main result in
this subsection is that one can find the optimal solution to
Problem 2 in polynomial time in the number of constraints.

We begin by inspecting solutions to the relaxation of Prob-
lem 2 that ignores the inequality constraints:

Proposition 6. The optimal solution ~̂p∗ to the relaxation of
Problem 2 that ignores inequality constraints is unique and
assigns

p̂∗w =
Rµw

∆w

∑
w′∈W o µw′

for all w ∈W o (10)

Proof. See the Supplement. The proof applies the method
of Lagrange multipliers to this relaxation. �

Equation 10 indicates that the relaxation’s solution never has
pw ≤ 0, but it may indeed violate the constraints pw ≤ 1.
The main difficulty of inequality-constrained optimization
is exactly in determining the subset of inequality constraints
that are active under the optimal solution, i.e., in our case,
finding all sources w for which the optimal ~p∗ has p∗w = 1.

Our algorithm LAMBDACRAWL-COMPLOBS (Algorithm
2) finds them iteratively. In each iteration (lines 4-14), we
consider only the sources that haven’t yet been proved to
activate their pw ≤ 1 constraint under ~p∗ (lines 3,12). For
them, we solve a relaxation of Problem 2 that ignores these
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constraints, using Proposition 6 (lines 5-6), and check if
this solution ~̂p∗ happens to violate any constraints (line 9).
Our key insight is that any source w that activates or vio-
lates its constraint under Proposition 6’s solution, i.e., has
p̂∗w ≥ 1, must necessarily have p∗w = 1. As we prove in
the Supplement, this follows from the strict concavity of
J
π

and the convexity of the optimization region given by
the constraints. Whenever we can prove source w to acti-
vate its constraint in this way, we set p∗w = 1, adjust the
overall bandwidth constraint for the remaining sources to
Rrem = R−p∗w∆w = R−∆w, and remove w from further
consideration (lines 10-12). Eventually, our problem gets
reduced to a (possibly empty) set of sources for which Propo-
sition 6’s solution doesn’t violate any constraints under the
remaining bandwidth (lines 15-16). Since Proposition 6’s
solution is optimal in this case, the overall algorithm is
optimal as well.

Algorithm 2: LAMBDACRAWL-COMPLOBS: finding
the optimal crawl scheduling policy π∗ ∈ Πo under
complete change observations (Problem 2)

1 LAMBDACRAWL-COMPLOBS:
Input: ~µ, ~∆ – importance and change rate vectors

2 R s.t. 0 ≤ R ≤
∑
w∈W ∆w – bandwidth;

Output: ~p∗ – vector specifying optimal per-page crawl
probabilities upon receiving a change observation.

3 Wrem ←[ W o // remaining sources to consider
4 while W o

rem 6= ∅ do
5 foreach w ∈W o

rem do
6 p̂∗w ← [ Rµw

∆w
∑
w′∈Wo

rem
µw′

for all w ∈W o
rem

7 V iolationDetected←[ False
8 foreach w ∈W o

rem do
9 if p̂∗w ≥ 1 then

10 p∗w ←[ 1
11 R← [ R−∆w // reduce remaining bandwidth
12 W o

rem ← [ W o
rem \ {w} // ignore w onwards

13 V iolationDetected = True

14 if V iolationDetected == False then break

15 foreach w ∈W o
rem do

16 p∗w ←[ p̂∗w
17 Return ~p∗ = (p∗w)w∈Wo

Proposition 7. LAMBDACRAWL-COMPLOBS returns the
optimal solution to Problem 2 and runs in time O(|W o|2).

Proof. See the Supplement. The proof formalizes the above
intuitions and critically relies on the concavity of J

π
. �

In practice, the running time bound of O(|W o|2) is very
loose. Each iteration usually discovers several active con-
straints, and many sources don’t activate their constraint
under ~p∗, so the computation time is close to linear in |W o|.

4.3. Crawl scheduling under mixed observability
In practice, trackers have to simultaneously handle sources
W− for which complete change observations are available
and sources W o for which they aren’t at the same time,
under a common bandwidth constraint R. How should we
optimize scheduling mixed-observability scenarios?

Consider the policy class that combines Π− and Πo:

Π	 =


{CrSeqw ∼ Poisson(ρw) for all w ∈W−|~ρ},
{for all w ∈W o, whenever change observation
ow arrives, crawl w with probability pw |~p}

(11)
For π ∈ Π	, Propositions 2 and 5 imply that Jπ from
Equation 1 is equivalent to

Jπ = −
∑

w∈W−
µw ln

(
ρw

∆w + ρw

)
−
∑
w∈W o

µw ln (pw)

(12)
Optimization over π ∈ Π	 can be stated as follows:
Problem 3. [Finding π∗ ∈ Π	]

INPUT: bandwidth R > 0; importance and change rate
vectors ~µ, ~∆ > 0.

OUTPUT: Crawl rates ~ρ = (ρw)w∈W− and crawl probabil-
ities ~p = (pw)w∈W o maximizing

J
π

= −Jπ =
∑

w∈W−
µw ln

(
ρw

∆w + ρw

)
+
∑
w∈W o

µw ln (pw)

(13)
subject to ∑

w∈W−
ρw +

∑
w∈W o

pw∆w = R,

ρw > 0 for all w ∈W−, 0 < pw ≤ 1 for all w ∈W o

The optimization objective (Equation 13) is strictly con-
cave as a sum of concave functions over the region de-
scribed by the constraints, and therefore has a unique maxi-
mizer. To find it efficiently, we observe that solving Prob-
lem 3 amounts to deciding how to split the global band-
width constraint R into an allotment Ro for sources with
complete change observations and R− = R − Ro for the
rest. For any candidate split, LAMBDACRAWL-COMPLOBS
and LAMBDACRAWL-INCOMLOBS give us the reward-
maximizing policy parameters ~p∗(Ro) and ~ρ∗(R−), re-
spectively, and Equation 13 then tells us the overall value
J
∗
(Ro, R−) of that split. We also know that for the opti-

mal split, Ro
∗ ∈ [0,min{R,

∑
w∈Wo

∆w}], as described in
Problem 2 and discussion immediately before it. Thus, we
can find Problem 3’s maximizer to any desired precision us-
ing a method such as Golden-section search (Kiefer, 1953)
on Ro. LAMBDACRAWL (Algorithm 3) implements this
idea, where SPLIT-EVAL-J

∗
(line 7) evaluates J

∗
(Ro, R−)

and OptMaxSearch denotes an optimal search method.
Proposition 8. LAMBDACRAWL (Algorithm 3) finds an
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arbtirarily close approximation to Problem 3’s opti-
mal solution using O(log(Rε )) calls to LAMBDACRAWL-
INCOMLOBS and LAMBDACRAWL-COMPLOBS.

Proof. This follows directly from the optimality of
LAMBDACRAWL-INCOMLOBS and LAMBDACRAWL-
COMPLOBS (Propositions 3 and 7), as well as of
OptMaxSearch such as Golden section, which makes
O(log(Rε )) iterations. �

Algorithm 3: LAMBDACRAWL: finding optimal
mixed-observability policy π∗ ∈ Π	 (Problem 3)

Input: R > 0 – bandwidth;
~µ > 0, ~∆ > 0 – importance and change rates;
εno-obs, ε > 0 – desired precisions

Output: ~ρ∗, ~p∗ – crawl rates and probabilities for sources
without and with complete change observations.

1 Romin ←[ 0
2 Romax ←[ min{R,

∑
w∈Wo ∆w}

3 ~ρ∗, ~p∗ ← [ OptMaxSearch(Split-Eval-J
∗
, Romin, R

o
max, ε)

4 // E.g., Golden section search (Kiefer, 1953)
5 Return ~ρ∗, ~p∗

6

7 SPLIT-EVAL-J
∗
:

Input: Ro – bandwidth for sources with complete change
observations, R, ~µ, ~∆, εno-obs

Output: J∗ (Equation 13) for the given split
8 ~ρ← [ LAMBDACRAWL-INCOMLOBS(R−

Ro, ~µW− , ~∆W− , ε
no-obs)

9 ~p← [ LAMBDACRAWL-COMPLOBS(Ro, ~µWo , ~∆Wo)

10 Return
∑
w∈W− µw ln

(
ρw

∆w+ρw

)
+
∑
w∈Wo µw ln (pw)

5. Reinforcement learning for scheduling
Although staleness minimization is efficient under the
known-model assumption, in reality change rates are usu-
ally unavailable and vary with time, requiring constant re-
learning. As it turns out, their estimation can be done with
only minor changes to LAMBDACRAWL that turn it into a
type of model-based reinforcement learning (RL) algorithm.

Suppose for a given source w the tracker has observed a se-
quence of binary change indicator variables z1, z2, . . . , zU ,
where t0, . . . , tU are times when the observations arrived,
and, for 1 ≤ j ≤ U , zj = 1 iff the source changed com-
pared to time tj−1 at least once. Consider two cases:

Incomplete change observations for w. Crawling the
source is the only way for the tracker to find out about any
changes: after each crawl at times t1, . . . , tU , the tracker
checks for changes compared to w’s previous crawl and
records ztj = 1 or ztj = 0 accordingly. There may be more
than one change since the previous crawl, but the tracker
cannot determine this. Denoting atj = tj − tj−1, j ≥ 1,
Cho & Garcia-Molina (2003b) show that ∆̂ that solves

∑
j:ztj=1

atj

eatj∆ − 1
−

∑
j:ztj=0

atj = 0, (14)

is a maximum-likelihood estimator of ∆ for the given source.
The l.h.s. of the equation is monotonically decreasing in ∆,
so ∆̂ can be efficiently found numerically. This estimator
is consistent under mild conditions (Cho & Garcia-Molina,
2003b), e.g., if the sequence {atj}∞j=1 doesn’t converge to
0, i.e., if the observations are spaced apart.

Complete change observations for w. In this case, for
all j, ztj = 1; a change observation arrives only when
there is a change and indicates exactly one change. This is a
standard setting for estimating Poisson process intensity, and
a consistent MLE estimator ∆̂ is simply the time-averaged
number of observed changes (Taylor & Karlin, 1998):

∆ =
U + 1

tU
, (15)

LAMBDALEARNANDCRAWL, a model-based RL version of
LAMBDACRAWL that uses these estimators to learn model
parameters simultaneously with scheduling is presented in
Algorithm 4. It operates in epochs of length Tepoch time
units each (lines 3-13). At the start of each epoch n, it

calls LAMBDACRAWL (Algorithm 3) on the available ~̂∆n−1

change rate estimates to produce a policy (~ρ∗n, ~p
∗
n) optimal

with respect to them (line 4). Executing this policy during
the current epoch, for the time period of Tepoch, and record-
ing the observations extends the observation history (lines 7-
8). (Note though that for sources w ∈W o, the observations
don’t depend on the policy.) It then re-estimates change
rates using a suffix of the augmented observation history
(lines 10-13). Under mild assumptions, LAMBDALEAR-
NANDCRAWL converges to the optimal policy:

Proposition 9. LAMBDALEARNANDCRAWL (Al-
gorithm 4) converges in probability to the opti-
mal policy under the true change rates ~∆, i.e.,
limNepochs→∞(~ρNepochs , ~pNepochs) = (~ρ∗, ~p∗), if ~∆ is
stationary and S(n), the length of the history’s training
suffix, satisfies S(Nepoch) = length(obs hist).

Proof. See the Supplement. It follows from the consistency
and positivity of the change rate estimates, as well as LAMB-
DACRAWL’s optimality �

Using LAMBDALEARNANDCRAWL in practice requires
attention to several aspects:
Stationarity of ~∆. Source change rates may vary with time,
so the length of history suffix for estimating ~∆ should typi-
cally be shorter than the entire available history.

Singularities of ~̂∆ estimators. Given a limited observation
history, the MLE in Equation 14 can produce ∆̂ = ∞ if
all crawls detected a change (the r.h.s. is 0). Similarly,
Equation 15 can produce ∆̂w = 0 if no observations about
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Algorithm 4: LAMBDALEARNANDCRAWL: finding
optimal crawl scheduling policy π∗ ∈ Π	 (Problem 3)
under initially unknown change model

Input: R > 0 – bandwidth;

~µ > 0,
~̂
∆0 > 0 – importance and initial change rate

guesses
εno-obs, ε > 0 – desired precisions
Tepoch > 0 – duration of an epoch
Nepochs > 0 – number of epochs
S(n) – for each epoch n, observation history

suffix length for learning ~∆ in that epoch

1 // obs hist[S(n)] is S(n)-length observation history suffix
2 obs hist←[ ()
3 foreach 1 ≤ n ≤ Nepochs do
4 ~ρ∗n, ~p

∗
n ← [ LAMBDACRAWL(R, ~µ,

~̂
∆n−1, ε

no-obs, ε)

5 // ~Znew holds observations for all sources from start to
6 // end of epoch n. Execute policy (~ρ∗n, ~p

∗
n) to get it

7 ~Znew ←[ ExecuteAndObserve(~ρ∗n, ~p∗n, Tepoch)

8 Append(obs hist, ~Znew)

9 // Learn new ~∆ estimates using Eqs. 14 and 15
10 foreach w ∈W− do
11 ∆̂nw ←[ Solve(

∑
j:zjw=1

aj

e
aj∆−1

+ 0.5
e0.5∆−1

−∑
j:zjw=0

aj − 0.5 = 0, obs hist[S(n)])

12 foreach w ∈W o do
13 ∆̂nw ←[ Solve(

US(n)+0.5

S(n)+0.5
, obs hist[S(n)])

w arrived during a given period. To avoid them without
affecting estimation consistency, we use smoothing to add
imaginary observation intervals of length 0.5 to Equation 14
and imaginary 0.5 observation to Equation 15 (lines 11,13).

The sheer number of parameters LAMBDALEARNAND-
CRAWL needs to learn raises a question: can we employ an
approximation with fewer parameters to learn? The follow-
ing result suggests one such approximation:

Proposition 10. Suppose the tracker’s set of sourcesW− is
such that for some constant c > 0, µw∆w

= c for all w ∈W−.
Then minimizing harmonic penalty under incomplete change
observations (Problem 1) has ρ∗w = µwR

−∑
w′∈W− µw′

.

Proof. See the Supplement. The proof proceeds by plug-
ging in ∆w = 1

cµw into Equation system 7. �

In essence, the proposition states that if the importance-
to-change-rate ratio is constant across all sources, then
each source’s crawl rate is independent of its change rate,
and even the ratio constant itself. This greatly simpli-
fies crawl scheduling, because for sources w ∈ W−,
we don’t need to learn any change rates, provided that
the constant-ratio assumption holds at least approximately.
Moreover, if LAMBDACRAWL-INCOMLOBS (Algorithm 1)

is replaced by assigning ρ∗w, w ∈W− as in Proposition 10,
an O(|W−|) operation, which improves the computational
efficiency of LAMBDACRAWL and LAMBDALEARNAND-
CRAWL in its own right. Our evaluation (Section 7) explores
the quality of this approximation empirically.

6. Related work
Scheduling for Posting, Polling, and Maintenance. Be-
sides monitoring information sources, mathematically re-
lated settings arise in smart broadcasting in social networks
(Karimi et al., 2016; Zarezade et al., 2017; Wang et al., 2017;
Upadhyay et al., 2018), personalized teaching (Upadhyay
et al., 2018), database synchronization (Gal & Eckstein,
2001), job scheduling (Glazebrook & Mitchell, 2002), and
scheduling maintenance service to machines (Anily et al.,
1998; Bar-Noy et al., 1998; Glazebrook et al., 2005). In the
context of web crawling (see Olston & Najork (2010) for
an overview), the closest works are (Cho & Garcia-Molina,
2003a), (Wolf et al., 2002), (Pandey & Olston, 2005), and
(Azar et al., 2018). Like (Cho & Garcia-Molina, 2003a)
and (Azar et al., 2018), we use Lagrange multipliers as part
of optimization, and adopt the Poisson change model of
(Cho & Garcia-Molina, 2003a) and many works since. Our
contributions differ from prior art in several ways: (1) op-
timization objectives (see the next subsection) and policy
guarantees; (2) special crawl scheduling under complete
change observations, both separately from and jointly with
the commonly studied setting where changes are detectable
only at crawl time; (3) learning model parameters in a prin-
cipled way during crawling.

Optimization objectives. Our objective falls in the class of
convex separable resource allocation problems (Ibaraki &
Katoh, 1988). So do most other related objectives: binary
freshness/staleness (Azar et al., 2018; Cho & Garcia-Molina,
2003a), age (Cho & Garcia-Molina, 2000a), and embarrass-
ment (Wolf et al., 2002). The latter is implemented via
specially constructed importance scores (Wolf et al., 2002),
so our algorithms can be used for it too. Other separable
objectives include information longevity (Olston & Pandey,
2008). In contrast, Pandey & Olston (2005) focus on an
objective that depends on user behavior and cannot be sep-
arated into contributions from individual sources. While
intuitively appealing, their measure can be optimized only
via many approximations (Pandey & Olston, 2005), and the
algorithm for it is ultimately heuristic.

Acquiring model parameters. Importance can be defined
and quickly determined from information readily available
to search engines, e.g., page relevance to queries (Wolf
et al., 2002), query-independent popularity such as PageR-
ank (Page et al., 1998), and other features (Pandey & Olston,
2005; Radinsky & Bennett, 2013). Learning change rates
is more delicate. Change rate estimators we use are due to
(Cho & Garcia-Molina, 2003b); our contribution in this re-
gard is integrating them into crawl scheduling while provid-
ing theoretical guarantees, as well as identifying conditions
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Figure 1. Performance w.r.t. harmonic (Jπh )
and binary (Jπb ) policy costs. Lower bars
= better policies. LC is robust to both, but
BLCε & BLC (Azar et al., 2018) aren’t: LC
(Jπh -optimal) beats BLCε by 22% and BLC
(Jπh = ∞) in Jπh , but BLC (Jπb -optimal)
and BLCε don’t beat LC/LCA in Jπb . CC
(Jπh = 1791,Jπb = 891) and UC (Jπh =
1237,Jπb = 636) did poorly (omitted from
the plot).
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Figure 2. Benefit of using complete change
observations. Here we use only the 13% of
our dataset’s URLs that provide them (via
sitemaps). LC-ComplObs (LC-CO, Alg. 2)
heeds these signals while LC-IncomplObs
(LC-IO, Alg. 1) and others ignore them. As
a result, LC-CO’s policy cost both w.r.t. Jπh
and Jπb is at least 4× (!) lower than the other
algorithms’.
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Figure 3. Convergence of the RL-based
LLC, LLCA, and BLLCε initialized with ran-
dom page change rate estimates. Dashed
lines show asymptotic policy costs Jπh ; plots
have confidence intervals. LLC converges
much faster than BLLCε, LLCA even more
so. LLCA’s asymptotic policy is worse than
LLC’s but comparable to BLLCε’s, espe-
cially w.r.t. binary cost Jπb (Fig. 1).

when estimation can be side-stepped using an approximation
(Prop. 10). While many works adopted the homogeneous
Poisson change process (Cho & Garcia-Molina, 2000b; Cho
& Ntoulas, 2002; Cho & Garcia-Molina, 2003a;b; 2000a;
Wolf et al., 2002; Azar et al., 2018), its non-homogeneous
variant (Gal & Eckstein, 2001), quasi-deterministic (Wolf
et al., 2002), and general marked temporal point process
(Upadhyay et al., 2018) change models were also considered.
Change models can also be inferred via generalization us-
ing source co-location (Cho & Ntoulas, 2002) or similarity
(Radinsky & Bennett, 2013).

RL. Our setting could be viewed as a restless multi-armed
bandit (MAB) (Whittle, 1988), a MAB type that allows an
arm to change its reward/cost distribution without being
pulled. However, no known restless MAB class allows
arms to incur a cost/reward without being pulled, as in
our setting. This distinction makes existing MAB analysis
such as (Immorlica & Kleinberg, 2018) inapplicable to our
model. RL with events and policies obeying general marked
temporal point processes was studied in (Upadhyay et al.,
2018). However, it relies on DNNs and as a result doesn’t
provide guarantees of convergence, optimality, other policy
properties, or a mechanism for imposing strict constraints
on bandwidth, and is far more expensive computationally.

7. Empirical evaluation
Our results support three claims: (1) LAMBDACRAWL’s
harmonic staleness cost Jπh (Eqs. 1, 3) is a more robust
objective than the binary cost Jπb widely studied previously
(e.g., (Azar et al., 2018; Cho & Garcia-Molina, 2003a; Wolf
et al., 2002)). Optimizing the former yields policies that
are also near-optimal w.r.t. the latter, while the converse is
not true (Figure 1). (2) Utilizing complete remote obser-
vations as LAMBDACRAWL-COMPLOBS does when they
are available makes a very big difference in policy cost
(Figure 2). (3) Using Prop. 10’s approximation instead of
LAMBDACRAWL-INCOMLOBS for w ∈W− reduces per-
formance w.r.t. Jπh but speeds up RL convergence if source

change rates are initially unknown (Figure 3). At the same
time, this approximation only weakly affects performance
w.r.t. binary cost Jπh (Figure 1). These factors and algo-
rithm simplicity make this approximation a useful tradeoff
in practice.

The experiments used web page change and importance
data collected by crawling 18,532,326 URLs daily for 14
weeks. We compared LAMBDACRAWL (labeled LC in the
figures), LAMBDACRAWLAPPROX (LCA, LC with Prop.
10’s approximation), and their RL variants LLC (Alg. 4)
and LLCA to BinaryLambdaCrawl (BLC) (Azar et al., 2018),
the state-of-the-art optimal algorithm for minimizing binary
cost Jπb . Since BLC may crawl-starve sources and hence
get Jπh = ∞ (see Fig. 1), we also use our own variant
of it, BLCε, with the non-starvation guarantee, and its RL
version BLLCε. Finally, we also use ChangeRateCrawl
(CC) (Cho & Garcia-Molina, 2003a; Wolf et al., 2002) and
UniformCrawl (UC) (Cho & Garcia-Molina, 2000b; Olston
& Pandey, 2008) heuristics. Please see Supplement, Sec.
9 for the algorithm descriptions and further details of
the experiment setup.

8. Conclusion
We have introduced a new objective and a suite of highly
efficient algorithms for it to address the freshness crawl
scheduling problem faced by many services from search en-
gines to databases. In particular, we have presented LAMB-
DALEARNANDCRAWL, which integrates model parameter
learning with scheduling optimization. To give convergence
speed guarantees for this kind of approaches in the future,
we intend to look at multi-armed bandit (MAB) models
similar to Immorlica & Kleinberg (2018). Their current
fundamental distinction from our setting is the reward mech-
anism: a MAB yields a reward only when an arm is pulled,
not continuously as in freshness optimization. Nonetheless,
we believe that a new bandit model will provide practically
and theoretically important insights into freshness crawl
scheduling.
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SUPPLEMENT

9. Details of the Experiments and Additional Plots
9.1. Dataset, Implementation, Hardware

For the dataset, we crawled 18, 532, 326 URLs daily over 14 weeks to estimate their change rates reliably using Equations
14 and 15. Some of the URL crawls on some days failed for reasons ranging from crawler’s internal errors to the URL host
being temporarily unavailable, so many URLs were crawled fewer than 14 · 7 = 98 times. At the same time, some URLs
were crawled more often as part of the crawler’s other workloads.

These URLs are data sources for the knowledge base of a major virtual assistant. The knowledge base uses special
information extractors to get important information out of these pages. To determine if a page changed, we ran the same
information extractors on it every time we crawled it and considered the page as changed if the extracted information
changed.

Figure 4. Ranking of 18,532,326 URLs in our dataset by their µw
∆w

ratio.
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Figure 5. Importance score histogram for URLs in our dataset. The
distribution has a big skew, with most pages having importance
less than 1000.
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Figure 6. (Poisson) change rate distribution for URLs in our
dataset. Most URLs change once in a few days.

13% of the URLs in the dataset had complete change observations that we obtained by frequently crawling reliable sitemaps
associated with these URLs.

We set the URL importance scores µw to values defined by the production crawler based on PageRank and popularity.

Proposition 10 suggests that the performance gap between LAMBDACRAWL and LAMBDACRAWLAPPROX depends on
the distribution of the ratios µw

∆w
across the set of sources W : if they are all equal, the policy cost of LAMBDACRAWL and

LAMBDACRAWLAPPROX should be the same. As Figure 4 shows, these ratios are similar across much of our dataset, but
clearly non-uniform in the head and tail of the ranking. Figures 5 and 6 show the dataset’s importance and change rate
distributions.
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In each run of an algorithm, the bandwidth constraint was set to 20% of the number of pages used in that run.

All algorithms used in the experiments were implemented in Python (the code is submitted with the paper and will be
open-sourced if the paper is accepted) and run on a Windows 10 laptop with 16GB RAM and an Intel quad-core 2.11GHz
i7-8650U CPU.

The dataset and the code will be released if the paper is accepted.

9.2. Evaluation metrics

To evaluate the algorithms’ performance, we used two metrics:

• The harmonic policy cost Jπh as in Equation 1 with C(n) as in Equation 3.

• The binary policy cost Jπb as in Equation 1 with C(n) defined as

C(n) = 1n>0

.

This policy cost objective was studied in several works including (Cho & Garcia-Molina, 2003a; Azar et al., 2018).
Some prior research considered its finite-horizon (Wolf et al., 2002) and discrete-time versions (Azar et al., 2018).
Note that some of these papers formulated their objective as maximizing freshness, whereby the agent is rewarded for
each time unit when the number of accumulated changes at a source is 0. Maximizing this objective means minimizing
binary staleness (although the two aren’t necessarily negations of each other!) Thus, the two are equivalent and we
don’t distinguish between them in the paper.

Actually using Jπb to evaluate policy requires deriving its parameterization in terms of policy π’s crawl rates ~ρ and
crawl probabilities ~π, analogously to Propositions 2 and 5 for the harmonic cost Jπh . By following the steps in the
proofs of these propositions, we derived the following expressions for Jπb :

Jπb =
∑

w∈W−

µw∆w

∆w + ρw
for pages w ∈W− (16)

Jπb =
∑
w∈W o

µw(1− pw) for pages w ∈W o (17)

Note that Equation 16 is similar to the equation in Azar et al. (2018) for evaluating the freshness reward of policy π.

For each experiment, we report the values of Jπh and Jπb normalized by the number of URLs used in that
experiment.

9.3. Algorithms

In the experiments description in Section 7, we refer to the following algorithms used in the empirical evaluation:

LAMBDACRAWL (LC), as in Algorithm 3.

LAMBDACRAWL-COMPLOBS (LC-ComplObs, LC-CO), as in Algorithm 2.

LAMBDACRAWL-INCOMLOBS (LC-IncomplObs, LC-IO), as in Algorithm 1.

BinaryLambdaCrawl (BLC) is the name we give to the state-of-the-art, optimal algorithm proposed by Azar et al. (2018)
for minimizing binary staleness Jπb . BLC is one of two major baselines for LAMBDACRAWL in our experiments.

The difference between BLC’s objective Jπb and LC’s objective Jπh is crucial in practice, because minimizing binary
staleness Jπb generally yields ~ρ∗ with ρ∗w = 0 for many sources even if they have ∆w > 0. This effectively tells the tracker
to ignore changes to these sources — an unacceptable strategy in real applications. Indeed, harmonic penalty (Equation 1)
assigns Jπh =∞ to such strategies.
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BinaryLambdaCrawl(ε) (BLCε) Vanilla BLC’s lack of non-starvation guarantees makes comparing it to LAMBDACRAWL
in terms of Jπh uninsightful, because for BLC, Jπh is usually∞. To address this issue, and simultaneously make BLC more
practical, we modified BLC to enforce the non-starvation guarantee. The resulting algorithm is BLCε.

Namely, BLCε accepts a parameter ε ∈ [0, 1]. Initially, it operates exactly like BLC to find ~ρ∗ optimal w.r.t. the binary cost
Jπb . Then it finds all sources w for which

ρ∗w < εR/|W |,

sets ρ∗w = εR/|W | for each of them, and re-solves the problem over the remaining sources and bandwidth again using BLC.
Thus, BLCε uniformly distributes a small fraction of the bandwidth to sources that would otherwise get no or little crawl rate
allocated to it.

The original, optimal BLC can be viewed as BLC(0). Any ε > 0 results in suboptimality w.r.t. Jπb while ensuring that
Jπh < ∞. For the experiments, we did a parameter sweep to determine ε that resulted in BLCε’s best performance w.r.t.
LAMBDACRAWL’s objective Jπh . The best value we found for our dataset, and used in all the experiments, is ε = 0.4.

UniformCrawl (UC) (Cho & Garcia-Molina, 2000b; Olston & Pandey, 2008) is a heuristic that assigns an equal crawl rate
to all sources:

ρw = R/|W |.

In spite of its simplicity, in our experiments it outperforms ChangeRateCrawl, as predicted by Cho & Garcia-Molina
(2003a) (see the caption of Figure 1).

ChangeRateCrawl (CC) is the name we give to another heuristic proposed by Cho & Garcia-Molina (2003a) that sets

ρw =
∆wR∑
w′∈W ∆w′

,

thereby crawling sources at a rate proportional to their change rate. Cho & Garcia-Molina (2003a) pointed out
that ChangeRateCrawl can be very suboptimal if the set W includes sources that change frequently. This causes
ChangeRateCrawl to over-commit crawl bandwidth to sources whose changes are near-impossible to keep up with, at the
expense of almost ignoring the rest. Our experimental results agree with this observation — ChangeRateCrawl turned out to
be the weakest-performing algorithm in our experiments.

LAMBDALEARNANDCRAWL (LLC), as in Algorithm 4.

LAMBDALEARNANDCRAWLAPPROX (LLCA), as in Algorithm 4 with calls to LAMBDACRAWL-INCOMLOBS in LAMB-
DACRAWL replaced by setting

ρw =
µwR∑

w′∈W− µw′
.

per Proposition 10.

BinaryLambdaLearnAndCrawl(ε) (BLLCε), the reinforcement learning version of BLCε where BLCε replaces LAMB-
DACRAWL in Algorithm 4. This is also the natural RL adaptation of pure BLC (Azar et al., 2018), which otherwise would
need a dedicated exploration parameter to ensure data gathering for sources that would get ρw = 0 under BLC’s (currently)
optimal policy. As for BLCε, we used ε = 0.4.
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9.4. Experiment 1 (Figure 1)

The goal of this experiment was to assess the harmonic objective Jπh that we proposed and the binary objective Jπb widely
studied in previous works in terms of robustness: how well do policies optimal w.r.t. one of them behave w.r.t. the other, and
vice versa?

In this experiment, we assumed known change rates. To obtain them, we inferred them with estimators in Equations 14
and 15 from our entire 14-week crawl data for 18.5M URLs, and used the resulting estimates as ground truth. Policies
were evaluated by plugging in these change rates and policy parameters into the equations in Propositions 2 and 5 and into
Equations 16 and 17.

As Figure 1 shows, the harmonic penalty Jπh we propose is a more flexible choice of objective. LAMBDACRAWL,
optimal w.r.t. it, significantly outperforms BLCε and BLC w.r.t. it, and, which is more surprising, even the approximate
LAMBDACRAWLAPPROX performs at par with BLCε according to this objective. Moreover, LAMBDACRAWL manages to
perform as well as BLC on the binary objective Jπb for which BLC is optimal. That is, no matter which objective we trust,
optimizing for Jπh yields excellent results.

As a side note, the UniformCrawl and ChangeRateCrawl heuristics were outperformed by a large margin by the above
methods w.r.t. both objectives.

9.5. Experiment 2 (Figure 2)

One of our contributions is a mechanism for taking advantage of complete remote change observations (Algorithm 2). BLCε,
BLC, UniformCrawl, and ChangeRateCrawl don’t have it, and treat all pages as if the only change observations for them
came from crawling. While only 13% of web pages in our dataset have an (approximately) complete observation history,
can LAMBDACRAWL’s and LAMBDACRAWLAPPROX’s advantage on them explain the performance gap in experiment 1?

Figure 2 indicates that these URLs are indeed responsible for a significant fraction of LAMBDACRAWL’s advantage. In this
experiment, we focused only on the above URLs. Like in the previous experiment, we assumed perfect model knowledge
using the previously obtained change rate estimates and estimated policy performance using Propositions 2, 5 and Equations
16 and 17. Treating these URLs as complete-observation URLs, as LAMBDACRAWL-COMPLOBS does, resulted in nearly
5-fold reduction in policy cost, compared to treating these URLs under the conventional change observation model.

Although this gives LAMBDACRAWL an edge over previously proposed techniques, note that even when LAMBDACRAWL
treats these URLs conventionally (denoted by the LAMBDACRAWL-INCOMLOBS (LC-IO) plot in Figure 2), still noticeably
outperforms the other algorithms w.r.t. Jπh while holding its own against them w.r.t. Jπb .

9.6. Experiment 3 (Figure 3)

Last but not least, we analyze the reinforcement learning variants of LAMBDACRAWL and LAMBDACRAWLAPPROX. Our
motivation for the approximation in Proposition 10 was reducing the number of parameters LAMBDALEARNANDCRAWL
has to learn in order to speed up convergence. In this experiment, we explore the tradeoff between the resulting gain in
learning speed and the concomitant loss in solution quality.

The evaluation was done in a series of simulated episodes, each episode being executed on a randomly chosen 100,000-URL
subsample of the 18.5M URLs (in each episode, the subsample was the same for all three algorithms.) In each episode,
we simulated a 21-day run of LLC, LLCA, and BLLCε starting with random change rates. One epoch (see Algorithm 4)
corresponded to 1 day. That is, every (simulated) day each of these algorithms re-estimated the change parameters using the
simulated observation data (the simulated data wasn’t shared among the algorithms). The simulated data was generated by
sampling page changes using the ground truth change rates obtained in previous experiments and sampling page crawls
from each algorithm’s current policy. At the end of each day, each algorithm reoptimized its policy for the new estimates,
and this policy was evaluated using the aforementioned equations. We performed 20 such episodes and averaged the policy
values on each day.

Figure 3 demonstrates that LAMBDALEARNANDCRAWLAPPROX indeed converges quicker than the other algorithms,
with its asymptotic performance comparable to BLLCε’s but falling short of LAMBDALEARNANDCRAWL’s. BLLCε’s
convergence was the slowest. It could potentially be improved by choosing a larger ε at the beginning and gradually
“cooling” it. LAMBDALEARNANDCRAWL’s advantage, besides convergence speed and asymptotic performance, is that it
converges quickly without such parameter tuning. LAMBDALEARNANDCRAWLAPPROX can also be a viable alternative
based on its simplicity and convergence rate.
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10. Proofs
PROOF OF PROPOSITION 1. This is a direct consequence of Proposition 2, which implies that any policy π with ρw = 0
for any source w with µw,∆w > 0 has Jπ =∞, whereas any π with rhow > 0 for every µw,∆w > 0 has Jπ =∞ �.

PROOF OF PROPOSITION 2.

First we rearrange Equation 1 as follows, dropping the distributions under the expectation and using W instead of W−
throughout the proof to make the notation less cumbersome:

Jπ = lim
T→∞

E
CrSeq∼π,

ChSeq∼P (~∆)

[
1

T

∫ T

0

(∑
w∈W

µwC(Nw(t))

)
dt

]

= lim
T→∞

1

T

∫ T

0

(∑
w∈W

µwE [C(Nw(t))]

)
dt

Then we use the definition of expectation, chain rule of probabilities, and variable tprev to denote the time when source w
was last crawled before time t (although tprev is specific to each source w, for clarity of notation we make this implicit):

Jπ = lim
T→∞

1

T

∫ T

0

(∑
w∈W

µwE[C(Nw(t))]

)
dt

= lim
T→∞

1

T

∫ T

0

(∑
w∈W

µw

∞∑
m=0

(
C(m) · P[Nw(t) = m]

))
dt

= lim
T→∞

1

T

∫ T

0

(∑
w∈W

µw

∞∑
m=0

(
C(m)

∫ t

0

P[Nw(t) = m | t− tprev = T ′] P[t− tprev = T ′]dT ′
))

dt

Now using the fact that our policy is a set of Poisson processes with parameters ρw and page changes are governed by
another set of Poisson processes with parameters ∆w, we can plug in appropriate expressions for the probabilities:

Jπ = lim
T→∞

1

T

∫ T

0

(∑
w∈W

µw

∞∑
m=0

(
C(m)

∫ t

0

(
(T ′∆w)me−T

′∆w

m!

)(
ρe−ρwT

′
)
dT ′

))
dt

= lim
T→∞

1

T

∫ T

0

(∑
w∈W

µw

∞∑
m=0

(
C(m)ρw∆m

w

m!

∫ t

0

T ′me−(ρw+∆w)T ′dT ′
))

dt

We do a variable substitution u = (ρw + ∆w)T ′, so T ′ = u
∆w+ρw

and dT ′ = du
∆w+ρw

:
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Jπ = lim
T→∞

1

T

∫ T

0

(∑
w∈W

µw

∞∑
m=0

(
C(m)ρw∆m

w

m!

∫ t

0

(
u

∆w + ρw

)m
e−u

du

∆w + ρw

))
dt

= lim
T→∞

1

T

∫ T

0

(∑
w∈W

µw

∞∑
m=0

(
C(m)

m!

(
ρw

∆w + ρw

)(
∆w

∆w + ρw

)m ∫ t

0

ume−udu

))
dt

Consider F (m, t) =
∫ t

0
ume−udu. By definition of gamma functions, F (m, t) = Γ(m+1)−Γ(m+1, t) = m!−Γ(m+1, t).

Recalling that C(m) = H(m) for m > 0 and C(0) = 0 (Equation 3), we get

Jπ = lim
T→∞

1

T

∫ T

0

(∑
w∈W

µw

∞∑
m=1

(
H(m)

m!

(
ρw

∆w + ρw

)(
∆w

∆w + ρw

)m
(m!− Γ(m+ 1, t))

))
dt

= lim
T→∞

1

T

(∑
w∈W

µw

(
ρw

∆w + ρw

)∫ T

0

[ ∞∑
m=1

(
H(m)

(
∆w

∆w + ρw

)m)
−
∞∑
m=1

(
H(m)

m!

(
∆w

∆w + ρw

)m
Γ(m+ 1, t)

)]
dt

)

Now consider for each w ∈ W functions G(T ) =
∫ T

0

∑∞
m=1

(
H(m)

(
∆w

∆w+ρw

)m)
dt, R(t) =∫ T

0

∑∞
m=1

(
H(m)
m!

(
∆w

∆w+ρw

)m
Γ(m+ 1, t)

)
dt, and limT→∞

1
T (G(T )−R(T )) so that

Jπ =
∑
w∈W

(
µw

(
ρw

∆w + ρw

)(
lim
T→∞

1

T
(G(T )−R(T ))

))
(18)

Thus, if limT→∞
1
T (G(T )−R(T )) exists, is finite, and we can compute it, we can compute Jπ as well. Focusing on G(T )

and recalling that
∑∞
m=1H(m)xm = − ln(1−x)

1−x for |x| < 1, we see that G(T ) = − ln( ρw
∆w+ρw

)
ρw

∆w+ρw

T , so limT→∞
G(T )
T =

− ln( ρw
∆w+ρw

)
ρw

∆w+ρw

exists. Focusing on R(T ), we see that since m! < Γ(m + 1, t) for any t > 0 and since R(T ) is an integral

of a non-negative function, we have 0 ≤ R(T ) ≤ G(T ) < ∞, so limT→∞
R(T )
T exists as well. Therefore, we can write

limT→∞
1
T (G(T )−R(T )) = limT→∞

G(T )
T − limT→∞

R(T )
T .

We already know limT→∞
G(T )
T . To evaluate limT→∞

R(T )
T , we upper-bound R(T ). Again using the fact that it is an

integral of a non-negative function, we have

R(T ) =

∫ T

0

∞∑
m=1

(
H(m)

m!

(
∆w

∆w + ρw

)m
Γ(m+ 1, t)

)
dt

<

∫ ∞
0

∞∑
m=1

(
H(m)

m!

(
∆w

∆w + ρw

)m
Γ(m+ 1, t)

)
dt

=

∞∑
m=1

(
H(m)

m!

(
∆w

∆w + ρw

)m ∫ ∞
0

Γ(m+ 1, t)dt

)

=

∞∑
m=1

(
H(m)

m!

(
∆w

∆w + ρw

)m
Γ(m+ 2)

)

=

∞∑
m=1

(
(m+ 1)H(m)

(
∆w

∆w + ρw

)m)

We have used the fact that
∫∞

0
Γ(m+ 1, t)dt = Γ(m+ 2) = (m+ 1)!. The series

∑∞
m=1(m+ 1)H(m)xm converges for
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|x| < 1 to some limit L > 0, so we have limT→∞
R(T )
T ≤ limT→∞

L
T = 0 and limT→∞

1
T (G(T )−R(T )) = − ln( ρw

∆w+ρw
)

ρw
∆w+ρw

.
Plugging this back into Equation 10, we get

Jπ = −
∑
w∈W

µw ln

(
ρw

∆w + ρw

)
�

PROOF OF PROPOSITION 3. The high-level idea is to apply the method of Lagrange multipliers to Problem 1’s
relaxation without inequality constraints ~ρ ≥ 0 and show that (a) only one local maximum of this relaxation is within the
region given by ~ρ ≥ 0 – the one satisfying Equation system 7 – and (b) solutions that touch the boundary of this region, i.e.,
have ρw = 0 for any w ∈W−, are suboptimal. In fact, part (b) follows immediately from Proposition 1, so we only need to
solve the relaxation and show part (a).

To apply the method of Lagrange multipliers to the relaxation, we set f(~ρ) = J
π

=
∑
w∈W− µw ln

(
ρw

∆w+ρw

)
and

g(~ρ) =
∑
w∈W− ρw −R. We need to solve

{
∇f(~ρ) = λ∇g(~ρ)

g(~ρ) = 0.

For any w ∈W−, we have ∂g
∂ρw

= 1 and ∂f
∂ρw

= µw
∆w+ρw
ρw

∆w

(∆w+ρw)2 = µw∆w

∆wρw+ρ2
w

, so the above system of equations turns
into

{
µw∆w

∆wρw+ρ2
w

= λ, for all w ∈W−∑
w∈W− ρw = R

and therefore

{
λρ2

w + λ∆wρw − µw∆w = 0, for all w ∈W−∑
w∈W− ρw = R

Solving each quadratic equation separately, we get

{
ρw =

−∆w±
√

∆2
w+ 4µw∆w

λ

2 , for all w ∈W−∑
w∈W− ρw = R

This gives all potential solutions to the relaxation of Problem 1. Now consider the inequality constraints ~ρ ≥ 0 omitted so

far. Observe that any real solution to the above system that has ρw =
−∆w−

√
∆2
w+ 4µw∆w

λ

2 for any w ∈W− implies ρw < 0
for µw,∆w > 0, which violates these constraints. Therefore, any solution to Problem 1 itself must satisfy

{
ρw =

−∆w+
√

∆2
w+ 4µw∆w

λ

2 , for all w ∈W−∑
w∈W− ρw = R

and have λ ≥ 0 (otherwise ~ρ < 0, again violating the inequality constraints). Although the first group of equations are
non-linear, note that each ρw(λ) is strictly monotone decreasing in λ for λ ≥ 0, so

∑
w∈W− ρw is strictly monotone

decreasing too implying that
∑
w∈W− ρw(λ) = R has a unique solution in λ, and therefore there is a unique ~ρ satisfying

the above system of equations. Thus, this ~ρ is the solution to Problem 1 and therefore corresponds to π∗ ∈ Π−. �
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PROOF OF PROPOSITION 4

We start by combining Equation system 7,

{
ρw =

−∆w+
√

∆2
w+ 4µw∆w

λ

2 , for all w ∈W−∑
w∈W− ρw = R,

(19)

into one equation:

∑
w∈W−

−∆w +
√

∆2
w + 4µw∆w

λ

2
= R

Bisection search is guaranteed to converge to some solution λ of this equation as long as we initialize the search with
lower bound λ, upper bound λ s.t. λ ∈ [lower bound λ, upper bound λ]. However, all λ− ≤ 0 that solve Equation
system 7 correspond to solutions that have ~ρ < 0. At the same time, from the proof of Proposition 3 we know that
there is exactly one λ+ > 0 that solves Equation system 7, and it corresponds to the (unique) the optimal solution
~ρ∗ of Problem 1. We want bisection search to find only this λ+ > 0, so we want lower bound λ, upper bound λ s.t.
λ+ ∈ [lower bound λ, upper bound λ] and lower bound λ, upper bound λ > 0.

To find these bounds, we observe that the l.h.s. of the above equation is monotonically decreasing in λ for λ > 0, so if we
find any λl > 0 that guarantees

√
∆2
w +

4µw∆w

λl
≥ ∆w +

2R

|W |
for all w ∈W− ,

then we have

∑
w∈W−

−∆w +
√

∆2
w + 4µw∆w

λl

2
≥ R

and hence λl ≤ λ+. To find such λl, we perform a series of algebraic manipulations:

√
∆2
w +

4µw∆w

λl
≥ ∆w +

2R

|W |
for all w ∈W−, λl > 0

⇐⇒∆2
w +

4µw∆w

λl
≥
(

∆w +
2R

|W−|

)2

for all w ∈W−, λl > 0

⇐⇒4µw∆w

λl
≥ 4∆wR

|W−|
+ 4

(
R

|W−|

)2

for all w ∈W−, λl > 0

⇐⇒λl ≤
|W−|2µw∆w

|W−|∆wR+R2
for all w ∈W−, λl > 0

⇐=λl ≤
|W−|2 minw∈W−{µw}minw∈W−{∆w}
|W−|maxw∈W−{∆w}R+R2

, λl > 0

Since the r.h.s. of this inequality is always positive, we set lower bound λ =
|W−|2 minw∈W−{µw}minw∈W−{∆w}

|W−|maxw∈W−{∆w}R+R2 . An
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analogous chain of reasoning shows that we can choose upper bound λ =
|W−|2 maxw∈W−{∆w}maxw∈W−{µw}

|W−|minw∈W−{∆w}R+R2 .

To establish a bound on the running time, we observe that each iteration of LAMBDACRAWL-INCOMLOBS involves
evaluating

∑
w∈W− ρw, which takes O(|W−|) time, so by the properties of bisection search the total running time is

O(log2(
upper bound λ−lower bound λ

ε )|W−|). �

PROOF OF PROPOSITION 5 Let Chw(t) denote the total number of changes that have happened at source w in
time interval [0, t]. As in the proof of Proposition 2, we start with rearranging the cost function in Equation 1, dropping the
distributions under the expectation and using W instead of W o throughout the proof to make the notation less cumbersome.
Using the definition of expectation and chain rule of probabilities to get:

Jπ = lim
T→∞

E
CrSeq∼π,

ChSeq∼P (~∆)

[
1

T

∫ T

0

(∑
w∈W

µwC(Nw(t))

)
dt

]

= lim
T→∞

1

T

∫ T

0

(∑
w∈W

µwE [C(Nw(t))]

)
dt

= lim
T→∞

1

T

∫ T

0

(∑
w∈W

µw

∞∑
m=0

(
C(m) · P[Nw(t) = m]

))
dt

= lim
T→∞

1

T

∫ T

0

(∑
w∈W

µw

∞∑
c=0

∞∑
m=0

(
C(m) · P[Nw(t) = m|Chw(t) = c]P[Chw(t) = c]

))
dt

Since changes at every source w are governed by a Poisson process with rate ∆w, P[Chw(t) = c] = e−∆wt(∆wt)
c

c! . Now,
consider P[Nw(t) = m|Chw(t) = c]. Recall that whenever source w ∈ W o changes, we find out about the change
immediately; with probability pw the policy π ∈ Πo then crawls source w straight away, and with probability (1− pw) it
waits to make this decision until we find out about w’s next change. Therefore, the only way we can have Nw(t) = m is if
our policy crawled source w m+ 1 changes ago and has not chosen to crawl w after any of the m changes that happened
since, or it hasn’t chosen to crawl w since ”the beginning of time”. Thus, Nw(t) is geometrically distributed, assuming that
at least m+ 1 changes actually happened at source w in the time interval [0, 1]. Thus, we have

P[Nw(t) = m|Chw(t) = c] =


pw(1− pw)m, if c ≥ m+ 1

(1− pw)m, if c = m

0 otherwise

Recalling that C(m) = H(m) for m > 0 and C(0) = 0 (Equation 3) and putting everything together, we have

Jπ = lim
T→∞

1

T

∫ T

0

(∑
w∈W

µw

∞∑
c=0

∞∑
m=0

(
C(m) · P[Nw(t) = m|Chw(t) = c]P[Chw(t) = c]

))
dt

= lim
T→∞

1

T

∫ T

0

(∑
w∈W

µw

∞∑
c=1

(
e−∆wt(∆wt)

c

c!

)(
pw

c−1∑
m=1

H(m)(1− pw)m +H(c)(1− pw)c
))

dt

= lim
T→∞

1

T

∫ T

0

(∑
w∈W

µw

∞∑
c=1

(
e−∆wt(∆wt)

c

c!

)(
pw

∞∑
m=1

H(m)(1− pw)m − pw
∞∑
m=c

H(m)(1− pw)m +H(c)(1− pw)c
))

dt



Staying up to Date with Online Content Changes Using Reinforcement Learning for Scheduling

Now consider

G(T ) =

∫ T

0

(∑
w∈W

µw

∞∑
c=0

(
e−∆wt(∆wt)

c

c!

)(
pw

∞∑
m=0

C(m)(1− pw)m
))

dt

R(T ) =

∫ T

0

(∑
w∈W

µw

∞∑
c=0

(
e−∆wt(∆wt)

c

c!

)(
pw

∞∑
m=c

C(m)(1− pw)m
))

dt

F (T ) =

∫ T

0

(∑
w∈W

µw

∞∑
c=0

(
e−∆wt(∆wt)

c

c!

)(
C(c)(1− pw)c

))
dt

Since
Jπ = lim

T→∞

1

T
(G(T )−R(T ) + F (T )),

if we show that each of limT→∞
G(T )
T , limT→∞

R(T )
T , and limT→∞

F (T )
T exists and manage to compute them, then we

will know Jπ . The rest of the proof focuses on computing these limits.

Consider G(T ). Note that pw
∑∞
m=0 C(m)(1 − pw)m = pw

∑∞
m=1H(m)(1 − pw)m doesn’t depend on c. We can

use the identity
∑∞
m=1H(m)xm = − ln(1−x)

1−x for |x| < 1 to get pw
∑∞
m=0 C(m)(1 − pw)m = − ln(pw), so G(T ) =

−
∫ T

0

(∑
w∈W µw

∑∞
c=0

(
e−∆wt(∆wt)

c

c!

)
ln(pw)

)
dt. To simplify G(T ) further, note that

∑∞
c=0

(
e−∆wt(∆wt)

c

c!

)
is just

the probability of any number of changes occurring in time interval [0, t] under a Poisson process, and therefore equals 1.
Thus, G(T ) = −

∫ T
0

(∑
w∈W µw ln(pw)

)
dt = −T

∑
w∈W µw ln(pw), so

lim
T→∞

G(T )

T
= −

∑
w∈W

µw ln(pw).

ConsiderR(T ). Observe thatC(m) = H(m) < m form > 1, so pw
∑∞
m=c C(m)(1−pw)m < pw

∑∞
m=cm(1−pw)m =

(1−pw)c(cpw−pw+1)
pw

. Because (1 − pw)c decreases in c much faster than 1
c(cpw−pw+1) for any fixed 0 < pw ≤ 1, for any

w ∈ W there is a c∗w s.t. pw
∑∞
m=c C(m)(1 − pw)m < (1−pw)c(cpw−pw+1)

pw
< 1

c for any c > c∗w. Let c∗ = maxw∈W c∗w.
We can then upper-bound R(T ) as follows:

R(T ) =

∫ T

0

(∑
w∈W

µw

∞∑
c=0

(
e−∆wt(∆wt)

c

c!

)(
pw

∞∑
m=c

C(m)(1− pw)m
))

dt = R1(T ) +R2(T ),

where

R1(T ) =

∫ T

0

(∑
w∈W

µw

c∗−1∑
c=0

(
e−∆wt(∆wt)

c

c!

)(
pw

∞∑
m=c

C(m)(1− pw)m
))

dt

R2(T ) =

∫ T

0

(∑
w∈W

µw

∞∑
c=c∗

(
e−∆wt(∆wt)

c

c!

)(
pw

∞∑
m=c

C(m)(1− pw)m
))

dt

ConsideringR1(T ), recalling that C(m) = H(m) form > 0, we have pw
∑∞
m=c C(m)(1−pw)m ≤ pw

∑∞
m=1 C(m)(1−

pw)m = − ln(pw), as shown previously. Also, for any c we have
∫ T

0
e−∆wt(∆wt)

c

c! dt = Γ(c+1)−Γ(c+1,∆wT )
∆wc!

. Therefore,
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R1(T ) =

∫ T

0

(∑
w∈W

µw

c∗−1∑
c=0

(
e−∆wt(∆wt)

c

c!

)(
pw

∞∑
m=c

C(m)(1− pw)m
))

dt

< −
∑
w∈W

µw ln(pw)

c∗−1∑
c=0

Γ(c+ 1)− Γ(c+ 1,∆wT )

∆wc!

Since limT→∞
Γ(c+1,∆wT )

T = 0, R1(T ) is therefore upper-bounded by a finite sum of terms that all go to 0 when divided
by T as T →∞. Since R1(T ) ≥ 0 also holds, we have limT→∞

R1(T )
T = 0.

Considering R2(T ), we use our definition of c∗ to write

R2(T ) =

∫ T

0

(∑
w∈W

µw

∞∑
c=c∗

(
e−∆wt(∆wt)

c

c!

)(
pw

∞∑
m=c

C(m)(1− pw)m
))

dt

<

∫ T

0

(∑
w∈W

µw

∞∑
c=c∗

(
e−∆wt(∆wt)

c

c!

)(
1

c

))
dt =

∫ T

0

(∑
w∈W

µw

∞∑
c=c∗

(
e−∆wt(∆wt)

c

(c+ 1)!

))
dt

≤
∫ T

0

(∑
w∈W

µw

∞∑
c=0

(
e−∆wt(∆wt)

c

(c+ 1)!

))
dt

=

∫ T

0

(∑
w∈W

µw

(
1− e−∆wt

∆wt

))
dt

=
∑
w∈W

µw
ln(∆wT ) + Γ(0,∆wT ) + γ

∆w
,

where γ is the Euler-Mascheroni constant. Since limT→∞
Γ(0,∆wT )

T = 0, R2(T ) is therefore upper-bounded by a finite sum
of terms that all go to 0 when divided by T as T →∞. Since R2(T ) ≥ 0 also holds, we have limT→∞

R2(T )
T = 0. Thus,

we have

lim
T→∞

R(T )

T
= lim
T→∞

R1(T ) +R2(T )

T
= lim
T→∞

R1(T )

T
+ lim
T→∞

R2(T )

T
= 0

Consider F (T ). Observe that for a suitably chosen constant s > 0, sR(T ) > F (T ). Therefore, since limT→∞
R(T )
T = 0,

limT→∞
F (T )
T = 0 too.

We have thus shown that

Jπ = lim
T→∞

G(T )−R(t) + F (T )

T
= lim
T→∞

G(T )

T
− lim
T→∞

R(T )

T
+ lim
T→∞

F (T )

T
= −

∑
w∈W

µw ln(pw)

�

PROOF OF PROPOSITION 6. Since under any ~p ≥ 0 crawl rates ~ρ are related to crawl probabilities via ρw = pw∆w,
to apply the method of Lagrange multipliers to the relaxation of Problem 2 that takes into account only the bandwidth
constraint we set f(~p) = J

π
=
∑
w∈W o µw ln(pw) and g(~ρ) =

∑
w∈W o pw ∆w −R. We need to solve
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{
∇f(~p) = λ∇g(~p)

g(~p) = 0.

For any w ∈W o, we have ∂g
∂pw

= ∆w and ∂f
∂pw

= µw
pw

, so the above system of equations turns into

{
µw
pw

= λ∆w, for all w ∈W o∑
w∈W o pw∆w = R

and therefore

{
pw = Rµw

∆w
∑
w∈Wo µw

for all w ∈W o

λ =
∑
w∈Wo µw
R

This is the only solution yielded by the method of Lagrange multipliers, so it is the unique maximizer of the relaxation. �

PROOF OF PROPOSITION 7.

To establish LAMBDACRAWL-COMPLOBS’s correctness, we first prove the following lemma, which establishes that any
source w that violates its pw ≤ 1 constraint in any iteration of LAMBDACRAWL-COMPLOBS must have p∗w = 1:

Lemma 1. Let ~p∗ be the maximizer of Problem 2, and let ~p′∗ be the maximizer of the relaxation Problem 2 with the same
inputs but with inequality constraints ignored. Then any source w that has ~p′∗ has p′∗w > 1, violating its inequality constraint,
necessarily has p∗w = 1.

Proof. For convenience, we rewrite Problem 2 as an equivalent problem of maximizing Jmod =
∑
w∈W o µw ln(ρw) under

the constraints
∑
w∈W o ρw = R and ρw ≤ ∆w for every w ∈ W o. Consider its relaxation with ρw ≤ ∆w for every

w ∈ W o ignored. By the equivalent of Proposition 6 for this reformulation, ~ρ′∗ is unique and must have p′∗w = ρ′∗w/∆w

for each source w. The Lagrangian of L(~ρ, λ0) := Jmod(~ρ)− λ0(
∑
w∈W o ρw −R) must have ∇L(~ρ′∗, λ′∗0 ) = 0 for the

optimal solution (~ρ′∗, λ′∗0 ) (which, again, encodes the optimal p′∗w for the relaxation of the original formulation of Problem 2
via p′∗w = ρ′∗w/∆w). From this we see that ∂

∂ρu
Jmod �ρ′∗u = λ′∗0 = ∂

∂ρw
Jmod �ρ′∗w , for any sources u,w ∈ W o. Since

∂
∂ρw

Jmod = µw
ρw

, this implies
µu
ρ′∗u

=
µw
ρ′∗w

for all u,w ∈W o . (20)

Consider the slack-variable formulation of Problem 2 with slack variables {qw}w∈W o . Inequality constraints in this
formulation turn into ρw = ∆w − qw for qw ≥ 0. In this formulation, we now have

L(~ρ, λ0, λ1, . . . , λ|W o|) := L(~ρ, λ0)−
∑
w∈W o

λw(ρw −∆w) .

where, by the Karush-Kuhn-Tucker conditions, λw ≥ 0 for all w. By complementary slackness, λ∗w = 0 for every
w ∈ W o such that qw > 0, i.e., for every w that does not activate its inequality constraint, under the optimal solution
(~ρ∗, λ∗0, λ

∗
w, . . . , λ

∗
|W o|). This implies that ∂

∂ρu
Jmod �ρ∗u −λ

∗
u = λ∗0 = ∂

∂ρw
Jmod �ρ∗w −λ

∗
w, for any sources u,w ∈W o, i.e.,

µu
ρ′∗u
− λ∗u = λ∗0 =

µw
ρ′∗w
− λ∗w for all u,w ∈W o . (21)

Now, suppose for contradiction that there is a source u ∈ W o that has p′∗u > 1 but p∗u < 1, implying that ρ′∗u > ∆u but
ρ∗u < ∆u. This, in turn, implies that (a) ρ′∗u > ρ∗u and (b) λ∗u = 0, since u doesn’t activate its inequality constraint under ~ρ∗
(and hence under ~p∗). Then, since

∑
v∈W o ρ∗v =

∑
v∈W o ρ′∗v = R, there must also exist some other source w 6= u such that

ρ′∗w < ρ∗w. For this source, λ∗w ≥ 0, so λ∗w ≥ λ∗u.
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Recall that Jmod is strictly concave, and its partial derivatives µv
ρv

are monotone decreasing in every non-negative ρv.
Together with ρ′∗u > ρ∗u, ρ′∗w < ρ∗w, λ∗w ≥ λ∗u, and Equation 21, this implies

µu
ρ′∗u

<
µu
ρ∗u
≤ µw
ρ∗w

<
µw
ρ′∗w

But this contradicts Equation 20, completing the proof of the lemma. �

The optimality of LAMBDACRAWL-COMPLOBS now follows by induction. Its every iteration except the last one identifies at
least one constraint that is active under ~p∗, by the above lemma, and thereby assigns an optimal p∗w to some sources, leaving
optimal crawl probabilities for others to be found in subsequent iterations. The solution for the sources remaining in the
final iteration, which does not violate any inequality constraints, is optimal by Proposition 6. Therefore, LAMBDACRAWL-
COMPLOBS arrives at the optimal solution, and that solution is unique because Problem 2’s maximization objective is
concave as a sum of concave functions, and the optimization region is convex.

We note that the proof so far is similar to the proof of Lemma 3.3 from (Kolobov et al., 2019) for a different concave function
F under constraints of the form x1 + . . .+ xk ≤ ck, where x1, . . . , xk is a subset of F ’s variables and ck is a constraint.

Since in each iteration LAMBDACRAWL-COMPLOBS removes at least one source from further consideration, it makes
at most |W o| iterations. In each iteration it applies Proposition 6, which takes O(|W o|) time, yielding the overall time
complexity of O(|W o|2). �

PROOF OF PROPOSITION 8. See the paper. �

PROOF OF PROPOSITION 9. LAMBDALEARNANDCRAWL starts with strictly positive finite estimates ~̂
∆0 of

change rates. Since LAMBDACRAWL, which LAMBDALEARNANDCRAWL uses for determining crawl rates for the
next epoch, is optimal to any desired precision (Proposition 8), it follows from Proposition 1 that it returns positive
~̂ρ∗1,

~̂p∗1 > 0, and 0 < ~µ,R <∞ guarantees that these crawl rates are also finite. In subsequent iterations, ~̂∆n are estimated
using Equations 14 and 15 with smoothing terms (lines 11 and 13 of Algorithm 4), and the smoothing terms ensure that

the change rate estimates are finite and bounded away from 0: 0 < δmin ≤ ~̂
∆n < ∞, where δmin is implied by the

aforementioned estimators and specific smoothing term values. This, along with finite positive ~µ and R, ensures that
0 < ~̂ρ∗n+1,

~̂p∗n+1 < δmax. Hence, by induction, no source is ever starved, and no source is crawled infinitely frequently.
This ensures, together with consistency of estimators from Equations 14 and 15, that if at least the last iteration Nepoch uses
the entire observation history, i.e. S(Nepoch) = length(obs hist), then change rate estimates converge to the true change

rates in probability: plimNepochs→∞
~̂
∆Nepochs = ~∆, as long as ~∆ doesn’t change with time. Optimality of LAMBDACRAWL

then implies probabilistic convergence of (~̂ρ∗Nepochs ,
~̂p∗Nepochs) to (~̂ρ∗, ~̂p∗) as well. �

PROOF OF PROPOSITION 10. According to Equation system 7, the parameter vector ~ρ of the optimal π∗ ∈ Π− that
minimizes the expected harmonic penalty in the absence of remote change observations (Problem 1) satisfies

{
ρw =

−∆w+
√

∆2
w+ 4µw∆w

λ

2 , for all w ∈W−∑
w∈W− ρw = R

If µw
∆w

= c for all w ∈W−, c > 0, then we can express ∆w = c′µw where c′ = 1/c and plug it into the above equations to
get
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ρw =
−∆w +

√
∆2
w + 4µw∆w

λ

2

=
−c′µw +

√
(c′µw)2 +

4c′µ2
w

λ

2

=
−c′µw + µw

√
c′2λ+4c′

λ

2

= µw

−c′ +
√

c′2λ+4c′

λ

2

 for all w ∈W− (22)

Plugging this into the remaining equation from the above system,
∑
w∈W− ρw = R, we get

∑
w∈W−

µw

−c′ +
√

c′2λ+4c′

λ

2

 = R =⇒

−c′ +
√

c′2λ+4c′

λ

2
=

R∑
w∈W− µw

=⇒

c′2λ+ 4c′

λ
=

(
2R∑

w∈W− µw
+ c′

)2

=⇒

λ

(
2R∑

w∈W− µw
+ c′

)2

− c′2λ = 4c′ =⇒

λ =
4c′(

2R∑
w∈W− µw

+ c′
)2

− c′2

Plugging this and ∆w = c′µw back into Equations 22, we get for all w ∈W−



Staying up to Date with Online Content Changes Using Reinforcement Learning for Scheduling

ρw = µw



−c′ +

√√√√√√√√
c′2

 4c′(
2R∑

w∈W− µw
+c′

)2

−c′2

+4c′

4c′(
2R∑

w∈W− µw
+c′

)2

−c′2

2



= µw



−c′ +

√√√√√√√√
4c′


 c′2(

2R∑
w∈W− µw

+c′
)2

−c′2

+1


4c′(

2R∑
w∈W− µw

+c′
)2

−c′2

2



= µw


−c′ +

√√√√√
(

2R∑
w∈W− µw

+c′
)2((

2R∑
w∈W− µw

+c′
)2

−c′2
)

(
2R∑

w∈W− µw
+c′
)2

−c′2

2


= µw

(
−c′ + R∑

w∈W− µw
+ c′

)
=

µwR∑
w∈W− µw

�


