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Abstract

Standard variational lower bounds used to train latent variable models produce biased
estimates of most quantities of interest. We introduce an unbiased estimator of the log
marginal likelihood and its gradients for latent variable models based on randomized trun-
cation of infinite series. If parameterized by an encoder-decoder architecture, the parame-
ters of the encoder can be optimized to minimize its variance of this estimator. We show
that models trained using our estimator give better test-set likelihoods than a standard
importance-sampling based approach for the same average computational cost. This esti-
mator also allows use of latent variable models for tasks where unbiased estimators, rather
than marginal likelihood lower bounds, are preferred, such as minimizing reverse KL diver-
gences and estimating score functions.

1. Introduction

Latent variable models are powerful tools for constructing highly expressive data distri-
butions and for understanding how high-dimensional observations might possess a simpler
representation (Blei et al., 2003; Kingma and Welling, 2014; Johnson et al., 2016; Higgins
et al., 2017). While there is a long history in Bayesian statistics of estimating the marginal
likelihood (e.g., Newton and Raftery (1994); Neal (2001)), we often want high-quality es-
timates of the logarithm of marginal likelihood, which is better behaved when the data is
high dimensional; it is not as susceptible to underflow and it has gradients that are numer-
ically sensible. However, the log transformation introduces some challenges: Monte Carlo
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estimation techniques such as importance sampling do not straightforwardly give unbiased
estimates of this quantity (Rainforth et al., 2018a). Nevertheless, there has been significant
work to construct estimators of the log marginal likelihood in which it is possible to explic-
itly trade off between bias and computational cost (Burda et al., 2016; Bamler et al., 2017;
Nowozin, 2018). Unfortunately, while there are asymptotic regimes where the bias of these
estimators approaches zero, it is always possible to optimize the parameters to increase this
bias to infinity, acting as a distraction to the true objective.

In this work, we construct an unbiased estimator of the log marginal likelihood. Im-
portantly, this unbiased estimator allows us to extend latent variable models to situations
where these models were previously problematic to optimize with lower bound estimators.

2. SUMO: Unbiased estimation of log probability for LVMs

We focus here on the IWAE bound (Burda et al., 2016), detailed in Appendix A.2.

IWAEK(x) := log
1

K

K∑
k=1

pθ(x | zk) pθ(zk)
q(zk;x)

, zk
iid∼ q(z;x) . (1)

There are two properties of IWAE that will allow us to modify it to produce an unbiased esti-
mator: First, it is consistent in the sense that as K increases, the expectation of IWAEK(x)
converges to log pθ(x). Second, it is also monotonically non-decreasing in expectation:

log pθ(x) = lim
K→∞

E[IWAEK(x)] and E[IWAEK+1(x)] ≥ E[IWAEK(x)] . (2)

We employ the Russian roulette estimator (Kahn, 1955), which is used to construct an
unbiased estimator for an infinite series

∑∞
k=1 ∆k. It relies on a randomized truncation and

upweighting of remaining terms to account for the possibility of not computing them. See
Appendix A.3 for details.

2.1. Russian roulette to tighten lower bounds

Let ∆k(x) = IWAEk+1(x)− IWAEk(x), then since Eq[∆k(x)] converges absolutely, we apply
equation 13 to construct our estimator, which we call SUMO (Stochastically Unbiased
Marginalization Objective). The detailed derivation of SUMO is in Appendix D.1.

SUMO(x) = IWAE1(x) +
K∑
k=1

∆k(x)

P(K ≥ k)
where K ∼ p(K) . (3)

The randomized truncation of the series using the Russian roulette estimator means that this
is an unbiased estimator of log pθ(x), regardless of the distribution p(K), ie. E [SUMO(x)] =
log pθ(x), where the expectation is taken over p(K) and q(z;x) (see Algorithm 1 for our exact
sampling procedure). Furthermore, under some conditions, we have E [∇θSUMO(x)] =
∇θE [SUMO(x)] = ∇θ log pθ(x) (see Appendix D.4).

2



SUMO: Unbiased Estimation of Log Marginal Probability for Latent Variable Models

2.2. Optimizing variance-compute product by choice of p(K)

Following Rhee and Glynn (2015) and Beatson and Adams (2019), we derive an optimal
p(K) in terms of minimizing the product of variance and expected compute (Appendix B.1).
The same derivations hold for the gradient of SUMO. With only simplified assumptions,
||∆k(x)||22 does not vanish fast enough (as k →∞) to theoretically guarantee finite variance,
but we find that it converges faster in practice than in theory.

2.2.1. Trading variance and compute

One way to improve the RR estimator is to construct it so that some minimum number of
terms (denoted here as m) are always computed. This puts a lower bound on the compu-
tational cost, but can potentially lower variance, providing a design space for trading off
estimator quality against computational cost. This corresponds to a choice of RR estimator
in which P(K = K) = 0 for K ≤ m. This computes the sum out to m terms (effectively
computing IWAEm) and then estimates the remaining difference with Russian roulette:

SUMO(x) = IWAEm(x) +

K∑
k=m

∆k(x)

P(K ≥ k)
, K ∼ p(K) (4)

In practice, instead of tuning p(K), we set m to achieve a given expected computation cost
per estimator evaluation for fair comparison with IWAE and related estimators.

2.3. Training q(z;x) to reduce variance

Using φ to denote the parameters of the encoder qφ(z;x). the gradients of SUMO with
respect to φ are in expectation zero precisely because SUMO is an unbiased estimator of
log pθ(x), regardless of our choice of qφ(z;x). Nevertheless, we would expect the choice of
qφ(z;x) to significantly impact the variance of our estimator. As such, we optimize qφ(z;x)
to reduce the variance of the SUMO estimator. We can obtain unbiased gradients in the
following way (Ruiz et al., 2016; Tucker et al., 2017): ∇φVar[SUMO] = ∇φE[SUMO2] −
((((((((∇φ(E[SUMO])2 = E[∇φSUMO2] .

3. Density Modeling Experiments

We first compare the performance of SUMO when used as a replacement to IWAE with
the same expected cost on two benchmark datasets: dynamically binarized MNIST (LeCun
et al., 1998) and binarized OMNIGLOT (Lake et al., 2015). We use the same neural network
architecture as IWAE (Burda et al., 2016). We reimplemented and tuned IWAE, obtaining
strong baseline results which are better than those previously reported. We then used the
same hyperparameters to train with SUMO. We also implemented JVI (Nowozin, 2018),
another debiasing scheme of log probability estimates. However, when k is small, JVI is
unstable during training. The averaged test log-likelihoods and standard deviations over 3
runs are summarized in Table 1. In all cases, SUMO achieves slightly better performance
than IWAE with the same expected cost, whereas JVI falls behind, suggesting we’re better
on the bias-variance curve in terms of test performance.
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MNIST OMNIGLOT

Training Objective k=5 k=15 k=50 k=5 k=15 k=50

ELBO (Burda et al., 2016) 86.47 — 86.35 107.62 — 107.80

IWAE (Burda et al., 2016) 85.54 — 84.78 106.12 — 104.67

ELBO (Our impl.) 85.97±0.01 85.99±0.05 85.88±0.07 106.79±0.08 106.98±0.19 106.84±0.13

IWAE (Our impl.) 85.28±0.01 84.89±0.03 84.50±0.02 104.96±0.04 104.53±0.05 103.99±0.12

JVI (Our impl.) — — 84.75±0.03 — — 104.08±0.11

SUMO (Our impl.) 85.09±0.01 84.71±0.02 84.40±0.03 104.85±0.04 104.29±0.12 103.79±0.14

Table 1: Test negative log-likelihood of the trained model, estimated using IWAE(k=5000).
For SUMO, k refers to the expected number of computed terms.

4. Latent variables models for entropy maximization

We show that an unbiased estimate of log probability is preferable when minimizing the
reverse KL objective.

min
θ
DKL(pθ(x)||p∗(x)) = min

θ
Ex∼pθ(x)[log pθ(x)− log p∗(x)] (5)

A major problem with this objective is the presence of an entropy maximization term,
effectively a minimization of log pθ(x). Estimating this log marginal probability with a
lower bound estimator could result in optimizing θ to maximize the bias of the estimator
instead of the true objective. Our experiments demonstrate that this causes IWAE to often
fail to optimize the objective. For IWAE, we always train q(z;x) to reduce bias, which turns
the objective into a min-max formulation but significantly stablizes training.
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We choose a “funnel” target distribu-
tion (Figure 1) similar to the distribu-
tion used as a benchmark for inference
in Neal et al. (2003), where p∗ has sup-
port in R2 and is defined p∗(x1, x2) =
N (x1; 0, 1.352)N (x2; 0, e2x1).

Figure on the right shows the learning
curves when using IWAE and SUMO. Un-
less k is set very large, IWAE will at some
point start optimizing the bias instead of the actual objective. The reverse KL is a non-
negative quantity, so any estimate significantly below zero can be attributed to the un-
bounded bias. On the other hand, SUMO correctly optimizes for the objective even with a
small expected cost.

5. Latent variable policies for combinatorial optimization

Let us now consider the problem of finding the maximum of a non-differentiable function, a
special case of reinforcement learning without an interacting environment. For concreteness,
we focus on the problem of quadratic pseudo-Boolean optimization (QPBO) where the
objective is to maximize

max
θ

Ex∼pθ(x)[R(x)], where R(x) =
∑
i=1

wi(xi) +
∑
i<j

wij(xi, xj) (6)
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Target log probability Training w/ IWAE (k=15) Training w/ SUMO (k=15) Model samples

Figure 1: We trained latent variable models for posterior inference, which requires mini-
mizing log probability under the model. Training with IWAE leads to optimizing
for the bias while leaving the true model in an unstable state, whereas training
with SUMO leads to steady convergence.
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Figure 2: Latent variable policies allow faster exploration than autoregressive policy models,
while being more expressive than an independent policy. SUMO works better with
entropy regularization compared to IWAE.

where {xi}di=1 ∈ {0, 1} are binary variables. Without further assumptions, QPBO is NP-
hard (Boros and Hammer, 2002). To train, we combine SUMO with the REINFORCE
gradient estimator: ∇θEx∼pθ(x)[R(x)] = Ex∼pθ(x)[E[R(x)∇θSUMO(x)]].

As there exist complex dependencies between the binary variables and optimization
of equation 6 requires sampling from the policy distribution pθ(x), a model that is both
expressive and allows efficient sampling would be ideal. Our baselines are an autoregressive
policy, which captures dependencies but for which sampling must be performed sequentially,
and an independent policy, which is easy to sample from but captures only a single mode.
At d = 500, the relative time costs per iteration of training are 0.3×, 0.8×, 1.0×, and
19.2× for independent, IWAE, SUMO, and autoregressive, respectively, with autoregressive
policies increasing to an intractable cost as d increases.

6. Conclusion

We introduced SUMO, a new unbiased estimator of the log probability for latent variable
models, and demonstrated tasks for which this estimator performs better than standard
lower bounds. Specifically, we investigated applications involving entropy maximization
where a lower bound performs poorly, but our unbiased estimator can train properly with
relatively smaller amount of compute. In the future, we plan to investigate new families of
gradient-based optimizers which can handle heavy-tailed stochastic gradients. It may also
be fruitful to investigate the use of convex combination of consistent estimators within the
SUMO approach, as any convex combination is unbiased, or to apply variance reduction
methods to increase stability of training with SUMO.
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Appendix A. Preliminaries

A.1. Latent variable models

Latent variable models (LVMs) describe a distribution over data in terms of a mixture over
unobserved quantities. Let pθ(x) be a family of probability density (mass) functions on
a data space X , indexed by parameters θ. We will generally refer to this as a “density”
for consistency, even when the data should be understood to be discrete; similarly we will
use integrals even when the marginalization is over a discrete set. In a latent variable
model, pθ(x) is defined via a space of latent variables Z, a family of mixing measures on
this latent space with density denoted pθ(z), and a conditional distribution pθ(x | z). This
conditional distribution is sometimes called an “observation model” or a conditional likeli-
hood. We will take θ to parameterize both pθ(x | z) and pθ(z) in the service of determining
the marginal pθ(x) via the mixture integral:

pθ(x) :=

∫
Z
pθ(x | z)pθ(z) dz = Ez∼pθ(z) [pθ(x | z)] . (7)

This simple formalism allows for a large range of modeling approaches, in which complexity
can be baked into the latent variables (as in traditional graphical models), into the con-
ditional likelihood (as in variational autoencoders), or into both (as in structured VAEs).
The downside of this mixing approach is that the integral may be intractable to compute,
making it difficult to evaluate pθ(x)—a quantity often referred to in Bayesian statistics and
machine learning as the marginal likelihood or evidence. Various Monte Carlo techniques
have been developed to provide consistent and often unbiased estimators of pθ(x), but it is
usually preferable to work with log pθ(x) and unbiased estimation of this quantity has, to
our knowledge, not been previously studied.

Algorithm 1 Computing SUMO, an unbiased estimator of log p(x).

Input: x, m ≥ 1, encoder q(z;x), decoder p(x, z), p(K), reverse cdf(·) = P(K ≥ ·)
1: Sample K ∼ p(K)
2: Sample {zk}K+m

k=1
iid∼ q(z;x)

3: logwk ← log p(x, zk)− log q(zk;x)
4: ks ← [1, . . . ,K +m]
5: cum iwae ← log_cumsum_exp(logwk)− log(ks[:k+1])
6: inv weights = 1/reverse cdf(ks)

return cum iwae[m-1] + sum(inv weights * (cum iwae[m:] - cum iwae[m-1:-1]))

10
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A.2. Training latent variable models

Fitting a parametric distribution to observed data is often framed as the minimization
of a difference between the model distribution and the empirical distribution. The most
common difference measure is the forward Kullback-Leibler (KL) divergence; if pdata(x)
is the empirical distribution and pθ(x) is a parametric family, then minimizing the KL
divergence with respect to θ is equivalent to maximizing the likelihood:

DKL(pdata || pθ) =

∫
X
pdata(x) log

pdata(x)

pθ(x)
dx = −Edata [log pθ(x)] + const . (8)

Thus the optimization problem of finding the MLE parameters θ comes down to maximizing
the expected log probability of the data:

θMLE = arg min
θ

DKL(pdata || pθ) = arg max
θ

Edata [log pθ(x)] . (9)

Since expectations can be estimated in an unbiased manner using Monte Carlo procedures,
simple subsampling of the data enables powerful stochastic optimization techniques, with
stochastic gradient descent in particular forming the basis for learning the parameters of
many nonlinear models. However, this requires unbiased estimates of ∇θ log pθ(x), which
are not available for latent variable models. Instead, a stochastic lower bound of log pθ(x)
is often used and then differentiated for optimization.

Though many lower bound estimators (Burda et al., 2016; Bamler et al., 2017; Nowozin,
2018) are applicable, we focus on an importance-weighted evidence lower bound (Burda
et al., 2016). This lower bound is constructed by introducing a proposal distribution q(x; z)
and using it to form an importance sampling estimate of the marginal likelihood:

pθ(x) =

∫
Z
pθ(x | z) pθ(z) dz =

∫
Z
q(z;x)

pθ(x | z) pθ(z)
q(z;x)

dz = Ez∼q
[
pθ(x | z) pθ(z)

q(z;x)

]
. (10)

If K samples are drawn from q(z;x) then this provides an unbiased estimate of pθ(x) and
the biased “importance-weighted autoencoder” estimator IWAEK(x) of log pθ(x) is given
by

IWAEK(x) := log
1

K

K∑
k=1

pθ(x | zk) pθ(zk)
q(zk;x)

, zk
iid∼ q(z;x) . (11)

The special case of K = 1 generates an unbiased estimate of the evidence lower bound
(ELBO), which is often used for performing variational inference by stochastic gradient
descent. While the IWAE lower bound acts as a useful replacement of log pθ(x) in maximum
likelihood training, it may not be suitable for other objectives such as those that involve
entropy maximization. We discuss tasks for which a lower bound estimator would be ill-
suited in Section B.2.

There are two properties of IWAE that will allow us to modify it to produce an unbiased
estimator: First, it is consistent in the sense that as the number of samples K increases,
the expectation of IWAEK(x) converges to log pθ(x). Second, it is also monotonically non-
decreasing in expectation:

log pθ(x) = lim
K→∞

E[IWAEK(x)] and E[IWAEK+1(x)] ≥ E[IWAEK(x)] . (12)

11
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These properties are sufficient to create an unbiased estimator using the Russian roulette
estimator.

A.3. Russian roulette estimator

In order to create an unbiased estimator of the log probability function, we employ the
Russian roulette estimator (Kahn, 1955). This estimator is used to estimate the sum of
infinite series, where evaluating any term in the series almost surely requires only a finite
amount of computation. Intuitively, the Russian roulette estimator relies on a randomized
truncation and upweighting of each term to account for the possibility of not computing
these terms.

To illustrate the idea, let ∆̃k denote the k-th term of an infinite series. Assume the
partial sum of the series

∑∞
k=1 ∆̃k converges to some quantity we wish to obtain. We

can construct a simple estimator by always computing the first term then flipping a coin
b ∼ Bernoulli(q) to determine whether we stop or continue evaluating the remaining terms.
With probability 1 − q, we compute the rest of the series. By reweighting the remaining
future terms by 1/(1−q), we obtain an unbiased estimator:

Ỹ = ∆̃1 +

(∑∞
k=2 ∆̃k

1− q

)
1b=0 + (0)1b=1 E[Ỹ ] = ∆̃1 +

∑∞
k=2 ∆̃k

1− q
(1− q) =

∞∑
k=1

∆̃k.

To obtain the “Russian roulette” (RR) estimator (Forsythe and Leibler, 1950), we repeatedly
apply this trick to the remaining terms. In effect, we make the number of terms a random
variable K, taking values in 1, 2, . . . to use in the summation (i.e., the number of successful
coin flips) from some distribution with probability mass function p(K) = P(K = K) with
support over the positive integers. With K drawn from p(K), the estimator takes the form:

Ŷ (K) =
K∑
k=1

∆̃k

P(K ≥ k)
EK∼p(K)[Ŷ (K)] =

∞∑
k=1

∆̃k . (13)

The equality on the right hand of equation 13 holds so long as (i) P(K ≥ k) > 0, ∀k > 0,
and (ii) the series converges absolutely, i.e.,

∑∞
k=1 |∆̃k| <∞ (Chen et al. (2019); Lemma

3). This condition ensures that the average of multiple samples will converge to the value
of the infinite series by the law of large numbers. However, the variance of this estimator
depends on the choice of p(K) and can potentially be very large or even infinite (McLeish,
2011; Rhee and Glynn, 2015; Beatson and Adams, 2019).

Appendix B. SUMO

B.1. Optimizing variance-compute product by choice of p(K)

To efficiently optimize a limit, one should choose an estimator to minimize the product of
the second moment of the gradient estimates and the expected compute cost per evaluation.
The choice of p(K) effects both the variance and computation cost of our estimator. De-
noting Ĝ := ∇θŶ and ∆g

k := ∇θ[IWAEk+1(x)− IWAEk(x)], the Russian roulette estimator
is optimal across a broad family of unbiased randomized truncation estimators if the ∆g

k are

12
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statistically independent, in which case it has second moment E||Ĝ||22 =
∑∞

k=1
E||∆g

k||
2
2/P(K≥k) (Beat-

son and Adams, 2019). While the ∆g
k are not in fact strictly independent with our sampling

procedure (Algorithm 1), and other estimators within the family may perform better, we
justify our choice by showing that E∆i∆j for i 6= j converges to zero much faster than E∆2

k

(Appendices D.2 & D.3). In the following, we assume independence of ∆g
k and choose p(K)

to minimize the product of compute and variance.
We first show that E||∆g

k||
2
2 is O(1/k2) (Appendix D.5). This implies the optimal

compute-variance product (Rhee and Glynn, 2015; Beatson and Adams, 2019) is given
by P(K ≥ k) ∝

√
E||∆g

k||22). In our case, this gives P(K ≥ k) = 1/k, which results in an es-
timator with infinite expected computation and no finite bound on variance. In fact, any
p(K) which gives rise to provably finite variance requires a heavier tail than P(K ≥ k) = 1/k
and so will have infinite expected computation.

Though we could not theoretically show that our estimator and gradients have finite
variance, we empirically find that gradient descent converges —even in the setting of mini-
mizing log probability. We plot ||∆k||22 for the toy variational inference task used to assess
signal to noise ratio in Tucker et al. (2018) and Rainforth et al. (2018b), and find that they
converge faster than 1

k2
in practice (Appendix E.1). While this indicates the variance is

better than the theoretical bound, an estimator having infinite expected computation cost
will always be an issue as it indicates significant probability of sampling arbitrarily large K.
We therefore modify the tail of the sampling distribution such that the estimator has finite
expected computation:

P(K ≥ k) =

{
1/k if k < α

1/α · (1− 0.1)k−α if k ≥ α
(14)

We typically choose α = 80, which gives an expected computation cost of approximately 5
terms.

B.2. Applications of unbiased log probability

Here we list some applications where an unbiased log probability is useful. Using SUMO
to replace existing lower bound estimates allows latent variable models to be used for new
applications where a lower bound is inappropriate. As latent variable models can be both
expressive and efficient to sample from, they are frequently useful in applications where the
data is high-dimensional and samples from the model are needed.

Minimizing log pθ(x). Some machine learning objectives include terms that seek to in-
crease the entropy of the learned model. The “reverse KL” objective—often used for training
models to perform approximate posterior inferences—minimizes Ex∼pθ(x)[log pθ(x)− log π(x)]
where π(x) is a target density that may only be known up a normalization constant. Local
updates of this form are the basis of the expectation propagation procedure (Minka, 2001).
This objective has also been used for distilling autoregressive models that are inefficient
at sampling (Oord et al., 2018). Moreover, reverse KL is connected to the use of entropy-
regularized objectives (Williams and Peng, 1991; Ziebart, 2010; Mnih et al., 2016; Norouzi
et al., 2016) in decision-making problems, where the goal is to encourage the decision maker
toward exploration and prevent it from settling into a local minimum.

13
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Unbiased score function ∇θ log pθ(x). The score function is the gradient of the log-
likelihood with respect to the parameters and has uses in estimating the Fisher infor-
mation matrix and performing stochastic gradient Langevin dynamics (Welling and Teh,
2011), among other applications. Of particular note, the REINFORCE gradient estima-
tor (Williams, 1992)—generally applicable for optimizing objectives maxθ Ex∼pθ(x)[R(x)]—
is estimated using the score function. This can be replaced with the gradient of SUMO
which itself is an estimator of the score function ∇θ log pθ(x).

∇θEx∼pθ(x)[R(x)] = Ex∼pθ(x)[R(x)∇θ log pθ(x)]

= Ex∼pθ(x)[R(x)∇θE[SUMO(x)]]

= Ex∼pθ(x)[E[R(x)∇θSUMO(x)]]

(15)

where the inner expectation is over the stochasticity of the SUMO estimator. Such esti-
mators are often used for reward maximization in reinforcement learning where pθ(x) is a
stochastic policy.

Appendix C. Related Work

There is a long history in Bayesian statistics of marginal likelihood estimation in the service
of model selection. The harmonic mean estimator (Newton and Raftery, 1994), for exam-
ple, has a long (and notorious) history as a consistent estimator of the marginal likelihood
that may have infinite variance (Murray and Salakhutdinov, 2009) and exhibits simulation
psuedo-bias (Lenk, 2009). The Chib estimator (Chib, 1995), the Laplace approximation,
and nested sampling (Skilling, 2006) are alternative proposals that can often have better
properties (Murray and Salakhutdinov, 2009). Annealed importance sampling (Neal, 2001)
probably represents the gold standard for marginal likelihood estimation. These, however,
turn into consistent estimators at best when estimating the log marginal probability (Rain-
forth et al., 2018a). Bias removal schemes such as jackknife variational inference (Nowozin,
2018) have been proposed to debias log-evidence estimation, IWAE in particular. Hierar-
chical IWAE (Huang et al., 2019) uses a joint proposal to induce negative correlation among
samples and connects the convergence of variance of the estimator and the convergence of
the lower bound.

Russian roulette also has a long history. It dates back to unpublished work from von Neu-
mann and Ulam, who used it to debias Monte Carlo methods for matrix inversion (Forsythe
and Leibler, 1950) and particle transport problems (Kahn, 1955). It has gained popularity
in statistical physics (Spanier and Gelbard, 1969; Kuti, 1982; Wagner, 1987), for unbiased
ray tracing in graphics and rendering (Arvo and Kirk, 1990), and for a number of estimation
problems in the statistics community (Wei and Murray, 2017; Lyne et al., 2015; Rychlik,
1990, 1995; Jacob and Thiery, 2015; Jacob et al., 2017). It has also been independently
rediscovered many times (Fearnhead et al., 2008; McLeish, 2011; Rhee and Glynn, 2012;
Tallec and Ollivier, 2017).

The use of Russian roulette estimation in deep learning and generative modeling appli-
cations has been gaining traction in recent years. It has been used to solve short-term bias
in optimization problems (Tallec and Ollivier, 2017; Beatson and Adams, 2019). Wei and
Murray (2017) estimates the reciprocal normalization constant of an unnormalized density.
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Han et al. (2018) uses a similar random truncation approach to estimate the distribution
of eigenvalues in a symmetric matrix. Along similar motivations with our work, Chen et al.
(2019) uses this estimator to construct an unbiased estimator of the change of variables
equation in the context of normalizing flows (Rezende and Mohamed, 2015), and Xu et al.
(2019) uses it to construct unbiased log probability for a nonparameteric distribution in the
context of variational autoencoders (Kingma and Welling, 2014).

Though we extend latent variable models to applications that require unbiased esti-
mates of log probability and benefit from efficient sampling, an interesting family of models
already fulfill these requirements. Normalizing flows (Rezende and Mohamed, 2015; Dinh
et al., 2017) offer exact log probability and certain models have been proven to be universal
density estimators (Huang et al., 2018). However, these models often require restrictive
architectural choices with no dimensionality-reduction capabilities, and make use of many
more parameters to scale up (Kingma and Dhariwal, 2018) than alternative generative
models. Discrete variable versions of these models are still in their infancy and make use of
biased gradients (Tran et al., 2019; Hoogeboom et al., 2019), whereas latent variable models
naturally extend to discrete observations.

Appendix D. Proofs

D.1. Derivation of SUMO

Let

Eq[IWAEk(x)] = Ez1,...,zk∼q(z;x)

[
log

1

K

K∑
k=1

pθ(x | zk) pθ(zk)
q(zk;x)

]
,

where z1, .., zk are sampled independently from q(z;x). And we define the k-th term of
the infinite series ∆̃k(x) := Eq[IWAEk+1(x)] − Eq[IWAEk(x)]. Using the properties of
IWAE in equation ??, we have ∆̃k(x) ≥ 0, and

∞∑
k=1

|∆̃k(x)| =
∞∑
k=1

∆̃k(x) = lim
k→∞

Eq[IWAEk(x)]− Eq[IWAE1(x)]

= log pθ(x)− Eq[IWAE1(x)] <∞, (16)

which means the series converges absolutely. This is a sufficient condition for finite expecta-
tion of the Russian roulette estimator (Chen et al. (2019); Lemma 3). Applying equation 13
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to the series:

log pθ(x) = Eq[IWAE1(x)] +

∞∑
k=1

∆̃k(x) (17)

= Eq[IWAE1(x)] + EK∼p(K)

[
K∑
k=1

∆̃k(x)

P(K ≥ k)

]
(18)

= EK∼p(K)

[
Eq[IWAE1(x)] +

K∑
k=1

Eq [IWAEk+1(x)− IWAEk(x)]

P(K ≥ k)

]
(19)

= EK∼p(K)

[
Eq

[
IWAE1(x) +

K∑
k=1

IWAEk+1(x)− IWAEk(x)

P(K ≥ k)

]]
. (20)

Let ∆k(x) := IWAEk+1(x)− IWAEk(x), Hence our estimator is constructed:

SUMO(x) = IWAE1(x) +
K∑
k=1

∆k(x)

P(K ≥ k)
, K ∼ p(K), zk

iid∼ q(z;x) . (21)

And it can be easily seen from equation 20 and equation 21 that SUMO is an unbiased
estimator of the log marginal likelihood:

EK∼p(K),z1,...,zK∼q(z;x) [SUMO(x)] = log pθ(x). (22)

D.2. Convergence of ∆k = IWAEk+1 − IWAEk

We follow the analysis of JVI (Nowozin, 2018), which applied the delta method for moments
to show the asymptotic results on the bias and variance of IWAEk at a rate of O( 1

k ). We
build on this analysis to analyze the convergence of ∆k.

Let wi = p(x|zi)p(zi)
q(zi|x) and we define Yk := 1

k

∑k
i=1wi as the sample mean and we have

E[Yk] = E[w] = µ.

IWAEk = log Yk = log [µ+ (Yk − µ)]

= logµ−
∞∑
t=1

(−1)t

tµt
(Yk − µ)t

(23)

We use the central moments γt := E[(Yk − µ)t] and µt := E[(w − µ)t] for t ≥ 2.

E∆2
k = E(IWAEk+1 − IWAEk)

2 (24)

= E

[
logµ−

∞∑
t=1

(−1)t

tµt
(Yk+1 − µ)t − logµ+

∞∑
t=1

(−1)t

tµt
(Yk − µ)t

]2

(25)

= E

[ ∞∑
t=1

(−1)t

tµt
[
(Yk − µ)t − (Yk+1 − µ)t

]]2

(26)
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Expanding Eq. 26 to order two gives

E∆2
k = E

[
− 1

µ
(Yk − µ− Yk+1 + µ) +

1

2µ2

[
(Yk − µ)2 − (Yk+1 − u)2

]]2

+ o(k−2) (27)

=
1

µ2
E
[
Yk+1 − Yk +

1

2µ
(Yk + Yk+1 − 2µ)(Yk − Yk+1)

]2

+ o(k−2) (28)

=
1

µ2
E
[
2(Yk+1 − Yk) +

1

2µ
(Yk + Yk+1)(Yk − Yk+1)

]2

+ o(k−2) (29)

Since we use cumulative sum to compute Yk and Yk+1, we obtain Yk+1 =
kYk+wk+1

k+1 .

=⇒ E∆2
k =

1

µ2
E

[
2
wk+1 − 1

k + 1
+
(wk+1 + 2k+1

k+1

∑k
i=1wk

2kµ

)(wk+1 − 1

k + 1

)]2

+ o(k−2) (30)

We note that
wk+1−1
k+1 = O( 1

k ) and
wk+1+ 2k+1

k+1

∑k
i=1 wk

2kµ = O(1). Therefore ∆k is O( 1
k ), and

E∆2
k = O( 1

k2
).

D.3. Convergence of ∆k∆j

From the previous proof, we have

∆k = 2µ
wk+1 − 1

k + 1
+
(wk+1 + 2k+1

k+1

∑k
i=1wk

2k

)(wk+1 − 1

k + 1

)
Without loss of generality, suppose j ≥ k + 1,

E∆k∆j = E

[( ∞∑
t=1

(−1)t

tµt
[
(Yk − µ)t − (Yk+1 − µ)t

])( ∞∑
t=1

(−1)t

tµt
[
(Yj − µ)t − (Yj+1 − µ)t

])]
(31)

For clarity, let Ck = Yk − µ be the zero-mean random variable. Nowozin (2018) gives
the relations

E[C2
k ] = γ2 =

µ2

k
(32)

E[C3
k ] = γ3 =

µ3

k2
(33)

E[C4
k ] = γ4 =

3µ2
2

k2
+
µ4 − 3µ2

2

k3
(34)

E∆k∆j = E

[( ∞∑
t=1

(−1)t

tµt
(Ctk − Ctk+1)

)( ∞∑
t=1

(−1)t

tµt
(Ctj − Ctj+1)

)]
(35)
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Expanding both the sums inside the brackets to order two:

E∆k∆j ≈ E
1

µ2
(Ck+1 − Ck)(Cj+1 − Cj) (1)

− E
1

2µ3
(C2

k+1 − C2
k)(Cj+1 − Cj) (2)

− E
1

2µ3
(Ck+1 − Ck)(C2

j+1 − C2
j ) (3)

+ E
1

4µ4
(C2

k+1 − C2
k)(C2

j+1 − C2
j ) (4)

We will proceed by bounding each of the terms (1), (2), (3), (4). First, we decompose
Cj . Let Bk,j := 1

j

∑j
i=k+1(wi − µ).

Cj =
1

j

(
kCk +

j∑
i=k+1

(wi − µ)

)
=
k

j
Ck +

1

j

j∑
i=k+1

(wi − µ) =
k

j
Ck +Bk,j (36)

We know that Bk,j is independent of Ck and E[Bk,j ] = 0, implying E[CkBk,j ] = 0. Note

C2
j = k2

j2
C2
k + 2kjCkBk,j +B2

k,j .

Now we show that (1) is zero:

E[
1

µ2
(Ck+1 − Ck)(Cj+1 − Cj)] =

1

µ2
E
[
Ck+1

k + 1

j + 1
+ Ck+1Bj+1,k+1

− k + 1

j
C2
k+1 −Bj,k+1Ck+1 − Ck

k

j + 1

− CkBj+1,k +
k

j
C2
k + CkBj,k

]
=

1

µ2
E[ − k + 1

j(j + 1)
C2
k+1 + C2

k

k

j(j + 1)
]

=
1

µ2
[− k + 1

j(j + 1)

µ2

k + 1
+
µ2

k

k

j(j + 1)
] = 0

We now investigate (2):

E[− 1

2µ3
(C2

k+1 − C2
k)(Cj+1 − Cj)] =

1

2µ3
E
[
C3
k

k

j + 1
+ C2

kBj+1,k − C3
k

k

j
− C2

kBj,k

+ C3
k+1

k + 1

j + 1
+ C2

k+1Bj,k +
k

j
C2
k + CkBj+1,k

]
=

1

µ2
E[− k + 1

j(j + 1)
C2
k+1 + C2

k

k

j(j + 1)
]

=
1

2µ3
[− µ3

kj(j + 1)
+

µ3

(k + 1)j(j + 1)
] = − µ3

2µ3
[

1

k(k + 1)j(j + 1)
]

We now show that (3) is zero:
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E[
1

2µ3
(Ck+1 − Ck)(C2

j − C2
j+1)] =

1

2µ3
E[Ck+1C

2
j − Ck+1C

2
j+1 − CkC2

j + CkC
2
j+1)]

=
1

2µ3
[
µ3

j2
− µ3

(j + 1)2
− µ3

j2
− µ3

(j + 1)2
]

= 0

Finally, we investigate (4):

E[
1

4µ4
(C2

k+1 − C2
k)(C2

j+1 − C2
j )]

Using the relation in equation 34, we have

E[C2
kC

2
j ] = E[C2

k(
k2

j2
C2
k +

2k

j
CkBj,k +B2

j,k)] (37)

=
k2

j2
γ4 + γ2

(j − k)µ2

j2
(38)

=
(2k + j − 3)µ2

2 + µ4

j2k
(39)

E[
1

4µ4
(C2

k+1 − C2
k)(C2

j+1 − C2
j )] =

(2k + j − 3)µ2
2 + µ4

j2k
− (2k + j − 2)µ2

2 + µ4

(j + 1)2k

− (2k + j − 1)µ2
2 + µ4

j2(k + 1)
+

(2k + j)µ2
2 + µ4

(j + 1)2(k + 1)

=
(j2 − 5j − 3)µ2

2

j2(j + 1)2k(k + 1)
− µ4

(j + 1)2k(k + 1)

=
j2(µ2

2 − µ4)− (5j + 3)µ2
2

j2(j + 1)2k(k + 1)

=O(j−2k−2)

In summary, E∆k∆j is O(k−2j−2).

D.4. Gradient of SUMO

Assume that ∇θSUMO is bounded: it is sufficient that ∇θIWAE1 is bounded and that the
sampling probabilities are chosen such that the partial sums of ∇θ∆k

P(K≥k) converge, i.e. P(K ≥
k) > ck||∇θ∆k|| for some constant c. Then we have E [∇θSUMO(x)] = ∇θE [SUMO(x)] =
∇θ log pθ(x) directly by the dominated convergence theorem, as long as SUMO is everywhere
differentiable, which is satisfied by all of our experiments. If ReLU neural networks are to
be used, one may be able to show the same property using Theorem 5 of Bikowski et al.
(2018), assuming finite higher moments and Lipschitz constant.
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D.5. Convergence of ∇
(
IWAEk+1 − IWAEk

)
The IWAE log likelihood estimate is:

Lk = log
(1

k

k∑
i=1

pθ(x, zi)

qψ(zi|x)

)
The gradient of this with respect to λ, where λ is either θ or ψ, is

dLk
dλ

=
1∑k

i=1
pθ(x,zi)
qψ(zi|x)

k∑
i=1

d

dλ

pθ(x, zi)

qψ(zi|x)

We abbreviate wi := pθ(x,zi)
qψ(zi|x) , and νi = dwi

dλ . In both λ = ψ and λ = θ cases, it suffices to

treat the wi and νi as i.i.d. random variables with finite variance and expectation. Being a
likelihood ratio, wi could be ill behaved when the importance sampling distribution qψ(zi|x)

is is particularly mismatched from the true posterior p(zi|x) = pθ(x,zi
Ez∼p(z)pθ(x,z) . However, the

analysis from IWAE (Burda et al., 2016) requires assuming that the likelihood ratios wi =
pθ(x,zi)
qψ(zi|x) are bounded, and we adopt this assumption. Reasoning about when this assumption

holds, and the behavior of IWAE-like estimators when it does not, is an interesting area for
future work.

Consider the differences between two gradients: we label ∆g as follows:

∆g
k :=

dLk+1

dλ
− dLk

dλ

We have:

∆g
k =

1∑k+1
i=1 wi

νk+1 +
( 1∑k+1

i=1 wi
− 1∑k

i=1wi

) k∑
i=1

νi

=
1∑k+1

i=1 wi
νk+1 +

wk+1(∑k+1
i=1 wi

)(∑k
i=1wi

) k∑
i=1

νi

We again let Yk denote the kth sample mean 1
k

∑
iwi. Then:

∆g
k =

1

kYk
νk+1 +

wk+1

(k + 1)YkYk+1
ν̄k

The sample means Yk and µ̄k have finite expectation and variance. The variance vanishes
as k →∞ (but the expectation does not change).

E||∆g
k||

2
2 =

1

k2
E||νk+1

Yk
+

k

k + 1

wk+1ν̄k
YkYk+1

||22

Let
νk+1

Yk
+

k

k + 1

wk+1ν̄k
YkYk+1

:= φk

=⇒ E||∆g
k||

2
2 =

1

k2
||Eφk||22 +

1

k2
Var(φk)
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The second term vanishes at a rate strictly faster than 1
k2

: the variance of φk goes to
zero as k → ∞. But the first term does not: φk is a biased estimator of φ∞ so Eφk does
change with k, but it does not necessarily go to zero:

Eφ∞ = E
[ ν
Ew

+
k

k + 1

wEν
(Ew)2

]
=

Eν
Ew

Thus, E||∆g
k||

2
2 is at most O( 1

k2
).

Appendix E. Additional Empirical Results

E.1. Empirical Confirmation on the Convergence of E∆2
k and E||∆g

k||
2
2

We measure the ∆2
k and ||∆g

k||
2
2 on a toy example to verify the convergence rates empirically.

We re-implement the toy Gaussian example from Rainforth et al. (2018b); Tucker et al.
(2018). The generative model is pθ(x, z) = N (z|θ, I)N (x|z, I), where both x and z are in
RD. The encoder is qφ(z|x) = N (z|Ax+b, 2

3I), where φ = (A, b). The synthetic dataset was
generated with D = 20 and N = 1000 data points using the true model parameter θtrue from
a standard Gaussian. Alongside ||∆k||22, we plot several reference convergence rates such
as O(1/kc), c > 1, and O(ck), c < 1, as a visual guide. The results are shown in Figure 3.
Following the setup in Rainforth et al. (2018b), we sample a group of model parameters
close to the optimal values which are perturbed by Gaussian noise from N (0, 0.012). The
gradient ∆g

k is taken w.r.t. the model parameter θ.

E.2. Bias-Variance Tradeoff via Gradient Clipping

While SUMO is unbiased, its variance is extremely high or potentially infinite. This prop-
erty leads to poor performance compared to lower bound estimates such as IWAE when
maximizing log-likelihood. In order to obtain models with competitive log-likelihood values,
we can make use of gradient clipping. This allows us to ignore rare gradient samples with
extremely large values due to the heavy-tailed nature of its distribution.

Gradient clipping introduces bias in favor of reduced variance. Figure 4 shows how
the performance changes as a function of the clipping value, and more importantly, the
percentage of clipped gradients. As shown, neither full clipping and no clipping are desirable.
We performed this experiment after reporting the results in Table 1, so this grid search was
not used to tune hyperparameter for our experiments. As bias is introduced, we do not use
gradient clipping for entropy maximization or policy gradient (REINFORCE).

E.3. Experimental Setup

E.3.1. Density Modeling Experiments

The prior p(z) is a 50-dimensional standard Gaussian distribution. The conditional distri-
butions p(xi|z) are independent Bernoulli, with the decoder parameterized by two hidden
layers, each with 200 tanh units. The approximate posterior q(z;x) is also a 50-dimensional
Gaussian distribution with diagonal covariance, whose mean and variance are both param-
eterized by two hidden layers with 200 tanh units. All the models are trained using a batch
size of 100 and an Amsgrad optimizer (Reddi et al., 2018) with parameters lr = 0.001,
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(a) Mean of estimated of E∆2
k with increasing

k over ten random trials with 1000 sam-
ples per trial. X and Y axis are on log
scale. Empirically the convergence rate
of ∆2

k is between O(1/k2) and O(1/k3).
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Figure 3: Empricial validation of the convergence rate of the norms of ∆ and ∆g.
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Figure 4: Test negative log-likelihood against the gradient clipping norm and clipping per-
centage, when training with SUMO (k=15).

β1 = 0.9, β2 = 0.999 and ε = 10−4. The learning rate is reduced by factor 0.8 with a
patience of 50 epochs. We use gradient norm scaling in both the inference and generative
networks. We train SUMO using the same architecture and hyperparameters as IWAE ex-
cept the gradient clipping norm. We set the gradient norm to 5000 for encoder and {20,
40, 60} for decoder in SUMO. For IWAE, the gradient norm is fixed to 10 in all the exper-
iments. We report the performance of models with early stopping if no improvements have
been observed for 300 epochs on the validation set.
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We add additional plots of the test NLL against the norm and percentage of gradients
clipped for the decoder in Figure 4. The plot is based on MNIST with expected number of
compute k = 15. Gradient clipping was not used in the other experiments except the density
modeling ones, where it can be used as a tool to obtain a better bias-variance trade-off.

E.3.2. Reverse KL and Combinatorial Optimization

These two tasks use the same encoder and decoder architecture: one hidden layer with
tanh non-linearities and 200 hidden units. We set the latent state to be of size 20. The
prior is a standard Gaussian with diagonal covariance, while the encoder distribution is a
Gaussian with parameterized diagonal covariance. For reverse KL, we used independent
Gaussian conditional likelihoods for p(x|z), while for combinatorial optimization we used
independent Bernoulli conditional distributions. We found it helps stablize training for both
IWAE and SUMO to remove momentum and used RMSprop with learning rate 0.00005 and
epsilon 1e-3 for fitting reverse KL. We used Adam with learning rate 0.001 and epsilon 1e-
3, plus standard hyperparameters for the combinatorial optimization problems. SUMO
used an expected compute of 15 terms, with m = 5 and the tail-modified telescoping Zeta
distribution.
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