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Abstract

We study the effect of the stochastic gradient noise on the training of generative ad-
versarial networks (GANs) and show that it can prevent the convergence of standard
game optimization methods, while the batch version converges. We address this
issue with a novel stochastic variance-reduced extragradient (SVRE) optimization
algorithm, which for a large class of games improves upon the previous conver-
gence rates proposed in the literature. We observe empirically that SVRE performs
similarly to a batch method on MNIST while being computationally cheaper, and
that SVRE yields more stable GAN training on standard datasets.

1 Introduction

Many empirical risk minimization algorithms rely on gradient-based optimization methods. These
iterative methods handle large-scale training datasets by computing gradient estimates on a subset of
it, a mini-batch, instead of using all the samples at each step, the full batch, resulting in a method
called stochastic gradient descent (SGD, Robbins and Monro (1951); Bottou (2010)).

SGD methods are known to efficiently minimize single objective loss functions, such as cross-entropy
for classification or squared loss for regression. Some algorithms go beyond such training objective
and define multiple agents with different or competing objectives. The associated optimization
paradigm requires a multi-objective joint minimization. An example of such a class of algorithms are
the generative adversarial networks (GANs, Goodfellow et al., 2014), which aim at finding a Nash
equilibrium of a two-player minimax game, where the players are deep neural networks (DNNs).

As of their success on supervised tasks, SGD based algorithms have been adopted for GAN training
as well. Recently, Gidel et al. (2019a) proposed to use an optimization technique coming from the
variational inequality literature called extragradient (Korpelevich, 1976) with provable convergence
guarantees to optimize games (see § 2). However, convergence failures, poor performance (sometimes
referred to as “mode collapse”), or hyperparameter susceptibility are more commonly reported
compared to classical supervised DNN optimization.

We question naive adoption of such methods for game optimization so as to address the reported
training instabilities. We argue that as of the two player setting, noise impedes drastically more the
training compared to single objective one. More precisely, we point out that the noise due to the
stochasticity may break the convergence of the extragradient method, by considering a simplistic
stochastic bilinear game for which it provably does not converge.
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The theoretical aspect we present in this paper is further supported empirically, since using larger
mini-batch sizes for GAN training has been shown to considerably improve the quality of the samples
produced by the resulting generative model: Brock et al. (2019) report a relative improvement of
46% of the Inception Score metric (see § 4) on ImageNet if the batch size is increased 8—fold. This
notable improvement raises the question if noise reduction optimization methods can be extended to
game settings. In turn, this would allow for a principled training method with the practical benefit of
omitting to empirically establish this multiplicative factor for the batch size.

In this paper, we investigate the interplay between noise and multi-objective problems in the context
of GAN training. Our contributions can be summarized as follows: (i) we show in a motivating
example how the noise can make stochastic extragradient fail (see § 2.2). (ii) we propose a new
method “stochastic variance reduced extragradient” (SVRE) that combines variance reduction and
extrapolation (see Alg. 1 and § 3.2) and show experimentally that it effectively reduces the noise.
(iii) we prove the convergence of SVRE under local strong convexity assumptions, improving over
the known rates of competitive methods for a large class of games (see § 3.2 for our convergence
result and Table 1 for comparison with standard methods). (iv) we test SVRE empirically to train
GANSs on several standard datasets, and observe that it can improve SOTA deep models in the late
stage of their optimization (see § 4).

2 GANs as a Game and Noise in Games

2.1 Game theory formulation of GANs

The models in a GAN are a generator GG, that maps an embedding space to the signal space, and
should eventually map a fixed noise distribution to the training data distribution, and a discriminator
D whose purpose is to allow the training of the generator by classifying genuine samples against
generated ones. At each iteration of the algorithm, the discriminator D is updated to improve its “real
vs. generated” classification performance, and the generator GG to degrade it.

From a game theory point of view, GAN training is a differentiable two-player game where the
generator G'g and the discriminator D, aim at minimizing their own cost function L and LP, resp.:

0" € argmin £9(0, ¢*) and * € argmin L2 (6%, ). (2P-G)
0cO ped
When £P = —£% =: L this game is called a zero-sum game and (2P-G) is a minimax problem:
i L(O SP
min max (0,9) (SP)



Figure 1: Illustration of the discrepancy between
games and minimization on simple examples:
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Left: Minimization. Up to a neighborhood,
the noisy gradient always points to a direction
that make the iterate closer to the minimum (x).

* * Right: Game. The noisy gradient may point to
a direction (red arrow) that push the iterate away
from the Nash Equilibrium (x).

The gradient method does not converge for some convex-concave examples (Mescheder et al., 2017;
Gidel et al., 2019a). To address this, Korpelevich (1976) proposed to use the extragradient method?
which performs a lookahead step in order to get signal from an extrapolated point:

ét = 0t - 77V9£G(9t7 "Pt) Update: 0t+1 = Bt — UVQ£G<6~75, (.;?t)
Pt = Pt — UV¢£D(9t7 SDt) Pi+1 = Pt — chpﬁD(ét, 4/575)

Note how 6; and ¢, are updated with a gradient from a different point, the extrapolated one. In the
context of a zero-sum game, for any convex-concave function £ and any closed convex sets © and @,
the extragradient method converges (Harker and Pang, 1990, Thm. 12.1.11).

Extrapolation: { (EG)

2.2 Stochasticity Breaks Extragradient

As the (EG) converges for some examples for which gradient methods do not, it is reasonable to
expect that so does its stochastic counterpart (at least to a neighborhood). However, the resulting noise
in the gradient estimate may interact in a problematic way with the oscillations due to the adversarial
component of the game*. We depict this phenomenon in Fig. 1, where we show the direction of the
noisy gradient on single objective minimization example and contrast it with a multi-objective one.

We present a simplistic example where the extragradient method converges linearly (Gidel et al.,
2019a, Corollary 1) using the full gradient but diverges geometrically when using stochastic estimates
of it. Note that standard gradient methods, both batch and stochastic, diverge on this example.

In particular, we show that: (i) if we use standard stochastic estimates of the gradients of £ with a sim-
ple finite sum formulation, then the iterates w; := (0, ;) produced by the stochastic extragradient
method (SEG) diverge geometrically, and on the other hand (ii) the full-batch extragradient method
does converge to the Nash equilibrium w™* of this game (Harker and Pang, 1990, Thm. 12.1.11).

Theorem 1 (Noise may induce divergence). For any ¢ > 0 There exists a zero-sum e-strongly
monotone stochastic game such that if wy # w*, then for any step-size 1 > ¢, the iterates (wy)
computed by the stochastic extragradient method diverge geometrically, i.e., there exists p > 0, such
that Ef||lwy — w*[?] > [lwo — w*[*(1 + p)".

Proof sketch. All detailed proofs can be found in § C of the appendix. We consider the following
stochastic optimization problem,

1 n
— E 5912 +0TAjp— %gpf where [A;] = 1if kK =1 =4 and 0 otherwise. (1)
n

i=1

Note that this problem is a simple dot product between 8 and ¢ with an e-f5 norm penalization,
thus we can compute the batch gradient and notice that the Nash equilibrium of this problem is
(6%, ") = (0,0). However, as we shall see, this simple problem breaks with standard stochastic
optimization methods.

3For simplicity, we focus on unconstrained setting where © = R®. For the constrained case, a Euclidean
projection on the constraints set should be added at every update of the method.

4Gidel et al. (2019b) formalize the notion of “adversarial component” of a game, which yields a rotational
dynamics in gradients methods (oscillations in parameters), as illustrated by the gradient field of Fig. 1 (right).



Sampling a mini-batch without replacement I C {1,...,n}, we denote A; := > ., A;. The
extragradient update rule can be written as:

{0t+1 =(1-nAre)0; —nAr((1 —nAje)pr +nAs6;)
prr1 = (1 =nAre)pr +nAr(1 —nAse)0, —nAjp:),

where I and J are the mini-batches sampled for the update and the extrapolation step, respectively.
Let us write N; := ||0;]|? + ||4+||*. Noticing that [A;8]; = [6]; if i € I and 0 otherwise, we have,

2

E[Nia] = (1= B@ne - n?(1 + ) = LR (207 — (1 4+ €)) ) B[N 3)

Consequently, if the mini-batch size is smaller than half of the dataset size, i.e. 2|I| < n, we have
that Vi > e, 3p > 0, s.t., E[Ny] > No(1+ p)*.

This result may seem contradictory with the standard result on SEG (Juditsky et al., 2011) saying
that the average of the iterates computed by SEG does converge to the Nash equilibrium of the game.
However, an important assumption made by Juditsky et al. is that the iterates are projected onto a
compact set and that estimator of the gradient has finite variance. These assumptions break in this
example since the variance of the estimator is proportional to the norm of the (unbounded) parameters.
Note that constraining the optimization problem (14) to bounded domains © and ®, would make
the finite variance assumption from Juditsky et al. (2011) holds. Consequently, the averaged iterate
Wy 1= %Z’;b ws would converge to w*. In § A.1, we explain why in a non-convex setting, the
convergence of the last iterate is preferable.

3 Reducing Noise in Games with Variance Reduced Extragradient

One way to reduce the noise in the estimation of the gradient is to use mini-batches of samples
instead of one sample. However, mini-batch stochastic extragradient fails to converge on (14) if the
mini-batch size is smaller than half of the dataset size (see § C.1). In order to get an estimator of
the gradient with a vanishing variance, the optimization literature proposed to take advantage of the
finite-sum formulation that often appears in machine learning (Schmidt et al., 2017, and references
therein).

3.1 Variance Reduced Gradient Methods

Let us assume that the objective in (2P-G) can be decomposed as a finite sum such that?
1 1<
LY w) ==Y Lf d LP(w)==) LP h = (0,). 4
(w) n; 7 (w) an (w) n; 7 (w) where w:=(0,¢) 4

Johnson and Zhang (2013) propose the “stochastic variance reduced gradient” (SVRG) as an unbiased
estimator of the gradient with a smaller variance than the vanilla mini-batch estimate. The idea is to
occasionally take a snapshot w* of the current model’s parameters, and store the full batch gradient
1S at this point. Computing the full batch gradient 1 at w® is an expensive operation but not
prohibitive if done infrequently (for instance once every dataset pass).

Assuming that we have stored w® and u := (ug, ,u,i), the SVRG estimates of the gradients are:

= T V) LS dP ()

nm; ’

D D S

= Y @) VE () 4 . (5)
These estimates are unbiased: E[df (w)] = L 3" | VLY (w) = VLY (w), where the expectation
is taken over ¢, picked with probability ;. The non-uniform sampling probabilities 7; are used to
bias the sampling according to the Lipschitz constant of the stochastic gradient in order to sample
more often gradients that change quickly. This strategy has been first introduced for variance reduced
methods by Xiao and Zhang (2014) for SVRG and has been discussed for saddle point optimization
by Palaniappan and Bach (2016).

df’ (w)

Originally, SVRG was introduced as an epoch based algorithm with a fixed epoch size: in Alg. 1,
one epoch is an inner loop of size N (Line 6). However, Hofmann et al. (2015) proposed instead to

>The “noise dataset” in a GAN is not finite though; see § D.1 for details on how to cope with this in practice.



sample the size of each epoch from a geometric distribution, enabling them to analyze SVRG the
same way as SAGA under a unified framework called g-memorization algorithm. We generalize
their framework to handle the extrapolation step (EG) and provide a convergence proof for such
g-memorization algorithms for games in § C.2.

One advantage of Hofmann et al. (2015)’s framework is also that the sampling of the epoch size does
not depend on the condition number of the problem, whereas the original proof for SVRG had to
consider an epoch size larger than the condition number (see Leblond et al. (2018, Corollary 16) for
a detailed discussion on the convergence rate for SVRG). Thus, this new version of SVRG with a
random epoch size becomes adaptive to the local strong convexity since none of its hyper-parameters
depend on the strong convexity constant.

However, because of some new technical aspects when working with monotone operators, Palaniappan
and Bach (2016)’s proofs (both for SAGA and SVRG) require a step-size that depends on the strong
monotonicity constant making these algorithms not adaptive to local strong monotonicity. This
motivates the proposed SVRE algorithm, which is adaptive to local strong monotonicity, and is thus
more appropriate for non-convex optimization.

3.2 SVRE: Stochastic Variance Reduced Extragradient

We describe our proposed algorithm called stochastic variance reduced extragradient (SVRE) in Alg. 1.
In an analogous manner to how Palaniappan and Bach (2016) combined SVRG with the gradient
method, SVRE combines SVRG estimates of the gradient (5) with the extragradient method (EG).

With SVRE we are able to improve the best known convergence rates for variance reduction method
for stochastic games (Table 1 and Thm. 2), and we show in § 3.3 that it is the only method which
empirically converges on the simple example of § 2.2.

We now describe the theoretical setup for the convergence result. A standard assumption in convex
optimization is the assumption of strong convexity of the function. However, in a game, the operator,

; (6)

associated with the updates is no longer the gradient of a single function. To make an analogous
assumption for games the optimization literature considers the notion of strong monotonicity.

viw— [Veﬁg(w)a Vc.oﬁD(“’ﬂT

Definition 1. An operator F : w +— (Fp(w), Fy(w)) € RYP is said to be (g, j1,)-strongly
monotone if for all w,w’ € RPT we have

Q((8,0), (8',¢") = pol|0 — 0'lI* + pgll — ¢'||* < (F(w) = F(w') T (w — '),
where we write w := (8, ) € R4P. A monotone operator is a (0, 0)-strongly monotone operator.
This definition is a generalization of strong convexity for operators: if f is u-strongly convex, then

V f is a u-monotone operator. Another assumption is the v regularity assumption,
Definition 2. An operator F : w — (Fg(w), Fp(w)) € R is said to be (vg,v,)-regular if,

2318 02 +22le — @' < [F(w) — PP, Vw,w € BRI, ™
Note that an operator is always (0, 0)-regular.

This assumption originally introduced by Tseng (1995) has been recently used (Azizian et al., 2019)
to improve the convergence rate of extragradient. For instance for a full rank bilinear matrix problem
«y is its smallest singular value. More generally, in the case v9 = 7, the regularity constant is a
lower bound on the minimal singular value of the Jacobian of F' (Azizian et al., 2019).

One our main assumption is the cocoercivity assumption, in the unconstrained case (which is our
setting) this assumption implies the Lipchitzness of the operator. We use the cocoercivity constant
because it provides us a tighter bound that recovers the standard convex optimization convergence
rate (see discussion after Theorem 2).

Definition 3. An operator F : w — (Fg(w), Fp(w)) € R4P is said to be (g, L,,)-cocoercive, if
Jorallw,w’ € Q we have

1F(w) = F(w")|* < lo(Fo(w) — Fo(w') (6 = 8) + lyp(Fyp(w) = Fyp(w')) (0 — ') . (®)



Note that for a L-Lipschitz and y-strongly monotone operator, we have ¢ € [L, L? /] (Facchinei
and Pang, 2003). For instance, when F' is the gradient of a convex function, we have { = L. More
generally, when F(w) = (Vf(0)+ My, Vg(p) — M), where f and g are p-strongly convex and
L smooth we have that ¥ = o, (M) and | M|? = O(uL) = ¢ = O(L). Under this assumption
on each cost function of the game operator, we can define a cocoercivity constant adapted to the
non-uniform sampling scheme of our stochastic algorithm:

{(m)? = 1 zn: L g ©)
T n —~ nm; i
The standard uniform sampling scheme corresponds to m; := l and the optimal non-uniform sampling
scheme corresponds to 7; := fi' By Jensen’s 1nequa11ty, we have: £(7) < £(7) < max; ¢;.

i= 1
For our main result, we make strong convexity, cocoercivity and regularity assumptions.

Assumption 1. For 1 < i < n, the gradients VoL and V ,LP are respectively (S and (P -

cocoercive and (e, )-regular. The operator (6) is (jig, i, )-Strongly monotone.

We now present our convergence result for SVRE with non-uniform sampling (to make our constants
comparable to those of Palaniappan and Bach (2016)), but note that we have used uniform sampling
in all our experiments (for simplicity).

Theorem 2. Under Assumptwn 1, after t lteratlons the iterate wy := (0, p;) computed by SVRE

(Alg. 1) with step-size ng < 40z and n, < 4()[ and sampling scheme (Tg, 7,) verifies:
t
. 1 N33 Mpve 4 .
Elllw —w* 3] < | 1 - 5 min< nopo + =2 nop, + —52, — 1 | Effwo —w*[3].
2 ) 5 on
where lg(mg) and {,(7,) are defined in (9). Particularly, for ng = 107, and Ny = 1 we get

t
2 2
. pe | 7 p gl 2 .
Ewr — " [3] < (1 mm{ (3 * 1) (55 +45‘g2) - }) Elwo - w[13).
o

We prove this theorem in § C.2. We can notice that the respective condition numbers of L& and L7
defined as kg := “" + 2 and Ky 1= “ =2 + appear in our convergence rate. The cocoercivity

constant ¢ belongs to [L, L /1], thus our rate may be significantly faster® than the convergence rate
of the (non-accelerated) algorithm of Palaniappan and Bach (2016) that depends on the product

%—Z g—"’ They avoid a dependence on the maximum of the condition numbers squared, max{ni, Ko},
°

by using the weighted Euclidean norm (8, ¢) defined in (8) and rescaling the functions £ and
LP with their strong-monotonicity constant. However, this rescaling trick suffers from two issues:
(i) we do not know in practice a good estimate of the strong monotonicity constant, which was not
the case in Palaniappan and Bach (2016)’s application; and (ii) the algorithm does not adapt to
local strong-monotonicity. This property is important in non-convex optimization since we want the
algorithm to exploit the (potential) local stability properties of a stationary point.

3.3 Motivating example

The example (14) for ¢ = 0 seems to be challenging in the stochastic setting since all the
standard methods and even the stochastic extragradient method fails to find its Nash equilib-
rium (note that this example is not strongly monotone). We set n = d = 100, and draw
[Ai]kl = (Skli and [bl]ka [Cz]k ~ N(O,l/d), 1 < k’,l < d, where 6kli =1ifk=1=17and 0
otherwise. Our optimization problem is:

n

. 1 T T T
;IGH]R% ;nea]gg - ;(0 b,+0 Ap+c o). (10)

SParticularly, when F is the gradient of a convex function (or close to it) we have £ /= L and thus our rate
recovers the standard In(1/€) L/, improving over the accelerated algorithm of Palaniappan and Bach (2016).



We compare variants of the following algorithms (with uniform sampling and average our results over
5 different seeds): (i) AltSGD: the standard method to train GANs—stochastic gradient with alternating
updates of each player. (ii) SVRE: Alg. 1. The AVG prefix correspond to the uniform average of
the iterates, w := % ZZ;}J ws. We observe in Fig. 4 that AVG-SVRE converges sublinearly (whereas
AVG-AItSGD fails to converge).

This motivates a new variant of SVRE based on the idea that even if the averaged iterate converges,
we do not compute the gradient at that point and thus we do not benefit from the fact that this iterate
is closer to the optimums (see § A.1). Thus the idea is to occasionally restart the algorithm, i.e.,
consider the averaged iterate as the new starting point of our algorithm and compute the gradient at
that point. Restart goes well with SVRE as we already occasionally stop the inner loop to recompute
1%, at which point we decide (with a probability p to be fixed) whether or not to restart the algorithm
by taking the snapshot at point w; instead of w;. This variant of SVRE is described in Alg. 3in § E
and the variant combining VRAd in § D.1.

In Fig. 4 we observe that the only method that converges is SVRE and its variants. We do not provide
convergence guarantees for Alg. 3 and leave its analysis for future work. However, it is interesting
that, to our knowledge, this algorithm is the only stochastic algorithm (excluding batch extragradient
as it is not stochastic) that converge for (14). Note that we tried all the algorithms presented in Fig. 3
from Gidel et al. (2019a) on this unconstrained problem and that all of them diverge.

4 GAN Experiments

In this section, we investigate the empirical performance of SVRE for GAN training. Note, however,
that our theoretical analysis does not hold for games with non-convex objectives such as GANs.

Datasets.  We used the following datasets: (i) MNIST (Lecun and Cortes), (ii) CIFAR-10
(Krizhevsky, 2009, §3), (iii) SVHN (Netzer et al., 2011), and (iv) ImageNet ILSVRC 2012 (Rus-
sakovsky et al., 2015), using 28 x 28, 3 x 32 x 32, 3x 32x 32, and 3 x 64 x 64 resolution, respectively.

Metrics. We used the Inception score (IS, Salimans et al., 2016) and the Fréchet Inception
distance (FID, Heusel et al., 2017) as performance metrics for image synthesis. To gain insights if
SVRE indeed reduces the variance of the gradient estimates, we used the second moment estimate—
SME (uncentered variance), computed with an exponentially moving average. See § F.1 for details.

DNN architectures. For experiments on MNIST, we used the DCGAN architectures (Radford
et al., 2016), described in § F.2.1. For real-world datasets, we used two architectures (see § F.2 for
details and § F.2.2 for motivation): (i) SAGAN (Zhang et al., 2018), and  (ii) ResNet, replicating the
setup of Miyato et al. (2018), described in detail in § F.2.3 and F.2.4, respectively. For clarity, we
refer the former as shallow, and the latter as deep architectures.

Optimization methods. We conduct experiments using the following optimization methods for
GANS: (i) BatchE: full-batch extragradient, (ii) SG: stochastic gradient (alternating GAN), and
(iii) SE: stochastic extragradient, and (iv) SVRE: stochastic variance reduced extragradient. These
can be combined with adaptive learning rate methods such as Adam or with parameter averaging,
hereafter denoted as —A and AVG-, respectively. In § D.1, we present a variant of Adam adapted
to variance reduced algorithms, that is referred to as —=VRAd. When using the SE-A baseline and
deep architectures, the convergence rapidly fails at some point of training (cf. § G.3). This motivates
experiments where we start from a stored checkpoint taken before the baseline diverged, and continue
training with SVRE. We denote these experiments with WS-SVRE (warm-start SVRE).

4.1 Results

Comparison on MNIST. The MNIST common benchmark allowed for comparison with full-batch
extragradient, as it is feasible to compute. Fig. 3 depicts the IS metric while using either a stochastic,
full-batch or variance reduced version of extragradient (see details of SVRE-GAN in § D.2). We
always combine the stochastic baseline (SE) with Adam, as proposed by Gidel et al. (2019a). In terms
of number of parameter updates, SVRE performs similarly to BatchE-A (see Fig. 5a, § G). Note that
the latter requires significantly more computation: Fig. 3a depicts the IS metric using the number of
mini-batch computations as x-axis (a surrogate for the wall-clock time, see below). We observe that,
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Figure 3: Figures a & b. Stochastic, full-batch and variance reduced extragradient optimization on
MNIST. We used = 10~2 for SVRE. SE-A with p = 10~2 achieves similar IS performances as
n = 1072 and n = 10~%, omitted from Fig. a for clarity. Figure ¢. FID on SVHN, using shallow
architectures. See § 4 and § F for naming of methods and details on the implementation, respectively.
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See § F and § G for implementation details and

Figure 4: Distance to the optimum of (10), see additional results, respectively.

§ 3.3 for the experimental setup.

as SE-A has slower per-iteration convergence rate, SVRE converges faster on this dataset. At the end
of training, all methods reach similar performances (IS is above 8.5, see Table 9, § G).

Computational cost. The relative cost of one pass over the dataset for SVRE versus vanilla SGD is
a factor of 5: the full batch gradient is computed (on average) after one pass over the dataset, giving
a slowdown of 2; the factor 5 takes into account the extra stochastic gradient computations for the
variance reduction, as well as the extrapolation step overhead. However, as SVRE provides less noisy
gradient, it may converge faster per iteration, compensating the extra per-update cost. Note that many
computations can be done in parallel. In Fig. 3a, the x-axis uses an implementation-independent
surrogate for wall-clock time that counts the number of mini-batch gradient computations. Note that
some training methods for GANs require multiple discriminator updates per generator update, and
we observed that to stabilize our baseline when using the deep architectures it was required to use 1:5
update ratio of G:D (cf. § G.3), whereas for SVRE we used ratio of 1:1 (Tab. 2 lists the results).

Second moment estimate and Adam. Fig. 3b depicts the averaged second-moment estimate for
parameters of the Generator, where we observe that SVRE effectively reduces it over the iterations.
The reduction of these values may be the reason why Adam combined with SVRE performs poorly (as
these values appear in the denominator, see § D.1). To our knowledge, SVRE is the first optimization
method with a constant step size that has worked empirically for GANs on non-trivial datasets.

Comparison on real-world datasets. In Fig. 3c, we compare SVRE with the SE-A baseline on
SVHN, using shallow architectures. We observe that although SE-A in some experiments obtains
better performances in the early iterations, SVRE allows for obtaining improved final performances.
Tab. 2 summarizes the results on CIFAR-10 and SVHN with deep architectures. We observe that,
with deeper architectures, SE-A is notably more unstable, as training collapsed in 100% of the
experiments. To obtain satisfying results for SE-A, we used various techniques such as a schedule of
the learning rate and different update ratios (see § G.3). On the other hand, SVRE did not collapse in
any of the experiments but took longer time to converge compared to SE-A. Interestingly, although



WS-SVRE starts from an iterate point after which the baseline diverges, it continues to improve the
obtained FID score and does not diverge. See § G for additional experiments.

5 Related work

Surprisingly, there exist only a few works on variance reduction methods for monotone operators,
namely from Palaniappan and Bach (2016) and Davis (2016). The latter requires a co-coercivity
assumption on the operator and thus only convex optimization is considered. Our work provides a new
way to use variance reduction for monotone operators, using the extragradient method (Korpelevich,
1976). Recently, Iusem et al. (2017) proposed an extragradient method with variance reduction for
an infinite sum of operators. The authors use mini-batches of growing size in order to reduce the
variance of their algorithm and to converge with a constant step-size. However, this approach is
prohibitively expensive in our application. Moreover, Iusem et al. are not using the SAGA/SVRG
style of updates exploiting the finite sum formulation, leading to sublinear convergence rate, while
our method benefits from a linear convergence rate exploiting the finite sum assumption.

Daskalakis et al. (2018) proposed a method called Optimistic-Adam inspired by game theory. This
method is closely related to extragradient, with slightly different update scheme. More recently, Gidel
et al. (2019a) proposed to use extragradient to train GANS, introducing a method called ExtraAdam.
This method outperformed Optimistic-Adam when trained on CIFAR-10. Our work is also an attempt
to find principled ways to train GANs. Considering that the game aspect is better handled by the
extragradient method, we focus on the optimization issues arising from the noise in the training
procedure, a disregarded potential issue in GAN training.

In the context of deep learning, despite some very interesting theoretical results on non-convex
minimization (Reddi et al., 2016; Allen-Zhu and Hazan, 2016), the effectiveness of variance reduced
methods is still an open question, and a recent technical report by Defazio and Bottou (2018) provides
negative empirical results on the variance reduction aspect. In addition, two recent large scale studies
showed that increased batch size has: (i) only marginal impact on single objective training (Shallue
etal.,2018) and (ii) a surprisingly large performance improvement on GAN training (Brock et al.,
2019). In our work, we are able to show positive results for variance reduction in a real-world
deep learning setting. This unexpected difference seems to confirm the remarkable discrepancy, that
remains poorly understood, between multi-objective optimization and standard minimization.

6 Discussion

Motivated by a simple bilinear game optimization problem where stochasticity provably breaks the
convergence of previous stochastic methods, we proposed the novel SVRE algorithm that combines
SVRG with the extragradient method for optimizing games. On the theory side, SVRE improves
upon the previous best results for strongly-convex games, whereas empirically, it is the only method
that converges for our stochastic bilinear game counter-example.

We empirically observed that SVRE for GAN training obtained convergence speed similar to Batch-
Extragradient on MNIST, while the latter is computationally infeasible for large datasets. For shallow
architectures, SVRE matched or improved over baselines on all four datasets. Our experiments with
deeper architectures show that SVRE is notably more stable with respect to hyperparameter choice.
Moreover, while its stochastic counterpart diverged in all our experiments, SVRE did not. However,
we observed that SVRE took more iterations to converge when using deeper architectures, though
notably, we were using constant step-sizes, unlike the baselines which required Adam. As adaptive
step-sizes often provide significant improvements, developing such an appropriate version for SVRE
is a promising direction for future work. In the meantime, the stability of SVRE suggests a practical
use case for GANs as warm-starting it just before the baseline diverges, and running it for further
improvements, as demonstrated with the WS—SVRE method in our experiments.
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