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ABSTRACT

Hierarchical Reinforcement Learning is a popular method to exploit temporal ab-
stractions in order to tackle the curse of dimensionality. The options framework is
one such hierarchical framework that models the notion of skills or options. How-
ever, learning a collection of task-agnostic transferable skills is a challenging task.
Option discovery typically entails using heuristics, the majority of which revolve
around discovering bottleneck states. In this work, we adopt a method comple-
mentary to the idea of discovering bottlenecks. Instead, we attempt to discover
“landmark™ sub-goals which are prototypical states of well connected regions.
These sub-goals are points from which a densely connected set of states are easily
accessible. We propose a new model called Successor options that leverages Suc-
cessor representations to achieve the same. We also design a novel pseudo-reward
for learning the intra-option policies. Additionally, we describe an Incremental
Successor options model that iteratively builds options and explores in environ-
ments where exploration through primitive actions is inadequate to form the Suc-
cessor representations. Finally, we demonstrate the efficacy of our approach on
a collection of grid worlds and on complex high dimensional environments like
Deepmind-Lab.

1 INTRODUCTION

Reinforcement Learning (RL) (Sutton & Barto} [1998) has garnered significant attention recently
due to its success in challenging high-dimensional tasks (Mnih et al.l 2015;/2016; Silver et al., 2016;
Hessel et al.| 2017 [Lillicrap et al., 2015} |Oh et al.| [2016; [Schulman et al., 2015). Deep Learning
has had a major role in the achievements of RL by enabling generalization across a large number of
states using powerful function approximators. Nevertheless, there exists vast room for improvement
in terms of exploration and sample complexity that cannot be addressed solely using Deep Learning.
Hierarchical Reinforcement Learning (HRL) is one potential strategy that mitigates the curse of
dimensionality using temporal abstraction. Recent work (Vezhnevets et al., 2017 [Kulkarni et al.,
2016a; Bacon et al.|, [2017) has attempted to use a hierarchy of controllers operating in different
time-scales, in order to search large state spaces rapidly.

The options framework (Sutton et al.| [1999) is an example of a hierarchical approach that models
temporally extended actions or skills. The discovery of options has not been effectively addressed
and is known to be a hard task. Meticulously designing the options is often required to reap the
benefits of the options framework. While there are a number of approaches to this problem, a large
fraction of literature revolves around discovering options that navigate to bottleneck states (Mc-
Govern & Barto, 2001; [Simsek & Barto), 2004; Simgek et al., 2005; [Menache et al.| |2002)). In this
work, we adopt a paradigm that fundamentally differs from the idea of identifying bottleneck states
as sub-goals. Instead, we attempt to discover landmark or prototypical states of well connected re-
gions while ensuring that they are also spread apart. Building on this intuition, we propose Successor
Options, a sub-goal discovery and intra-option policy learning framework.

While bottlenecks have their utility in many scenarios (discovering keys or doors), Successor options
discover options that are likely to be better for exploration. The sub-goals provide greater accessi-
bility to a larger number of states within a well connected region allowing an agent to effectively
explore within that region. We validate this claim on a number of grid world tasks and observe
faster learning in all of the tasks. To discover the options, we leverage Successor representations
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Figure 1: Overview of steps involved in our option discovery algorithm

(SR) (Dayanl [1993) to learn the sub-goals and the intra-option policy. Successor representation is a
vector encoding the expected discounted visitation counts of all states in the future. The SR varies
with the policy since the visitation counts of the states depend on the policy being executed to esti-
mate these counts. The first step in our option discovery method involves collecting the SRs of all
states. The sub-goals are then identified by clustering a large sample (or all) of the SR vectors and as-
signing the cluster centers as the various sub-goals. This steps discovers a collection of goals which
are well separated in the Successor representation space. Since the SR encodes information about
the consequently occurring states, the cluster centers translate to sub-goals that have vastly different
successor states, meaning different sub-goals provide access to a different region in state-space. The
overview of our option discovery procedure is summarized in Figure

Building the Successor representation however relies on the usage of primitive actions to navigate
the state space (required to estimate discounted visitation counts). To mitigate the same, we propose
an Incremental Successor Option algorithm. This method works in an iterative fashion where each
iteration involves an option discovery step and an SR update step. The updated SR is used to form a
more accurate set of options. These newly formed options improve the SR updates in the consequent
iteration. This synergy enables the rapid learning of Successor representations by improving sample
efficiency.

Successor Options offer a number of advantages. While an intermediate clustering step segments the
algorithm into distinct stages (non-differentiability introduced), the step is critical in many aspects.
Firstly, the number of options k, is specified beforehand which allows the model to adapt by finding
k most suited sub-goals. The algorithm does not require the pruning of options from a very large set
unlike other works (McGovern & Barto} 2001} Simsek & Barto, 2009; Machado et al., 2017). The
clustering also ensures robust options since the cluster centroids are an average of many Successor
representations. Furthermore, the discovered options are reward agnostic and are easily transferable
across multiple tasks. This enables solving a plethora of tasks varying solely in reward structure,
in a rapid fashion. The sub-goals are relevant even in cases where the environment has no natural
bottlenecks and hence has wider applicability. Lastly, the algorithm is easily extended to function
approximators since Successor representations have a suitable neural network formulation (Kulkarni
et al.l [2016b; Barreto et al., 2017).

The principle contributions of this paper are as follows : (i) An automatic option discovery mech-
anism revolving around identifying landmark states, (ii) A novel pseudo reward for learning the
intra-option policies that extends to function approximators (iii) An incremental approach that alter-
nates between exploration and option construction to navigate the state space in tasks with a fixed
horizon setup where primitive actions fail to explore fully.

2 PRELIMINARIES

Reinforcement Learning deals with sequential decision making tasks and considers the interaction
of an agent with an environment. It is traditionally modeled by a Markov Decision Process (MDP)
(Puterman, (1994), defined by the tuple (S, A, P, p,,,), where S defines the set of states, .4 the
set of actions, P : S x A — S the transition function, p, the probability distribution over initial
states, 7: S X 8§’ X A — R the reward function and ~ the discount factor. A policy dictates the
behaviour of the agent in an environment. More formally, a policy is denoted by 7(s): S — P(A),
where P(A) defines a probability distribution over actions a € A in a state s € S. In the context
of optimal control, the objective is to learn a policy that maximizes the discounted return R; =

T i . .
Doict =1 r(s;, 8541, a;), where r(s;, Sip1,a;) is the reward function.
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Deep Q-learning: Q-learning (Watkins & Dayan, [1992) attempts to estimate the optimal action-
value function Q*(s,a). It exploits the Bellman optimality equation, the repeated application of
which leads to convergence to @*(s, a). The optimal value function can be used to behave optimally
by selecting action a in every state such that a € argmax,, Q(s,a’)

Q(st,a1)  Qs1,a0) + @ [re41 + ymax Q(sit1,a') — Q(st, ar) (D

Mnih et al.|(2015) introduce Deep Q-learning, that extends Q-learning to high dimensional spaces
by using a neural network to model Qg (s, a). The authors use the TD-error to back-propagate the
gradients which are used to learn the parameters 6. A delayed target-network and an experience
replay (Mnih et al., 2015) are typically utilized to stabilize the training and reduce the correlation
between samples in a mini-batch.

Options and Semi-Markov Decision Processes: Options (Sutton et al., [1999) provide a frame-
work to model temporally extended actions. Formally, an option is defined using the 3-state tuple
: (Z,B,m), where Z C § is the initiation set, 8 : S — [0, 1] the termination probabilities for each
state and 7 : S — P(A) the intra-option policy. In this work, we assume that the intra-option
policies satisfy the Markov assumption.

The options can be understood as a sequence of actions and hence naturally fit into the Semi-Markov
decision process framework (Puterman, [1994). The Markov nature of intra-option policies can be
exploited using intra-option value function updates (Sutton et al.l [1999). This enables learning the
value function associated with one option while executing another.

Successor Representation: The Successor Representation (SR) (Dayan, [1993)) represents a state s
in terms of its successors. The SR for s is defined as a vector of size |S| with the i** index equal
to the discounted future occupancy for state s; given the agent starts from s. Since the SR captures
the visitation of successor states, it is directly dependent on the policy 7 and the transition dynamics
p(St41]|8¢, ar). More concretely, the SR can be written as follows:

Vr(s,s) = Ey pamn lz V(sy =s) | so = S] 2)
t=0

where, I(.) is 1 if its argument is true, else O (indicator function). The SR can be learnt in a temporal
difference (TD) like fashion by writing it in terms of the SR of the next state.

Bls,) —dls.9) + | Lo+alh(s, )] - (s, )] 3

The above equation is for state samples s, s, where 7,/} is the estimate of SR being learnt and 1
is a one-hot vector with all zeros except a 1 at the s position. Successor Representations can be
naturally extended to the deep setting (Kulkarni et al., | 2016b; Barreto et al., 2017) as follows (note
@(s) is feature representation of s) :

Vr(s650) = E [@(s¢) + 7 Yr (56413 0)] “4)

3 PROPOSED METHOD

Option discovery has typically involved some form of bottleneck discovery in many prior works.
Bottleneck states can be discovered in a myriad of ways, such as finding states that are frequently
visited while executing successful trajectories (McGovern & Bartol [2001), or by identifying states
that connect different densely connected regions of the state space (Menache et al.,[2002)). Learning
options that go to such bottleneck states have been shown to accelerate learning and improve explo-
ration. Successor Options (SR-options) adopts an approach which attempts to discover sub-goals
that are representative of well connected regions. This technique exhibits two advantages, (i) of
learning useful options without extrinsic reward, i.e. latent learning scenarios and (ii) of learning
to explore the state space incrementally in scenarios where primitive actions are unable to facilitate
full exploration.
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Figure 2: Successor Representations in two room domain: The first two images from the left are
the SRs for states in two different rooms. The last two images show SR as pseudo reward used for
learning an option that terminates at one of the cluster centers (shown in yellow).

3.1 SUCCESSOR OPTIONS

In learning Successor Options, the first step involves learning the SR. This is followed by clustering
states based on the learnt SR (We utilize K-means++ (Arthur & Vassilvitskii, 2007)). Since the SR
captures temporally close-by states efficiently, we are able to generate clusters which are spread
across the state space, with each cluster assigned to a set of states that are densely connected. The
SR can be understood to encode the connectivity of the underlying graph of the environment as
evident in Figure 2] We wish to learn options over a given clustering, since the cluster centers act
as landmark states or sub-goals for these options. Hence, a sub-goal is that state whose SR has the
largest cosine similarity to a corresponding cluster center. The sub-goal discovery step is followed
by learning the intra-option policies corresponding to every sub-goal.

Latent Learning: In order to learn option policies, we attempt to ascend the SR of the cluster center.
This intuition is translated into an appropriate reward over which the policy is learnt. Figure [2]is
the Successor Representation of a state learnt using the uniformly random policy which highlights
why climbing the SR of the sub-goal is a valid choice. The reward function used, is formalized in
equation [5] (1), is the SR of state s) . This provides a dense reward which ensures that steps toward
the sub-goal are positively rewarded while moving away from the cluster center is penalized. Note
that an approximately developed SR is often a sufficient signal for learning optimal options.

T, (8, at, St41) = Ys(5e41) — Ys(5t) 5)

Every option has every state in it’s initiation set. The termination set of every option is the set of all
states satisfying Q(s,a) < 0. The intra-option policy, is that learnt from the pseudo reward. Now
that the options are obtained, the only remaining step is to use SMDP Q-learning to learn a policy
over the discovered options.

3.2 INCREMENTAL SUCCESSOR OPTIONS

Here we consider the case where the agent is unable to explore the whole state space with only
primitive actions in finite time. This hinders the learning of usable Successor representations, critical
to the SR options algorithm. We wish to explore incrementally and learn options which cover all
parts of the state space in order to facilitate learning for reward based tasks. This is especially
important in sparse reward long horizon tasks where exploration can be facilitated using reward
independent options. While incrementally exploring and learning options, no extrinsic reward is
considered. We propose iteratively learning the SR and options using the above mentioned clustering
scheme. The policy used for learning the SR is augmented with the previously learnt options to allow
traversing between distinct clusters in the state space. However, since the SR directly depends on the
policy, we do not update the SR while executing an option. This is desirable as we want to learn SR
for a random policy and not for an option biased policy. Executing the options allows the agent to
land in well spread parts of the state space around which learning takes place only through random
actions. Therefore, the augmented policy only uses options to quickly reach dissimilar parts of the
state space and not for learning the SR itself.
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Algorithm 1 : Incremental Successor Option Learning

A+ {ag,a1,a2,...,},a; ¢ A, 0+ {} // Starting with only primitive actions
for: =1,..., N iterations do
1) < LearnSR(O + A) /1 Eq.[3

C <+ GetCandidateSubgoals()
S < ClusterSR(C, n)
Empty option set O « {} /I Relearning n new options every step
for each sub-goal s € S do
0 + LearnOption()(s)) /I Q learning with SR pseudo-reward
Store 0 in O
end for
end for
return S, O

In the above described algorithm, candidate sub-goals are a fraction of reached states. Formally, a
state s is a candidate sub-goal if SRyin < > ¥(s,:) < SRyae, Where SRy,in and SRy, are
the first and third quartile values of SR sums of all reached states respectively. Such a condition
ensures that all candidate sub-goal states have an SR that is neither fully developed nor extremely
sparse or under developed, thus providing a pseudo reward which is easy to learn over. This also
allows candidate states to be states which lead to more exploration since these are not visited as
frequently as some of the others.

3.3 SUCCESSOR OPTIONS IN THE FUNCTION APPROXIMATION SETTING

In this section we extend our formulation for successor options to real world tasks with large num-
ber of achievable states. |Kulkarni et al.| (2016b); Barreto et al.| (2017)) propose an architecture for
generating the SR in the function approximation case or Successor Feature (SF) by learning from
three signal branches, i.e. the reward prediction error, image reconstruction error and the TD error
for learning Successor Features. All three branches share the same base representation ¢(s) for
learning here. The reward prediction is required in order to compute the Q values as the dot product
of the SF v (s) and reward weight vector w. Since we do not learn for control in our case, we do
not include the reward layer in our architecture. Unlike other works (Machado et al., 2017} [Lak-
shminarayanan et al., |2016) we do not need to approximate or compute a graph Laplacian and the
formulation can be naturally extended to neural networks. The architecture used, is presented in
Figure [d Generally, an image reconstruction task acts as an auxiliary task to stabilize training and
avoid learning a trivial SF representation. We use a similar task of reconstructing an intermediate
representation instead of predicting the input image itself. The auxiliary loss hence takes the form
L auziliary = Error in Reconstruction of layer.

Following the training of SF, we collect sufficient samples of the SF vectors and stack them to form
our sample SF matrix. Similar to the tabular case, this matrix is clustered to produce SF cluster
center. For learning corresponding options, we use the dense reward given by the cluster center
SF (15) value as the reward in a standard DQN training procedure. The weights for the shared
representation are frozen when learning option policies. This is required since the rewards depend
on ¢(s) and hence should not change for a particular state. Equation@ gives the reward function(z),
is the SR of one of the cluster centers) used to train the intra-option policy.

Ty, (e, a8, 8¢41) = Vs - (P(se41) — P(s¢)) (6)

4 EXPERIMENTS AND RESULTS

We demonstrate our method on four different grid world tasks for the tabular setting and on the
Deepmind-Lab Suite tasks for the function approximation case. The grid world tasks (Figure [3) are
designed with increasing complexity both in terms of the number of states available and the structure
of rooms. This is done so as to test the generality of Successor options in learning well spread out
options, each being representative of states enclosed in close-by rooms.

L= ESR + Lauwiliury (7)
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Figure 4: Neural Network Architecture for Deep Successor Options : The Architecture is trained
in two stages. The first step involves learning the SR augmented by the re-construction loss. The
previously learnt weights are frozen following which each option learns an optimal action value
function for the corresponding pseudo reward

Visualizing Successor Option Sub-goals The sub-goals obtained using our clustering scheme
are more spread out as compared to those obtained using the eigen-option discovery framework
(Machado et al., 2017) as evident from Figure[5] Moreover, it can be easily seen that each sub-goal
works as a good landmark state for all states very close to it, i.e. landing in any of the sub-goals
allows efficiently exploring other states around them when learning for goal directed behavior. This
is not the case with sub-goals for eigen-options, which tend to be more around corners with multiple
sub-goals being discovered in the same region.

Figure 5: Visualizing sub-goals for successor option (left) and eigen-options (right). Different colour
of the sub-goals (on right image) correspond to different eigen-vectors. A single eigen-vector could
have multiple sub-goals (ex: any state in yellow region is a sub-goal for that option)

Successor Options vs Eigen-Options We compare successor options with eigen-options with re-
spect to performance in learning extrinsic reward based tasks (see Figure [6). During SMDP Q-
learning, a uniformly random policy among the options and actions (typically used in exploration)
will result in the agent spending a large fraction of it’s time near these sub-goals.
also observe this behaviour when working with eigen-options. Hence, in order to effectively
explore the environment using the exploration policy, it is important to sample actions and options
non-uniformly. Therefore, we utilize variants of both successor and eigen-options called successor
non-uniform and eigen non-uniform options which refer to sampling primitive actions at a higher
probability than the options(sampling in the exploratory policy). In all our experiments, we fix the
ratio of sampling an option to an action as 1:19.
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The task used to compare the algorithms was a binary reward task where an agent was expected to
navigate to the goal(+1 on reaching goal and +0 otherwise). We use (4, 5, 10, 10) options in each of
the grid worlds. 500 different instances of the task were run, each with a random start and goal state
and the reported plots were averaged over these 500 instances. In order to gauge the speed at which
each algorithm learns, we use the area under the return curve (AUC). Let N be the total number
of steps (primitive actions) taken in the environment during training. After every K steps, we test
the performance of the agent and note the return. The sum of the L%J different evaluations (each
occurring at an interval of K steps) is defined as the Area under the Return Curve.
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< 200- 200-
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9 1 100-
Eigen  Eigen-t -\ SR SRNL

o Egen  Egen-NU Qleaming S B Egen  EigenNU Qleaming SR shU Egen i
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Figure 6: Comparing Successor Options with eigen-options for both uniform and non uniform sam-
pling and with simple Q Learning using just primitive actions.

Incremental Successor Options We consider scenarios where learning from only primitive actions
is insufficient. Such a case resembles many real world tasks and therefore is important to show the
generality of our method. For instance, in a robotic manipulation task of pushing a block, given
enough freedom in the setup, the agent fails to hit the block with random primitive actions in given
time steps. To realize this distinction, we consider working strictly in a finite horizon setting even
when learning without an extrinsic reward, i.e. the agent restarts from a single state after every N
number of steps. Since a random policy of primitive actions is not able to reach all states inside
the horizon, adding such a constraint now makes learning the SR extremely hard for the grid world
tasks we consider. We show how using the Incremental Successor options, we are able to explore
intelligently, gradually learning the SR and finding sub-goals that slowly spread out across the whole
state space (see Figure[7).

Figure 7: Incremental Successor Options : We are able to learn spread out sub-goal policies with
an SR reward after a few iterations (left to right) where as naively iterating using SR as a proxy for
visitation count does not facilitate such exploration.

Deep Successor Options We show how clustering the successor feature vectors after learning the
deep successor representation can allow learning useful options in the maze task of the Deepmind-
Lab Suite (Figure[8). For learning option policies, we use standard DQN with the reward given as in
equation [6] We train a total of 8 options. We noted that one option crosses the doorway to get to the
other room. Another option learns to walk to the end of a corridor from the central part of the same.
The t-SNE visualization presented in the same figure indicates the learnt SR is able to categorize the
states into discrete categories. This is evident from the separation among groups of data-points.

5 RELATED WORK

Moore et al.|(1999) introduce airport hierarchies which assign different states as airports or land-
marks with various levels defined on the basis of seniority. Each state is assigned to be a landmark
only if it is reachable from a threshold number of states. The airport analogy is similar to the spread
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Figure 8: Deep Successor Options for Maze task

of clusters that we obtain for discovering options, since each airport also represents a group of sim-
ilar states. Moreover, while learning iteratively, since we only use states with an adequately learnt
SR, the candidate cluster centers are always able to leverage the SR as a dense reward and in turn
learn successful option policies.

The overwhelming majority of literature on option discovery employ techniques that revolve around
discovering bottleneck states. McGovern & Barto| (2001) describe a diverse density based solution
that casts this problem as a multiple-instance learning task. The discovered solutions are bottle-
necks since they are present in a larger fraction of positive bags. [Simsek & Barto| (2009) describe a
betweenness centrality based approach which also naturally lead to bottleneck based options. Sub-
goals based on relative novelty (Simsek & Bartol 2004) identify states that could lead to vastly
different states consequently which is closely tied to the notion of bottleneck states.

Graph partitioning methods have also been employed to find options (Simsek et al, 2005}, [Laksh-|
[minarayanan et al.l 2016, Menache et al},[2002). These methods design options that transition from
one well connected region to another. Since the sub-goals are the boundaries between two well
connected regions, these method also typically identify bottlenecks as sub-goals. In contrast, our
work attempts to discover sub-goals that are representative of a well-connected region and are well
separated in addition.

Option Critic (Bacon et al, [2017) is an end-to-end differentiable model that learns options on a
single task. However, this method is forced to specialize to a single task and the learnt options are
not easily transferable. Eigen-options Machado et al.|(2017) use the eigen-vectors of the Laplacian
as rewards to learn intra-option policies. This method however lacks a variety of sub-goals since
ascending the different eigen-vectors often correspond to reaching the same sub-goal. Our proposed
model uses a clustering stage to ensure that the sub-goals are sufficiently varied in nature. The
clustering step also provides flexibility regarding the number of options required, which is absent in
the case of eigen-options.

6 CONCLUSION

We propose a scheme for discovering options based on clustering the Successor representations. We
demonstrate that this method produces well separated and suitably located sub-goals which allows
faster exploration when learning for extrinsic reward based tasks. We also propose an iterative
approach to this setting where primitive actions are unsuitable for navigating the state space. We
show how using such an approach in latent learning scenarios allows exploring the environment
incrementally and yields useful options that can be reused for reward based tasks as well.

As future work, we aim to use Deep Successor options to achieve optimal control on sparse reward
tasks. This work assumes that the initiation set is the set of all states. We plan on looking into
ways in which we can exploit the connectivity information of the SR to determine the initiation set.
Currently, our setup uses very strict termination conditions which we could potentially turn into a
soft probabilistic approach. Our current approach does not use the rewards to shape the nature of
the options. We plan on looking into techniques that alter the policy used to generate the Successor
representation based on extrinsic rewards to build SRs on relevant parts of the state space.
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APPENDICES

A DEEP SUCCESSOR OPTION LEARNING ALGORITHM

Algorithm 1 : Deep Successor Option Learning

1) <+ LearnSF() /I Eq.
fort=1,..., H time steps do

Store 1(s¢) in T /I Using random policy of primitive actions
end for

S < ClusterSF(T)
for each subgoal . € S do

0. < LearnOption(.) // DQN with reward from equation [6]
end for

B GRID WORLD DESCRIPTION

We have 4 grid worlds in total. The dimensions of the grid worlds are 13 x 10, 10 x 10, 30 x 23 and
26 x 30 (left to right in Fig[3). The first two grid worlds are the standard two-room and four-room
domains. The tasks used for evaluation are navigation tasks where the aim is to reach a certain
randomly selected goal from a random starting location (500 such randomly chosen scenarios were
considered). The value of v = 0.95 for each of these tasks so that the agent is encouraged to finish
the task in least possible time. The agents have 5 actions from every state which include Left, right,
forward, backward and No-op. The task has a reward of O for every transition barring the transitions
into the goal state which have a reward of +1.

C DEEPMIND-LAB DOMAIN

The Deepmind-Lab task is a partially observable MDP and is a maze navigation task. We designed
our own custom maps to test the Deep Successor options Algorithm. The 4 available actions are
rotate left, rotate right, move forward or move backward. The input image is of size 320 x 240
pixels(RGB) and v = 0.99.

We designed a task presented in Table[T] * indicates walls, P indicates potential player spawn point,
G indicates the Goal (+10 reward) and A indicates Apple (+1) reward. (notation consistent with
Deepmind-Lab lua Map API)

R T
* >0 % YR %
* > % > Yo%
Ea vl v B e o O
* Yo% P> Yo%
* 0T % Y>> %
EacRaclacRa- R RS
* Yo% U %
* P> %Yy o%
¥ % U %
* g P> % UY %
* P> %Y Yo%
* P> % UY o%
P T

Table 1: DeepmindLab Task

D SUCCESSOR REPRESENTATION AND STATE GRAPHS

Successor Representations encode the information regarding the state connectivity without explicitly
modelling the same. This is advantageous over other methods that work with the graph Laplacian
since building graphs become intractable in very large state spaces. To understand the same, we
analyze the 2-dimensional projections of SRs obtained from grid worlds using t-SNE (Maaten &
Hinton| [2008). Figure [J] clearly indicates that the adjacency information of the states are present
in the SR matrix. The number of distinct clusters are highly indicative of the number distinct well
connected regions present in the environment.
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Figure 9: Visualizing successor representations using t-SNE

E COMPARING CLUSTERING TECHNIQUES AND METHODS

The clustering of Successor representations involve a number of different decisions. The clustering
algorithm is one such choice we experimented with. We looked at three algorithms, namely K-
means++ (Arthur & Vassilvitskii, [2007), K-medoids and a greedy approach. The
greedy approach is an iterative approach where each iteration adds a new sub-goal to an existing
list. The added sub-goal is selected based on the criteria of having the maximum value for the
minimum distance to all other existing list of sub-goals. The algorithm is a simple O(n?) routine.
We use the same evaluation procedure as that used Section 4, in order to compare eigen-options and
Successor options. We also run a uniform and non-uniform option-action sampling procedure for
each clustering method. The performances are shown in Figure [I0] The plots indicate that using
the K-means++ routine to obtain centroids (which is followed by choosing states closest to each of
these centroids as sub-goals) yields the highest performance.

500- 500-

@0- 400-
Type Type
[ Greeay [ Greedy
300- Greedy-NU 300~ Greedy-NU
9 o
E KMeans E KeMeans
KMeans-NU KMeans-NU
00- 200-
20 K-Medoid K-Medoid
I vedoidnu T vecoic-n
100- 100-
o- o]

“Type ! Type

Figure 10: Comparison of Clustering Techniques (for 3rd (left) and 4th (right) environments)

Euclidean distance based clustering algorithms like K-means also rely on normalizing (normaliza-
tion occurs across features) the various data-points across dimensions. We look at the effect of the
same on performance, using a setup identical to that in Section 4, which was used to compare eigen-
options and Successor options. From Figure[T1] the unnormalized version of the SR has a superior
performance. We attribute this to the fact that the L; norm of the SR is identical for every state on
convergence. Hence, there is no explicit need for a normalization step.

The equation below gives the expression for the L; norm of the SR. It is in-fact dependent only on
v as evident from the equation.

(o)l =14y +7"+-
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Figure 11: Comparison of Normalization Techniques(for 3rd(left) and 4th(right) environments

F INCREMENTAL SUCCESSOR OPTIONS

In Figure[I2] we show how the sub-goals become increasingly spread out as they are learnt iteratively
using Incremental Successor options. We use 5 options in both grid worlds and the horizon is set to
100 time steps. We observe that learning naively by selecting the rarest states as sub-goals does not
help in exploration. This is because the SR for such states is extremely sparse and therefore does
not provide a rich signal to learn options from. Moreover, since such least visited states are present
close-by, the sub-goals selected are not evenly spread out.

Figure 12: Sub-goals discovered for grid world 4 for different iterations (left to right)

G EXPERIMENTAL DETAILS - GRID WORLD

The grid world tasks learnt (4, 5, 10, 10) options on the corresponding environment. For the case
of eigen-options, an adjacency graph over the states of the environment was built by the agent. The
eigen-vectors of the graph Laplacian are then obtained. These eigen-vectors are used as rewards
for learning the eigen-options(as dictated by [Machado et al.| (2017)). The positive and the negative
of the same eigen-vector were used to generate options and were counted as separate options. The
Successor representations were collected using the uniformly random policy run for 5 x 10° steps
in the environment. The SRs were then clustered using the K-means algorithm following which a
Q-learner learns the option policy in 1 x 106 steps.

Once both the Successor options and Eigen-options for an environment were discovered, they were
used in an SMDP Q-learning framework to learn an option policy. A non-uniform sampling of option
to actions (1:19) was attempted instead of the uniformly random sampling for the exploratory action.
The algorithms were trained for 5 x 107 steps (primitive actions) in the environment. A v = 0.99 was
used for this task. The SMDP Q-learning updates were augmented with intra-option action-Value
function updates presented by [Sutton et al.| (1999). These updates exploit the fact that intra-option
policies could take the same action from the same state. In such a scenario, the value functions of
both options can be updated.

H EXPERIMENTAL DETAILS - DEEPMIND-LAB

The Deepmind-Lab task was trained using DQN (with experience replay and target network). Dou-
ble Q-learning was also used to stabilize training. The value of € was annealed from 1.0 to 0.1 in 1
Million steps. A batch size of 32 was used with v = 0.99. The same learning rate of 2.5 x 10~*
was used across all stages. The training of the SR occurred for 5 Million steps and each option
policy was trained for 2 Million steps. A memory of size 100,000 was used. The target network was
updated every 10,000 steps. RMS-prop was used as the gradient optimizer technique.
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Base layer

8 x 8 conv, 8 x 8 conv, 4 x 4 conv, 4 x 4 conv, 3 x 3 conv, 512 fully connected, 128 fully connected

Reconstruction branch

128, 128 fully connected

SR branch

64, 64, 128 fully connected

I PERFORMANCE CURVES

We present the performance curves as a function of steps in the environment in Figure[T3] These are
the same curves whose area is reported in Figure[f] It is clear to see that SR-options result in better
returns throughout training. The plot clearly highlights the gulf in performance between the various
methods in comparison to our method SR-options.
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£ /_,_/—’—'_ £e £ £’ / Eigen-NU
g, & N 2 | Q-learning
/ s 2 SR
. /
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Figure 13: Performance plots

J DENSITY PLOT FOR OPTIONS

In order to understand the necessity of the non-uniform exploration strategy, we look at the visitation
count of various states when exploring with different policies (see Figure[T4] Using only the actions
result in low visitation counts at far-away states. However, the non-uniform strategy results in well

distributed visitation counts across the state space.
! n i".

Figure 14: The visitation count (density) plot under different ratios for the non-uniform exploration
policy. From left to right, the ratios are 1:0, 1:1, 1:19, 1:499 and 1:999

]

Figure 15: The visitation count (density) plot under different ratios for the non-uniform exploration
policy in the finite horizon setting. From left to right, the ratios are 1:0, 1:19, 1:74 1:99 and 1:499

A possible optimization would be to explore in proportion to the size of the cluster, after selecting
the option corresponding to that cluster. This pattern in visitation counts is indicative of the fact that
the non-uniform exploration strategy is likely to be more effective. The policy is executed for 10
primitive actions in the environment. Another point to note is that a higher ratio seems to perform
less effectively. Hence, the options ensure that a key sequence of actions are performed to navigate
to a different region in state space, which is consequently explored only if primitive actions are
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taken. Sampling options in a frequent manner results in the agent spending a large fraction of its
time near the termination states of these options.

We also plot the density maps for the finite horizon case (Figure[I3] The agent is allowed to explore
the environment for only 100 steps after which it is reset back to its start state ([1,1] in this exper-
iment). The plots are visitation counts of the agent (for 100 primitive actions in the environment)
averaged over 1000 runs.

K INTRA-OPTION POLICY VISUALIZATION

The intra-option policies are visualized for both eigen-options (Figure [I6] and SR-options (Figure
[T7). The green states are states, where the option terminates in a deterministic fashion. SR-options
are run for 4 sub-goals while eigen-options uses the first 2 eigen vectors (4 options considering
positive and negative version of each eigen-vectors to obtain eigen-options).
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Figure 17: SR-option Intra-option policies

L VARYING NUMBER OF OPTIONS

This plots (Figure[I9) qualitatively demonstrate that the pre-determined number of options, changes
the nature of the finally achieved sub-goals. The sub-goals are well separated and not redundant
in nature. The method is hence expected to be fairly robust to the number of sub-goals. Figure

Figure 18: The sub-goals, when options are varied

[I9] shows the performance of SR-options, with a varying number of sub-goals. A small number
of sub-goals may not easily reach all parts of the state space and a large number of sub-goals will
result in poorer exploration (since there are more options to choose from). Hence, we see that 15
sub-goals are optimal for this problem. The plots are for the same grid-world as that in Figure [T8]
The setup is identical to that used in the earlier evaluations. After learning the options, 100 different
scenarios of start and end states were used. For each scenario the training was done for 5 x 10° steps
(primitive actions) in the environment and the evaluation of return was done 200 times in equally
spaced intervals. Figure[T9]is a result of averaging the return curves for the 100 different scenarios
of start and end states.
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Figure 19: The performance curves for varying number of sub-goals

M VARYING TRADE-OFF BETWEEN ACTIONS AND OPTIONS IN
EXPLORATION

This section varies the ratio of sampling action and options in the non-uniform exploration scheme.
The performance is optimal for a large exploration ratio of 1:999 which is not necessarily surprising,
since Figure [I4]indicates that this scheme covers the state-space most effectively. The experimental
conditions are same as that described in Appendix L (similar to main experiments for evaluating
different methods).

Type
. Q-learner

41 Ratio 1:099
Ratio 1:1

% Ratio 1:19
Ratio 1:499

.
B ratio 1:990

Return

0 100000 200000 300000 400000 500000
Iteration

Figure 20: Performance curves for different ratios of sampling action and option in non-uniform
scheme

N CHOICE OF POLICY FOR LEARNING SR

We varied the policies used to collect the Successor representations to visualize the nature of the
sub-goals. This policy can be understood as a prior over the state space, when deciding sub-goals.
Figure 2] highlights that a policy biased towards a region in state space (say top room in 2-room
domain) results in more sub-goals present in that region in state space. This is a result of the fact that
the SRs are more detailed in these regions resulting in a fine-grained clustering of that region. Hence,
if we have a policy that operates on an “important” part of the state space, SR-options automatically
defines sub-goals in only these regions in state space.
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Figure 21: The sub-goals when the following policies for [No-op, Left, Right, Up, Down] are used.
Left Image:(0, 0.3, 0.3, 0.3, 0.1) and Right Image:(0, 0.1, 0.3, 0.3, 0.3)

O DENSE NATURE OF INTRINSIC REWARD

While the Successor representations may not have a large magnitude in all parts of the state space,
the same is not required to quickly learn a policy. The cardinal requirement of a good intrinsic
reward is to ensure that the largest reward, points the agent in the right direction, which is the case
here. For example, in Figure [22] the difference in values correspond to the reward, which although
small guides the agent in the right direction. This is a good enough signal to determine the right
action to take from every state with ease.

Figure 22: The Successor representation in the 2-room domain, visualized with values.
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