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ABSTRACT

With the recently rapid development in deep learning, deep neural networks have
been widely adopted in many real-life applications. However, deep neural net-
works are also known to have very little control over its uncertainty for test ex-
amples, which potentially causes very harmful and annoying consequences in
practical scenarios. In this paper, we are particularly interested in designing a
higher-order uncertainty metric for deep neural networks and investigate its per-
formance on the out-of-distribution detection task proposed by Hendrycks & Gim-
pel (2016). Our method first assumes there exists an underlying higher-order
distribution P(z), which generated label-wise distribution P(y) over classes on
the K-dimension simplex, and then approximate such higher-order distribution
via parameterized posterior function pθ(z|x) under variational inference frame-
work, finally we use the entropy of learned posterior distribution pθ(z|x) as un-
certainty measure to detect out-of-distribution examples. However, we identify
the overwhelming over-concentration issue in such a framework, which greatly
hinders the detection performance. Therefore, we further design a log-smoothing
function to alleviate such issue to greatly increase the robustness of the proposed
entropy-based uncertainty measure. Through comprehensive experiments on vari-
ous datasets and architectures, our proposed variational Dirichlet framework with
entropy-based uncertainty measure is consistently observed to yield significant
improvements over many baseline systems.

1 INTRODUCTION

Recently, deep neural networks (LeCun et al., 2015) have surged and replaced the traditional ma-
chine learning algorithms to demonstrate its potentials in many real-life applications like speech
recognition (Hannun et al., 2014), image classification (Deng et al., 2009; He et al., 2016), and ma-
chine translation (Wu et al., 2016; Vaswani et al., 2017), reading comprehension (Rajpurkar et al.,
2016), etc. However, unlike the traditional machine learning algorithms like Gaussian Process, Lo-
gistic Regression, etc, deep neural networks are very limited in their capability to measure their
uncertainty over the unseen test cases and tend to produce over-confident predictions. Such over-
confidence issue (Amodei et al., 2016; Zhang et al., 2016) is known to be harmful or offensive in
real-life applications. Even worse, such models are prone to adversarial attacks and raise concerns
in AI safety (Goodfellow et al., 2014; Moosavi-Dezfooli et al., 2016). Therefore, it is very essen-
tial to design a robust and accurate uncertainty metric in deep neural networks in order to better
deploy them into real-world applications. Recently, An out-of-distribution detection task has been
proposed in Hendrycks & Gimpel (2016) as a benchmark to promote the uncertainty research in
the deep learning community. In the baseline approach, a simple method using the highest soft-
max score is adopted as the indicator for the model’s confidence to distinguish in- from out-of-
distribution data. Later on, many follow-up algorithms (Liang et al., 2017; Lee et al., 2017; Shalev
et al., 2018; DeVries & Taylor, 2018) have been proposed to achieve better performance on this
benchmark. In ODIN (Liang et al., 2017), the authors follow the idea of temperature scaling and
input perturbation (Pereyra et al., 2017; Hinton et al., 2015) to widen the distance between in- and
out-of-distribution examples. Later on, adversarial training (Lee et al., 2017) is introduced to explic-
itly introduce boundary examples as negative training data to help increase the model’s robustness.
In DeVries & Taylor (2018), the authors proposed to directly output a real value between [0, 1] as
the confidence measure. The most recent paper (Shalev et al., 2018) leverages the semantic dense

1



Under review as a conference paper at ICLR 2019

representation into the target labels to better separate the label space and uses the cosine similarity
score as the confidence measure.

These methods though achieve significant results on out-of-distribution detection tasks, they conflate
different levels of uncertainty as pointed in Malinin & Gales (2018). For example, when presented
with two pictures, one is faked by mixing dog, cat and horse pictures, the other is a real but unseen
dog, the model might output same belief as {cat:34%, dog:33%, horse:33%}. Under such scenario,
the existing measures like maximum probability or label-level entropy (Liang et al., 2017; Shalev
et al., 2018; Hendrycks & Gimpel, 2016) will misclassify both images as from out-of-distribution
because they are unable to separate the two uncertainty sources: whether the uncertainty is due to the
data noise (class overlap) or whether the data is far from the manifold of training data. More specifi-
cally, they fail to distinguish between the lower-order (aleatoric) uncertainty (Gal, 2016), and higher-
order (episdemic) uncertainty (Gal, 2016), which leads to their inferior performances in detecting
out-domain examples. In order to resolve the issues presented by lower-order uncertainty measures,
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Figure 1: An intuitive explanation of higher-order distribution and lower-order distribution and their
uncertainty measures.

we are motivated to design an effective higher-order uncertainty measure for out-of-distribution de-
tection. Inspired by Subjective Logic (Jøsang, 2016; Yager & Liu, 2008; Sensoy et al., 2018), we first
view the label-wise distribution P(y) as a K-dimensional variable z generated from a higher-order
distribution P(z) over the simplex Sk, and then study the higher-order uncertainty by investigating
the statistical properties of such underlying higher-order distribution. Under a Bayesian framework
with data pair D = (x, y), we propose to use variational inference to approximate such “true” latent
distribution P(z) = p(z|y) by a parameterized Dirichlet posterior pθ(z|x), which is approximated
by a deep neural network. Finally, we compute the entropy of the approximated posterior for out-
of-distribution detection. However, we have observed an overwhelming over-concentration problem
in our experiments, which is caused by over-confidence problem of the deep neural network to
greatly hinder the detection accuracy. Therefore, we further propose to smooth the Dirichlet distri-
bution by a calibration algorithm. Combined with the input perturbation method (Liang et al., 2017;
Krizhevsky & Hinton, 2009), our proposed variational Dirichlet framework can greatly widen the
distance between in- and out-of-distribution data to achieve significant results on various datasets
and architectures.

The contributions of this paper are described as follows:

• We propose a variational Dirichlet algorithm for deep neural network classification problem and
define a higher-order uncertainty measure.

• We identify the over-concentration issue in our Dirichlet framework and propose a smoothing
method to alleviate such problem.

2 MODEL

In this paper, we particularly consider the image classification problem with image input as x and
output label as y. By viewing the label-level distribution P(y) = [p(y = ω1), · · · , p(y = ωk)]

as a random variable z = {z ∈ Rk :
∑k
i=1 zi = 1} lying on a K-dimensional simplex Sk, we

assume there exists an underlying higher-order distribution P(z) over such variable z. As de-
picted in Figure 1, each point from the simplex Sk is itself a categorical distribution P(y) over
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different classes. The high-order distribution P(z) is described by the probability over such sim-
plex Sk to depict the underlying generation function. By studying the statistical properties of such
higher-order distribution P(z), we can quantitatively analyze its higher-order uncertainty by using
entropy, mutual information, etc. Here we consider a Bayesian inference framework with a given
dataset D containing data pairs (x, y) and show the plate notation in Figure 2, where x denotes
the observed input data (images), y is the groundtruth label (known at training but unknown as
testing), and z is latent variable higher-order variable. We assume that the “true” posterior dis-
tribution is encapsulated in the partially observable groundtruth label y, thus it can be viewed as
P(z) = p(z|y). During test time, due to the inaccessibility of y, we need to approximate such
“true” distribution with the given input image x. Therefore, we propose to parameterize a poste-
rior model pθ(z|x) and optimize its parameters to approach such “true” posterior p(z|y) given a
pairwise input (x, y) by minimizing their KL-divergence DKL(pθ(z|x)||p(z|y)). With the parame-
terized posterior pθ(z|x), we are able to infer the higher-order distribution over z given an unseen
image x∗ and quantitatively study its statistical properties to estimate the higher-order uncertainty.
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Image x

p(y|z)

p(z)
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Figure 2: Plate Notation

In order to minimize the KL-divergence DKL(pθ(z|x)||p(z|y)), we
leverage the variational inference framework to decompose it into two
components as follows (details in appendix):

DKL(pθ(z|x)||p(z|y)) = −L(θ) + log p(y) (1)

where L(θ) is better known as the variational evidence lower bound, and
log p(y) is the marginal likelihood over the label y.

L(θ) = E
z∼pθ(z|x)

[log p(y|z)]−DKL(pθ(z|x)||p(z)) (2)

Since the marginal distribution p(y) is constant w.r.t θ, minimizing the
KL-divergence DKL(pθ(z|x)||p(z|y)) is equivalent to maximizing the
evidence lower bound L(θ). Here we propose to use Dirichlet fam-
ily to realize the higher-order distribution pθ(z|x) = Dir(z|α) due
to its tractable analytical properties. The probability density function
of Dirichlet distribution over all possible values of the K-dimensional

stochastic variable z can be written as:

Dir(z|α) =

{
1

B(α)

∏K
i=1 z

αi−1
i for z ∈ Sk

0 otherwise,
(3)

where α is the concentration parameter of the Dirichlet distribution and B(α) =
∏K
i Γ(αi)

Γ(
∑k
i αi)

is the
normalization factor. Since the LHS (expectation of log probability) has a closed-formed solution,
we rewrite the empirical lower bound on given dataset D as follows:

L(θ) =
∑

(x,y)∈D

[ψ(αy)− ψ(α0)−DKL(Dir(z|α)||p(z))] (4)

where α0 is the sum of concentration parameter α over K dimensions. However, it is in general
difficult to select a perfect model prior to craft a model posterior which induces an the distribution
with the desired properties. Here, we assume the prior distribution is as Dirichlet distributionDir(α̂)
with concentration parameters α̂ and specifically talk about three intuitive prior functions in Figure 3.
The first uniform prior aggressively pushes all dimensions towards 1, while the *-preserving priors
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Figure 3: An intuitive explanation of different prior functions.

are less strict by allowing one dimension of freedom in the posterior concentration parameter α. This
is realized by copying the value from kth dimension of posterior concentration parameter α to the
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uniform concentration to unbindαk from KL-divergence computation. Given the prior concentration
parameter α̂, we can obtain a closed-form solution for the evidence lower bound as follows:

L(θ) =
∑

(x,y)∈D

[ψ(αy)− ψ(α0)− log
B(α̂)

B(α)
−

k∑
i=1

(αi − α̂i)(ψ(αi)− ψ(α0)) (5)

Γ denotes the gamma function, ψ denotes the digamma function. We write the derivative of L(θ)

w.r.t to parameters θ based on the chain-rule:∂L∂θ = ∂L
∂α � α · ∂fθ(x)

∂θ , where � is the Hardamard
product and ∂fθ(x)

∂θ is the Jacobian matrix. In practice, we parameterize Dir(z|α) via a neural
network with α = fθ(x) and re-weigh the two terms in L(θ) with a balancing factor η. Finally, we
propose to use mini-batch gradient descent to optimize the network parameters θ as follows:

∂L
∂α

=
∑

(x,y)∈B(x,y)

[
∂[ψ(αy)− ψ(α0)]

∂α
+ η

∂DKL(Dir(z|α)||Dir(z|α̂))

∂α
] (6)

where B(x, y) denotes the mini-batch in dataset D. During inference time, we use the marginal
probability of assigning given input x to certain class label i as the classification evidence:

p(y = i|x) =

∫
z

p(y = i|z)pθ(z|x)dz =
αi∑k
j=1 αj

(7)

Therefore, we can use the maximum α’s index as the model prediction class during inference ŷ =
arg maxi p(y = i|x) = arg maxi αi.

3 UNCERTAINTY MEASURE

After optimization, we obtain a parametric Dirichlet function pθ(z|α) and compute its entropy E as
the higher-order uncertainty measure. Formally, we write the such metric as follows:

E(α) = −C(α) = −
∫
z

zDir(z|α)dz = logB(α) + (α0 −K)ψ(α0)−
k∑
i

(αi − 1)ψ(αi) (8)

where α is computed via the deep neural network fθ(x). Here we use negative of entropy as the
confidence score C(α). By investigating the magnitude distribution of concentration parameter α
for in-distribution test cases, we can see that α is either adopting the prior α = 1.0 or adopting a
very large value α � 1.0. In order words, the Dirichlet distribution is heavily concentrated at a
corner of the simplex regardless of whether the inputs are from out-domain region, which makes the
model very sensitive to out-of-distribution examples leading to compromised detection accuracy. In
order to resolve such issue, we propose to generally decrease model’s confidence by smoothing the
concentration parameters α, the smoothing function can lead to opposite behaviors in the uncertainty
estimation of in- and out-of-distribution data to enlarge their margin.

Concentration smoothing In order to construct such a smoothing function, we experimented with
several candidates and found that the log-smoothing function α̂ = log(α+ 1) can achieve generally
promising results. By plotting the histogram of concentration magnitude before and after log-scaling
in Figure 4, we can observe a very strong effect in decreasing model’s overconfidence, which in turn
leads to clearer separation between in- and out-of-distribution examples (depicted in Figure 4). In
the experimental section, we detail the comparison of different smoothing functions to discuss its
impact on the detection accuracy.

Input Perturbation Inspired by fast gradient sign method (Goodfellow et al., 2014), we propose
to add perturbation in the data before feeding into neural networks:

x̂ = x− ε ∗ sign(∇x[ψ(α0)− ψ(αy)]) (9)

where the parameter ε denotes the magnitude of the perturbation, and (x, y) denotes the input-label
data pair. Here, similar to Liang et al. (2017) our goal is also to improve the entropy score of any
given input by adding belief to its own prediction. Here we make a more practical assumption that
we have no access to any form of out-of-distribution data. Therefore, we stick to a rule-of-thumb
value ε = 0.01 throughout our experiments.
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Smoothing

Figure 4: Concentration and confidence distribution before and after smoothing for CIFAR10 under
VGG13 architecture with iSUN as out-of-distribution dataset.

Dataset Cross-Entropy Ours
VGG13 WideResNet ResNet-18 VGG WideResNet ResNet-18

CIFAR10 93.2 - 94.4 93.8 (+0.6) - 94.8 (+0.4)
CIFAR100 - 81.4 - - 81.8 (+0.4) -

SVHN 96.8 96.7 - 95.9 (-0.9) 96.1 (-0.6) -

Table 1: Classification accuracy of Dirichlet framework on various datasets and architectures.

Detection For each input x, we first use input perturbation to obtain x̂, then we feed it into neural
network fθ(x̂) to compute the concentration α, finally we use log-scaling to calibrate α and compute
C(α̂). Specifically, we compare the confidence C(α̂) to the threshold δ and say that the data x
follows in-distribution if the confidence scoreC(α̂) is above the threshold and that the data x follows
out-of-distribution, otherwise.

4 EXPERIMENTS

In order to evaluate our variational Dirichlet method on out-of-distribution detection, we follow
the previous paper (Hendrycks & Gimpel, 2016; Liang et al., 2017) to replicate their experimental
setup. Throughout our experiments, a neural network is trained on some in-distribution datasets to
distinguish against the out-of-distribution examples represented by images from a variety of unre-
lated datasets. For each sample fed into the neural network, we will calculate the Dirichlet entropy
based on the output concentration α, which will be used to predict which distribution the samples
come from. Finally, several different evaluation metrics are used to measure and compare how well
different detection methods can separate the two distributions.

4.1 IN-DISTRIBUTION AND OUT-OF-DISTRIBUTION DATASET

These datasets are all available in Github 1.

• In-distribution: CIFAR10/100 (Krizhevsky & Hinton, 2009) and SVHN (Netzer et al., 2011),
which are both comprised of RGB images of 32× 32 pixels.

• Out-of-distribution: TinyImageNet (Deng et al., 2009), LSUN (Yu et al., 2015) and iSUN (Xiao
et al., 2010), these images are resized to 32× 32 pixels to match the in-distribution images.

Before reporting the out-of-distribution detection results, we first measure the classification accuracy
of our proposed method on the two in-distribution datasets in Table 1, from which we can observe
that our proposed algorithm has minimum impact on the classification accuracy.

4.2 TRAINING DETAILS

In order to make fair comparisons with other out-of-distribution detectors, we follow the same set-
ting of Liang et al. (2017); Zagoruyko & Komodakis (2016); DeVries & Taylor (2018); Shalev et al.
(2018) to separately train WideResNet (Zagoruyko & Komodakis, 2016) (depth=16 and widening
factor=8 for SVHN, depth=28 and widening factor=10 for CIFAR100), VGG13 (Simonyan & Zis-
serman, 2014), and ResNet18 (He et al., 2016) models on the in-distribution datasets. All models are

1https://github.com/ShiyuLiang/odin-pytorch
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trained using stochastic gradient descent with Nesterov momentum of 0.9, and weight decay with
5e-4. We train all models for 200 epochs with 128 batch size. We initialize the learning with 0.1
and reduced by a factor of 5 at 60th, 120th and 180th epochs. we cut off the gradient norm by 1 to
prevent from potential gradient exploding error. We save the model after the classification accuracy
on validation set converges and use the saved model for out-of-distribution detection.

4.3 EXPERIMENTAL RESULTS

We measure the quality of out-of-distribution detection using the established metrics for this
task (Hendrycks & Gimpel, 2016; Liang et al., 2017; Shalev et al., 2018). (1) FPR at 95% TPR
(lower is better): Measures the false positive rate (FPR) when the true positive rate (TPR) is equal
to 95%. (2) Detection Error (lower is better): Measures the minimum possible misclassification
probability defined by minδ{0.5Pin(f(x) ≤ δ) + 0.5Pout(f(x) > δ)}. (3) AUROC (larger is
better): Measures the Area Under the Receiver Operating Characteristic curve. The Receiver Oper-
ating Characteristic (ROC) curve plots the relationship between TPR and FPR. (4) AUPR (larger is
better): Measures the Area Under the Precision-Recall (PR) curve, where AUPR-In refers to using
in-distribution as positive class and AUPR-Out refers to using out-of-distribution as positive class.

Model OOD-
Dataset Method FPR Detection

Error AUROC AUPR
In

AUPR
Out(TPR=0.95)

VGG13

iSUN

Baseline 43.8 11.4 94 95.5 91.5
CIFAR-10 ODIN 22.4 10.2 95.8 96.3 94.9

BNN 56.4 14.6 91.2 93.6 84.4
Confidence 16.3 8.5 97.5 98 96.9
Ours 10.9 6.9 98.0 98.4 97.7

LSUN-
resized

Baseline 41.9 11.5 94 95.1 92.2
ODIN 20.2 9.8 95.9 95.8 95.8
BNN 52.4 14.2 91.3 93.8 86.7
Confidence 16.4 8.3 97.5 97.8 97.2
Ours 9.9 6.6 98.1 98.4 97.9

Tiny-
ImageNet

Baseline 43.8 12 93.5 94.6 91.7
ODIN 24.3 11.3 95.7 95.9 95.9
BNN 53.7 16.9 90.2 91.9 82.6
Confidence 18.4 9.4 97 97.3 96.9
Ours 13.8 7.9 97.5 97.8 97.3

VGG13

iSUN

Baseline 10 6 98 99.3 93.7
SVHN ODIN 1.6 2.95 99.5 99.8 98.8

Confidence 0.9 2.3 99.7 99.9 98.9
Ours 0.5 1.8 99.7 99.9 99.6

LSUN-
resized

Baseline 9.4 5.7 98.1 99.3 94.3
ODIN 1.4 2.6 99.6 99.7 99.1
Confidence 1 2.3 99.7 99.9 99
Ours 0.8 2.2 99.8 99.9 99.2

Tiny-
ImageNet

Baseline 11.4 6.2 97.8 99.2 93.7
ODIN 2.3 3.4 99.3 99.7 98.6
Confidence 1.5 2.8 99.5 99.8 98.7
Ours 1.4 2.3 99.7 99.8 99.2

Table 2: Experimental Results on VGG13 architecture, where Confidence refers to Learning Confi-
dence algorithm (DeVries & Taylor, 2018), BNN refers to Bayesian Neural Network (Gal, 2016).

We report our VGG13’s performance in Table 2 and ResNet/WideResNet’s performance in Ta-
ble 3 under groundtruth-preserving prior, where we list the performance of Baseline Hendrycks
& Gimpel (2016), ODIN Liang et al. (2017), Bayesian Neural Network (Gal, 2016)2, Semantic-
Representation (Shalev et al., 2018) and Learning-Confidence (DeVries & Taylor, 2018). The results
in both tables have shown remarkable improvements brought by our proposed variational Dirichlet
framework. For CIFAR datasets, the achieved improvements are very remarkable, however, the FPR
score on CIFAR100 is still unsatisfactory with nearly half of the out-of-distribution samples being

2We use the variational ratio as uncertainty measure to perform out-of-distribution detection, specifically,
we forward Bayesian deep network 100 times for each input sample for Monte-Carlo estimation.
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Model OOD- Method FPR Detection AUROC AUPR AUPR
Dataset (TPR=0.95) Error In Out

ResNet18 iSUN Baseline 52.6 13.6 92.4 94.6 88.9
CIFAR-10 ODIN 22.7 9.6 96.3 97.2 95

Semantic 21.5 9.2 96.3 97.1 94.3
Ours 13.8 8.4 97.1 97.4 96.8

LSUN- Baseline 50.2 12.3 93.1 94.8 90.8
resized ODIN 17.9 8.4 96.9 97.5 96.3

Semantic 23 14 96 96.7 94.8
Ours 12.1 6.3 97.4 97.4 97.5

Tiny- Baseline 59 15.1 91.1 93.2 88.1
ImageNet ODIN 32.1 11.2 94.9 95.8 93.6

Semantic 32.1 13.1 93.2 94.2 90.6
Ours 18.4 9.9 95.9 95.8 96.1

WideResNet iSUN Baseline 9.6 5.9 98 99.3 93.4
SVHN ODIN 1.1 2.7 99.6 99.8 99.1

Ours 0.8 1.8 99.8 99.9 99.5
LSUN- Baseline 9.5 5.8 98 99.3 94
resized ODIN 1.5 2.9 99.6 99.8 99

Ours 0.6 1.5 99.8 99.9 99.5
Tiny- Baseline 10.6 6.1 97.8 99.2 93.6
ImageNet ODIN 2.1 3.2 99.5 99.8 98.8

Ours 1.8 2.8 99.8 99.8 99.5

Table 3: Experimental results for ResNet architecture, where Semantic refers to multiple semantic
representation algorithm (Shalev et al., 2018)

wrongly detected. For the simple SVHN dataset, the current algorithms already achieve close-to-
perfect results, therefore, the improvements brought by our algorithm is comparatively minor.

4.4 ABLATION STUDY

In order to individually study the effectiveness of our proposed methods (entropy-based uncertainty
measure, concentration smoothing, and input perturbation), we design a series of ablation experi-
ments in Figure 5. From which, we could observe that concentration smoothing has a similar influ-
ence as input perturbation, the best performance is achieved when combining these two methods.
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Figure 5: Ablation experiments for VGG13 architecture to investigate the impact of our proposed
smoothing with CIFAR10 as in-distribution dataset and iSUN/LSUN as out-of-distribution dataset.

Here we mainly experiment with four different priors and depict our observations in Figure 6. From
which, we can observe that the non-informative uniform prior is too strong assumption in terms
of regularization, thus leads to inferior detection performances. In comparison, giving model one
dimension of freedom is a looser assumption, which leads to generally better detection accuracy.
Among these two priors, we found that preserving the groundtruth information can generally achieve
slightly better performance, which is used through our experiments.

We also investigate the impact of different smoothing functions on the out-of-distribution detec-
tion accuracy. For smoothing functions, we mainly consider the following function forms:

√
x,

3
√
x, log(1 + x), x, x2, Sigmoid(x) and SoftSign(x). Here we use Sigmoid(x), SoftSign(x)

(range=[0, 1]) as baselines to investigate the impact of the range of smoothing function on the de-

7



Under review as a conference paper at ICLR 2019

95 96 9598.1 98.4 97.9

73

60

82

65

55

77

0

20

40

60

80

100

120

AUROC AUPR-In AUPR-Out

Study of Different Priors on CIFAR10/LSUN

Prediction-Preserving Groundtruth-Preserving Uniform None Prior

96 96 9598 98.4 97

71.9

61.1

80

65
61

73

0

20

40

60

80

100

120

AUROC AUPR-In AUPR-Out

Study of Different Priors on CIFAR10/iSUN

Prediction-Preserving Groundtruth-Preserving Uniform None Prior

Figure 6: Impact of different prior distributions. The network architecture is VGG13 with CIFAR10
as in-distribution dataset and iSUN/LSUN as out-of-distribution dataset.

tection accuracy, and use x, x2 as baselines to investigate the impact of compression capability
of smoothing function on the detection accuracy. From Figure 7, we can observe that the first three
smoothing functions greatly outperforms the baseline functions. Therefore, we can conclude that the
smoothing function should adopt two important characteristics: 1) the smoothing function should
not be bounded, i.e. the range should be [0,∞]. 2) the large values should be compressed.
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Figure 7: Impact of different smoothing functions. The network architecture is VGG13 with in-
distribution CIFAR10 dataset and out-of-distribution iSUN/LSUN dataset.

5 RELATED WORK

The novelty detection problem (Pimentel et al., 2014) has already a long-standing research topic
in traditional machine learning community, the previous works (Vincent & Bengio, 2003; Ghoting
et al., 2008; Schlegl et al., 2017) have been mainly focused on low-dimensional and specific tasks.
Their methods are known to be unreliable in high-dimensional space. Recently, more research
works about detecting an anomaly in deep learning like Akcay et al. (2018) and Lee et al. (2017),
which propose to leverage adversarial training for detecting abnormal instances. In order to make
the deep model more robust to abnormal instances, different approaches like Bekker & Goldberger
(2016); Xiao et al. (2015); Li et al. (2017); Lathuilière et al. (2018) have been proposed to increase
deep model’s robustness against outliers during training. Another line of research is Bayesian Net-
works (Gal & Ghahramani, 2016; 2015; Gal, 2016; Kingma et al., 2015), which are powerful in
providing stochasticity in deep neural networks by assuming the weights are stochastic. However,
Bayesian Neural Networks’ uncertainty measure like variational ratio and mutual information rely
on Monte-Carlo estimation, where the networks have to perform forward passes many times, which
greatly reduces the detection speed.

6 CONCLUSION

In this paper, we aim at finding an effective way for deep neural networks to express their uncertainty
over their output distribution. Our variational Dirichlet framework is empirically demonstrated to
yield better results, but its detection accuracy on a more challenging setup like CIFAR100 is still
very compromised. We conjecture that better prior Dirichlet distribution or smoothing function
could help further improve the performance. In the future work, we plan to apply our method to
broader applications like natural language processing tasks or speech recognition tasks.
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Appendices
A DERIVATION

Here we want to approximate the parameterized function towards to true distribution over latent
variable z, which we write as:

DKL(pθ(z|x)||P(z))

=DKL(pθ(z|x)||p(z|y)

=

∫
z

pθ(z|x) log
pθ(z|x)

p(z|y)
dz

=

∫
z

pθ(z|x) log
pθ(z|x)p(y)

p(z, y)
dz

=

∫
z

pθ(z|x) log
pθ(z|x)

p(z, y)
dz + log p(y)

=

∫
z

pθ(z|x) log
pθ(z|x)

p(z)p(y|z)
dz + log p(y)

=

∫
z

pθ(z|x) log
pθ(z|x)

p(z)
dz −

∫
z

pθ(z|x) log p(y|z)dz + log p(y)

=KL(pθ(z|x)||p(z))− E
z∼pθ(z|x)

[log p(y|z)] + log p(y)

=− [ E
z∼pθ(z|x)

[log p(y|z)]−KL(pθ(z|x)||p(z))] + log p(y)

=− L(θ) + log p(y)

(10)

B DETAILED DATASET

• CIFAR10/100 (in-distribution): The CIFAR-10 and CIFAR100 dataset (Krizhevsky & Hinton,
2009) consists of RGB images of 32 × 32 pixels. Each image is classified into 10/100 classes,
such as dog, cat, automobile, or ship. The training split for both datasets is comprised of 50,000
images, while the test split is comprised of 10,000 images.
• SVHN (in-distribution): The Street View Housing Numbers (SVHN) dataset (Netzer et al.,

2011) consists of colored housing number pictures ranging from 0 to 9. Images are also with a
resolution of 32× 32. The official training split is comprised of 73,257 images, and the test split
is comprised of 26,032 images.
• TinyImageNet (out-of-distribution): The TinyImageNet dataset2 is a subset of the ImageNet

dataset (Deng et al., 2009). The test set for TinyImageNet contains 10,000 images from 200 dif-
ferent classes for creating the out-of-distribution dataset, it contains the original images, down-
sampled to 32× 32 pixels.

11

http://www.bmva.org/bmvc/2016/papers/paper087/index.html


Under review as a conference paper at ICLR 2019

• LSUN (out-of-distribution): The Large-scale Scene UNderstanding dataset (LSUN) (Yu et al.,
2015) has a test set consisting of 10,000 images from 10 different scene classes, such as bed-
room, church, kitchen, and tower. We downsample LSUN’s original image and create 32 × 32
images as an out-of-distribution dataset.

• iSUN (out-of-distribution): The iSUN dataset (Xiao et al., 2010) is a subset of the SUN dataset,
containing 8,925 images. All images are downsampled to 32× 32 pixels.

C EFFECTS ON KL-DIVERGENCE

Here we investigate the impact of KL-divergence in terms of both classification accuracy and detec-
tion errors. By gradually increasing the weight of KL loss (increasing the balancing factor η from 0
to 10), we plot their training loss curve in Figure 8. With a too strong KL regularization, the model’s
classification accuracy will decrease significantly. As long as η is within a rational range, the clas-
sification accuracy will become stable. For detection error, we can see from Figure 8 that adopting
either too large value or too small value can lead to compromised performance. For the very small
value η → 0, the variational Dirichlet framework degrades into a marginal log-likelihood, where the
concentration parameters are becoming very erratic and untrustworthy uncertainty measure without
any regularization. For larger η > 1, the too strong regularization will force both in- and out-
of-distribution samples too close to prior distribution, thus erasing the difference between in- and
out-of-distribution becomes and leading to worse detection performance. We find that adopting a
hyper-parameter of η = 0.01 can balance the stability and detection accuracy.

\eta Classification
accuracy

FPR  at 
(TPR=0.95)

0 93.8 0.45

0.001 94.8 0.26

0.005 94.4 0.19

0.01 94.4 0.13

0.05 94.2 0.18

0.1 94.1 0.28

1 93.4 0.29

5 91.2 0.33

10 88.7 0.42
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Figure 8: The training loss curve under ResNet18 on CIFAR10 dataset for different η is demon-
strated on the left side, the accuracy and out-of-distirbution detection results on the right side.

D RESULTS ON CIFAR100

Here we particularly investigate the out-of-distribution detection results of our model on CIFAR100
under different scenarios. Our experimental results are listed in Table 4.
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Model OOD- Method FPR Detection AUROC AUPR AUPR
Dataset (TPR=0.95) Error In Out

WideResNet iSUN Baseline 82.7 43.9 72.8 74.2 69.2
CIFAR100 ODIN 57.3 31.1 85.6 85.9 84.8

Semantic 61.1 34.7 81.1 81.2 80.5
Ours 44.7 25.3 88.4 88.2 88.1

LSUN- Baseline 82.2 43.6 73.9 75.7 70.1
resized ODIN 56.5 30.8 86 86.2 84.9

Semantic 59.1 33.5 81.4 81.8 80.6
Ours 45.9 27.3 87.9 88.1 87.9

Tiny- Baseline 79.2 42.1 72.2 70.4 70.8
ImageNet ODIN 55.9 30.4 84.0 82.8 84.4

Semantic 59.3 31.5 82.8 81.3 81.3
Ours 51.2 28.6 86.1 84.9 86.1

Table 4: Experimental results for ResNet architecture, where Semantic refers to multiple semantic
representation algorithm (Shalev et al., 2018)
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