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ABSTRACT

The travelling salesman problem (TSP) is a well-known combinatorial optimiza-
tion problem with a variety of real-life applications. We tackle TSP by incorpo-
rating machine learning methodology and leveraging the variable neighborhood
search strategy. More precisely, the search process is considered as a Markov
decision process (MDP), where a 2-opt local search is used to search within a
small neighborhood, while a Monte Carlo tree search (MCTS) method (which
iterates through simulation, selection and back-propagation steps), is used to sam-
ple a number of targeted actions within an enlarged neighborhood. This new
paradigm clearly distinguishes itself from the existing machine learning (ML)
based paradigms for solving the TSP, which either uses an end-to-end ML model,
or simply applies traditional techniques after ML for post optimization. Experi-
ments based on two public data sets show that, our approach clearly dominates
all the existing learning based TSP algorithms in terms of performance, demon-
strating its high potential on the TSP. More importantly, as a general framework
without complicated hand-crafted rules, it can be readily extended to many other
combinatorial optimization problems.

1 INTRODUCTION

The travelling salesman problem (TSP) is a well-known combinatorial optimization problem with
various real-life applications, such as transportation, logistics, biology, circuit design. Given n cities
as well as the distance dij between each pair of cities i and j, the TSP aims to find a cheapest tour
which starts from a beginning city (arbitrarily chosen), visits each city exactly once, and finally
returns to the beginning city. This problem is NP-hard, thus being extremely difficult from the
viewpoint of theoretical computer science.

Due to its importance in both theory and practice, many algorithms have been developed for the TSP,
mostly based on traditional operations research (OR) methods. Among the existing TSP algorithms,
the best exact solver Concorde (Applegate et al., 2009) succeeded in demonstrating optimality of
an Euclidean TSP instance with 85,900 cities, while the leading heuristics (Helsgaun, 2017) and
(Taillard & Helsgaun, 2019) are capable of obtaining near-optimal solutions for instances with mil-
lions of cities. However, these algorithms are very complicated, which generally consist of many
hand-crafted rules and heavily rely on expert knowledge, thus being difficult to generalize to other
combinatorial optimization problems.

To overcome those limitations, recent years have seen a number of ML based algorithms being
proposed for the TSP (briefly reviewed in the next section), which attempt to automate the search
process by learning mechanisms. This type of methods do not rely on expert knowledge, can be
easily generalized to various combinatorial optimization problems, thus become promising research
direction at the intersection of ML and OR. For the TSP, existing ML based algorithms can be
roughly classified into two paradigms, i.e.: (1) End-to-end ML paradigm which uses a ML model
alone to directly convert the input instance to a solution. (2) ML followed by OR paradigm which
applies ML at first to provide some additional information, to guide the following OR procedure
towards promising regions.

Despite its high potential, for the TSP, existing ML based methods are still in its infancy, struggling
to solve instances with more than 100 cities, leaving much room for further improvement compared
with traditional methods. To this end, we propose a novel framework by combining Monte Carlo
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tree search (MCTS) with a basic OR method (2-opt based local search) using variable neighborhood
strategy to solve the TSP. The main contributions are summarized as follows.

• Framework: We propose a new paradigm which combines OR and ML using variable
neighborhood strategy. Starting from an initial state, a basic 2-opt based local search is
firstly used to search within a small neighborhood. When no improvement is possible
within the small neighborhood, the search turns into an enlarged neighborhood, where a
reinforcement learning (RL) based method is used to identify a sample of promising ac-
tions, and iteratively choose one action to apply. Under this new paradigm, OR and ML
respectively work within disjoint space, being flexible and targeted, and clearly different
from the two paradigms mentioned above. More importantly, as a general framework with-
out complicated hand-crafted rules, this framework could not only be applied to the TSP,
but also be easily extended to many other combinatorial optimization problems.

• Methodology: When we search within an enlarged neighborhood, it is infeasible to enu-
merate all the actions. We then seek to sample a number of promising actions. To do this
automatically, we implement a MCTS method which iterates through simulation, selection
and back-propagation steps, to collect useful information that guides the sampling process.
To the best of our knowledge, there is only one existing paper (Shimomura & Takashima,
2016) which also uses MCTS to solve the TSP. However, their method is a constructive
approach, where each state is a partial TSP tour, and each action adds a city to increase the
partial tour, until forming a complete tour. By contrast, our MCTS method is a conversion
based approach, where each state is a complete TSP tour, and each action converts the orig-
inal state to a new state (also a complete TSP tour). The methodology and implementation
details of our MCTS are very different from the MCTS method developed in (Shimomura
& Takashima, 2016).

• Results: We carry out experiments on two sets of public TSP instances. Experimental
results (detailed in Section 4) show that, on both data sets our MCTS algorithm obtains
(within reasonable time) statistically much better results with respect to all the existing
learning based algorithms. These results clearly indicate the potential of our new method
for solving the TSP.

The rest of this paper is organized as follows: Section 2 briefly reviews the existing learning based
methods on the TSP. Section 3 describes in detail the new paradigm and the MCTS method. Section
4 provides and analyzes the experimental results. Finally Section 5 concludes this paper.

2 RELATED WORKS

In this section, we briefly review the existing ML based algorithms on the TSP, and then extend
to several other highly related problems. Non-learned methods are omitted, and interested read-
ers please find in (Applegate et al., 2009), (Rego et al., 2011), (Helsgaun, 2017) and (Taillard &
Helsgaun, 2019) for an overlook of the leading TSP algorithms.

The idea of applying ML to solve the TSP is not new, dated back to several decades ago. Hop-
field & Tank (1985) proposed a Hopfield-network, which achieved the best TSP solutions at that
time. Encouraged by this progress, neural networks were subsequently applied on many related
problems (surveyed by Smith (1999)). However, these early attempts only achieved limited suc-
cess, with respect to other state-of-the-art algorithms, possibly due to the lack of high-performance
hardware and training data. In recent years, benefited from the rapidly improving hardware and
exponentially increasing data, ML (especially deep learning) achieved great successes in the field of
artificial intelligence. Motivated by these successes, ML becomes again a hot and promising topic
for combinatorial optimization, especially for the TSP. A number of ML based algorithms have been
developed for the TSP, which can be roughly classified into two paradigms (possibly with overlaps).

End-to-end ML paradigm: Vinyals et al. (2015) introduced a pointer network which consists of
an encoder and a decoder, both using recurrent neural network (RNN). The encoder parses each
TSP city into an embedding, and then the decoder uses an attention model to predict the probability
distribution over the candidate (unvisited) cities. This process is repeated to choose a city one by
one, until forming a complete TSP tour. The biggest advantage of the pointer network is its ability of
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processing graphs with different sizes. However, as a supervised learning (SL) method, it requires a
large number of pre-computed optimal (at least high-quality) TSP solutions, being unaffordable for
large-scale instances. To overcome this drawback, several successors chose reinforcement learning
(RL) instead of SL, thus avoiding the requirement of pre-computed solutions. For example, Bel-
lo et al. (2017) implemented an actor-critic RL architecture, which uses the solution quality (tour
length) as a reward signal, to guide the search towards promising area. Khalil et al. (2017) proposed
a framework which maintains a partial tour and repeatedly calls a RL based model to select the most
relevant city to add to the partial tour, until forming a complete tour. Emami & Ranka (2018) also
implemented an actor-critic neural network, and chose Sinkhorn policy gradient to learn policies by
approximating a double stochastic matrix. Concurrently, Deudon et al. (2018) and Kool et al. (2019)
both proposed a graph attention network (GAN), which incorporates attention mechanism with RL
to auto-regressively improve the quality of the obtained solution.

Specifically, Shimomura & Takashima (2016) proposed a MCTS algorithm for the TSP, which also
belongs to this paradigm. As explained in the introduction section, this existing method is clearly
different from our MCTS algorithm (detailed in Section 3.5).

ML followed by OR paradigm: Applying ML alone is difficult to achieve satisfactory perfor-
mance, thus it is recommended to combine ML and OR to form hybrid algorithms (Bengio et al.,
2018). Following this idea, Nowak et al. (2017) proposed a supervised approach, which trains a
graph neural network (GNN) to predict an adjacency matrix (heat map) over the cities, and then
attempts to convert the adjacency matrix to a feasible TSP tour by beam search (OR based method).
Joshi et al. (2019) followed this framework, but chose deep graph convolutional networks (GCN)
instead of GNN to build heat map, and then tried to construct tours via highly parallelized beam
search. Additionally, several algorithms belonging to above paradigm were further enhanced with
OR based algorithms, thus also belonging to this paradigm. For example, the solution obtained by
ML is post-optimized by sampling in (Bello et al., 2017) and (Kool et al., 2019), or by 2-opt based
local search in (Deudon et al., 2018). Overall, this hybrid paradigm performs statistically much
better than the end-to-end ML paradigm, showing the advantage of combining ML with OR.

In addition to the works focused on the classic TSP, there are several ML based methods recently
proposed for solving other related problems, such as the decision TSP (Prates et al., 2019), the
multiple TSP (Kaempfer & Wolf, 2019), and the vehicle routing problem (Nazari et al., 2018), etc.

Finally, for an overall survey about machine learning for combinatorial optimization, please refer to
(Bengio et al., 2018) and (Guo et al., 2019).

3 METHOD

3.1 FRAMEWORK

Figure 1: New paradigm for combining OR and ML to solve the TSP

The proposed new paradigm for combining OR and ML to solve the TSP is outlined in Fig. 1.
Specifically, the search process is considered as a Markov Decision Process (MDP), which starts
from an initial state π, and iteratively applies an action a to reach a new state π∗. At first, the MDP
explores within a small neighborhood, and tries to improve the current state by applying 2-opt based
local search. When no further improvement is possible within the small neighborhood, the MDP
turns into an enlarged neighborhood, which consists of a large number of possible actions, being
infeasible to enumerate one by one. To improve search efficiency, MCTS is launched to iteratively
sample a number of promising actions and choose an improving action to apply. When MCTS fails
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to find an improving action, the MDP jumps into an unexplored search space, and launches a new
round of 2-opt local search and MCTS again. This process is repeated until the termination condition
is met, then the best found state is returned as the final solution.

3.2 STATES AND ACTIONS

In our implementation, each state corresponds to a complete TSP solution, i.e., a permutation π =
(π1, π2, . . . , πn) of all the cities. Each action a is a transformation which converts a given state
π to a new state π∗. Since each TSP solution consists of a subset of n edges, each action could
be viewed as a k-opt (2 ≤ k ≤ n) transformation, which deletes k edges at first, and then adds k
different edges to form a new tour.

Obviously, each action can be represented as a series of 2k sub-decisions (k edges to delete and k
edges to add). This representation method is straightforward, but seems a bit redundant, since the
deleted edges and added edges are highly relevant, while arbitrarily deleting k edges and adding
k edges may result in an unfeasible solution. To overcome this drawback, we develop a compact
method to represent an action, which consists of only k sub-decisions, as exemplified in Fig. 2.
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Figure 2: The decision process of an example action

In Fig. 2, sub-figure (a) is the starting state π = (1, 2, 3, 4, 5, 6, 7, 8). To determine an action, we
at first decide a city a1 and delete the edge between a1 and its previous city b1. Without loss of
generality, suppose a1 = 4, then b1 = 3 and edge (3, 4) is deleted, resulting in a temporary status
shown in sub-figure (b) (for the sake of clarity, drawn as a line which starts from a1 and ends at b1).
Furthermore, we decide a city a2 to connect city b1, generally resulting in an unfeasible solution
containing an inner cycle (unless a2 = a1). For example, suppose a2 = 6 and connect it to city 3,
the resulting temporary status is shown in sub-figure (c), where an inner cycle occurs and the degree
of city a2 increases to 3. To break inner cycle and reduce the degree of a2 to 2, the edge between
city a2 and city b2 = 7 should be deleted, resulting in a temporary status shown in sub-figure (d).
This process is repeated, to get a series of cities ak and bk (k ≥ 2). In this example, a3 = 3 and
b3 = 2, respectively corresponding to sub-figures (e) and (f). Once ak = a1, the loop closes and
reaches a new state (feasible TSP solution). For example, if let a4 = a1 = 4 and connect a4 to b3,
the resulting new state is shown in sub-figure (g), which is redrawn as a cycle in sub-figure (h).
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Formally, an action can be represented as a = (a1, b1, a2, b2, . . . , ak, bk, ak+1), where k is a variable
and the begin city must coincide with the final city, i.e. ak+1 = a1. Each action corresponds
to a k-opt transformation, which deletes k edges, i.e., (ai, bi), 1 ≤ i ≤ k, and adds k edges, i.e.,
(bi, ai+1), 1 ≤ i ≤ k, to reach a new state. Notice that not all these elements are optional, since once
ai is known, bi can be uniquely determined without any optional choice. Therefore, to determine an
action we should only decide a series of k sub-decisions, i.e., the k cities ai, 1 ≤ i ≤ k. Intuitively,
this compact representation method brings advantages in two-folds: (1) fewer (only k, not 2k) sub-
decisions need to be made; (2) the resulting states are necessarily feasible solutions.

Furthermore, if ai+1 does not belong to the top 10 nearest neighbors of bi, edge (bi, ai+1) is marked
as an unpromising edge, and any action involving (bi, ai+1) is marked as an unpromising action. All
the unpromising actions are eliminated directly, to reduce the scale of search space.

Let L(π) denote the tour length corresponding to state π, then corresponding to each action a =
(a1, b1, a2, b2, . . . , ak, bk, ak+1) which converts π to a new state π∗, the difference ∆(π,π∗) =
L(π∗)− L(π) could be calculated as follows:

∆(π,π∗) =
k∑

i=1

dbiai+1
−

k∑
i=1

daibi . (1)

If ∆(π,π∗) < 0, π∗ is better (with shorter tour length) than π.

3.3 STATE INITIALIZATION

For state initialization, we choose a simple constructive procedure which starts from an arbitrarily
chosen begin city π1, and iteratively selects a city πi, 2 ≤ i ≤ n among the candidate (unvisited)
cities (added to the end of the partial tour), until forming a complete tour π = (π1, π2, . . . , πn)
which serves as the starting state. More precisely, if there are m > 1 candidate cities at the ith
iteration, each candidate city is chosen with probability 1

m . Using this method, each possible state
is chosen as the starting state with an equal probability.

3.4 2-OPT LOCAL SEARCH WITHIN SMALL NEIGHBORHOOD

To maintain the generalization ability of our approach, we avoid to use complex OR techniques,
such as the α-nearness criterion for selecting candidate edges (Helsgaun, 2000) and the partition
and merge method for tackling large TSP instances (Taillard & Helsgaun, 2019), which have proven
to be highly effective on the TSP, but heavily depend on expert knowledge.

Instead, we choose a straightforward method to search within a small neighborhood. More precisely,
the method examines one by one the promising actions with k = 2, and iteratively applies the first-
met improving action which leads to a better state, until no improving action with k = 2 is found.
This method is equivalent to the well-known 2-opt based local search procedure, which is able to
efficiently and robustly converge to a local optimal state.

3.5 TARGETED SAMPLING OF ENLARGED NEIGHBORHOOD VIA MCTS

Figure 3: Procedure of the Monte Carlo tree search
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Once no improving action is found within the small neighborhood, we close the basic 2-opt local
search, and switch to an enlarged neighborhood which consists of the actions with k > 2. This
method is a generalization of the variable neighborhood search method (Mladenović & Hansen,
1997), which has been successfully applied to many combinatorial optimization problems.

Unfortunately, there are generally a huge number of actions within the enlarged neighborhood (even
after eliminating the unpromising ones), being impossible to enumerate them one by one. Therefore,
we choose to sample a subset of promising actions (guided by RL) and iteratively select an action to
apply, to reach a new state.

Following this idea, we choose the MCTS as our learning framework. Inspired by the works in
(Coulom, 2006), (Browne et al., 2012), (Silver et al., 2016) and (Silver et al., 2017), our MCTS
procedure (outlined in Fig. 3) consists of four steps, i.e., (1) Initialization, (2) Simulation, (3)
Selection, and (4) Back-propagation, which are respectively designed as follows.

Initialization: We define two n × n symmetric matrices, i.e., a weight matrix W whose element
Wij (all initialized to 1) controls the probability of choosing city j after city i, and an access matrix
Q whose element Qij (all initialized to 0) records the times that edge (i, j) is chosen during sim-
ulations. Additionally, a variable M (initialized to 0) is used to record the total number of actions
already simulated. Notice that this initialization step should be executed only once at the beginning
of the whole process of MDP.

Simulation: Given a state π, we use the simulation process to probabilistically generate
a number of actions. As explained in Section 3.2, each action is represented as a =
(a1, b1, a2, b2, . . . , ak, bk, ak+1), containing a series of sub-decisions ai, 1 ≤ i ≤ k (k is also a
variable, and ak+1 = a1), while bi could be determined uniquely once ai is known. Once bi is
determined, for each edge (bi, j), j 6= bi, we use the following formula to estimate its potential Zbij

(the higher the value of Zbij , the larger the opportunity of edge (bi, j) to be chosen):

Zbij =
Wbij

Ωbi

+ α

√
ln (M + 1)

Qbij + 1
. (2)

Where Ωbi =
∑

j 6=bi
Wbij∑

j 6=bi
1 denotes the averaged Wbij value of all the edges relative to city bi. In

this formula, the left part Wbij

Ωbi
emphasizes the importance of the edges with high Wbij values (to

enhance the intensification feature), while the right part

√
ln (M + 1)

Qbij + 1
prefers the rarely examined

edges (to enhance the diversification feature). α is a parameter used to achieve a balance between
intensification and diversification, and the term ”+1” is used to avoid a minus numerator or a zero
denominator.

To make the sub-decisions sequently, we at first choose a1 randomly, and determine b1 subsequently.
Recursively, once ai and bi are known, ai+1 is decided as follows: (1) if closing the loop (connecting
a1 to bi) would lead to an improving action, or i ≥ 10, let ai+1 = a1. (2) otherwise, consider the
top 10-nearest neighbors of bi with Zbil ≥ 1 as candidate cities, forming a set X (excluding a1 and
the city already connected to bi). Then, among X each city j is selected as ai+1 with probability pj ,
which is determined as follows:

pj =
Zbij∑
l∈X Zbil

. (3)

Once ai+1 = a1, we close the loop to obtain an action.

Similarly, more actions are generated (forming a sampling pool), until meeting an improving action
which leads to a better state, or the number of actions reaches its upper bound (controlled by a
parameter H).

Selection: During above simulation process, if an improving action is met, it is selected and applied
to the current state π, to get a new state πnew. Otherwise, if no such action exists in the sampling
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pool, it seems difficult to gain further improvement within the current search area. At this time, the
MDP jumps to a random state (using the method described in Section 3.3), which serves as a new
starting state.

Back-propagation: The value of M as well as the elements of matrices W and Q are updat-
ed by back propagation as follows. At first, whenever an action is examined, M is increased
by 1. Then, for each edge (bi, ai+1) which appears in an examined action, let Qbiai+1

in-
crease by 1. Finally, whenever a state π is converted to a better state πnew by applying action
a = (a1, b1, a2, b2, . . . , ak, bk, ak+1), for each edge (bi, ai+1), 1 ≤ i ≤ k, let:

Wbiai+1 ←Wbiai+1 + β

[
exp

(
L(π)− L(πnew)

L(π)

)
− 1

]
. (4)

Where β is a parameter used to control the increasing rate of Wbiai+1
. Notice that we update

Wbiai+1
only when meeting a better state, since we want to avoid wrong estimations (even in a bad

action which leads to a worse state, there may exist some good edges (bi, ai+1)). With this back-
propagation process, the weight of the good edges would be increased to enhance its opportunity of
being selected, thus the sampling process would be more and more targeted.

W andQ are symmetric matrices, thus let Wai+1bi = Wbiai+1
and Qai+1bi = Qbiai+1

always.

3.6 TERMINATION CONDITION

The MCTS iterates through the simulation, selection and back-propagation steps, until no improving
action exists among the sampling pool. Then, the MDP jumps to a new state, and launches a new
round of 2-opt local search and MCTS again. This process is repeated, until the allowed time
(controlled by a parameter T ) has been elapsed. Then, the best found state is returned as the final
solution.

4 EXPERIMENTS

To evaluate the performance of our MCTS algorithm, we program it in C language 1, and carry
out experiments on a large number of public TSP instances. Notice that the reference algorithms
are executed on different platforms (detailed below), being extremely difficult to fairly compare the
run times. Therefore, we mainly make comparisons in terms of solution quality (achieved within
reasonable runtime), and just list the run-times to roughly evaluate the efficiency of each algorithm.

4.1 DATA SETS

Currently there are two data sets widely used by the existing learning based TSP algorithms, i.e.,
(1) Set 1 2, which is divided into three subsets, each containing 10,000 automatically generated
2D-Euclidean TSP instances, respectively with n = 20, 50, 100. (2) Set 2 3: which contains 38
instances (with 51 ≤ n ≤ 318) extracted from the famous TSPLIB library (Reinelt, 1991). We also
use these two data sets as benchmarks to evaluate our MCTS algorithm.

4.2 PARAMETERS

As described in Section 3, MCTS relies on four hyper parameters (α, β, H and T ). We choose
α = 1, β = 10, H = 10n (n is the number of cities) as the default settings of the first three
parameters. For parameter T used to control the termination condition, we set T = 75nmilliseconds
for each instance of set 1, and set T = n seconds for each instance of set 2, to ensure that the total
time elapsed by MCTS remains reasonable w.r.t. the existing learning based algorithms.

1Code and results at https://github.com/Spider-scnu/Monte-Carlo-tree-search-for-TSP.
2https://drive.google.com/file/d/1-5W-S5e7CKsJ9uY9uVXIyxgbcZZNYBrp/view.
3https://wwwproxy.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95.
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4.3 RESULTS ON DATA SET 1

Table 1 presents the results obtained by MCTS on data set 1, with respect to the existing non-learned
and learning-based algorithms. In the table, each line corresponds to an algorithm. Respectively,
the first nine lines are non-learned algorithms, among which Concorde (Applegate et al., 2006) and
Gurobi (Gurobi Optimization, 2015) are two exact solvers, LKH3 (Helsgaun, 2017) is the currently
best heuristic, and OR tools are optimization tools released by Google company (Google, 2016). The
following six lines are end-to-end ML models (the MCTS algorithm in (Shimomura & Takashima,
2016) did not provide detailed results, thus being omitted), and the final eight lines are hybrid algo-
rithms which use OR method after ML for post-optimization. For the columns, column 1 indicates
the methods, while column 2 indicates the type of each algorithm (explained at the bottom of the
table), columns 3-5 respectively give the average tour length, average optimality gap in percentage
w.r.t. Concorde, and the total clock time used by each algorithm on all the 10,000 instances with
n = 20. Similarly, columns 6-8, 9-11 respectively give the same information on the 10,000 instances
with n = 50 and n = 100. All the results except ours are directly taken from table 1 of (Joshi et al.,
2019) (the order of the algorithms is slightly changed), while unavailable items are marked as ”-”.

Notice that in the latest learning based algorithms (Kool et al., 2019) and (Joshi et al., 2019), the
experiments were carried out either on a single GPU (Nvidia 1080Ti) or 32 instances in parallel on
a 32 virtual CPU system (2 × Xeon E5-2630), and the run-time was recorded as the wall clock time
used to solve the 10,000 test instances. Similarly, we also run 32 instances in parallel on a 32 virtual
CPU system (2 × Intel Xeon Silver 4110 2.1GHz processor, each with eight cores), and report the
wall clock time used to solve the 10,000 test instances.

Table 1: Performance of our MCTS algorithm on data set 1, compared to non-learned algorithms
(first nine lines), end-to-end ML models (following six lines), and hybrid algorithms which use OR
after ML (final eight lines). The optimality gap is computed w.r.t. Concorde (best exact solver).

Method Type TSP20 TSP50 TSP100
Tour Len. Opt. Gap. Time Tour Len. Opt. Gap. Time Tour Len. Opt. Gap. Time

Concorde (Applegate et al., 2006) Exact Solver 3.84 0.00% 1m 5.70 0.00% 2m 7.76 0.00% 3m
Gurobi (Gurobi Optimization, 2015) Exact Solver 3.84 0.00% 7s 5.70 0.00% 2m 7.76 0.00% 17m
LKH3 (Helsgaun, 2017) H 3.84 0.00% 18s 5.70 0.00% 5m 7.76 0.00% 21m
Nearest Insertion H, G 4.33 12.91% 1s 6.78 19.03% 2s 9.46 21.82% 6s
Random Insertion H, G 4.00 4.36% 0s 6.13 7.65% 1s 8.52 9.69% 3s
Farthest Insertion H, G 3.93 2.36% 1s 6.01 5.53% 2s 8.35 7.59% 7s
Nearest Neighbor H, G 4.50 17.23% 0s 7.00 22.94% 0s 9.68 24.73% 0s
OR Tools (Google, 2016) H, S 3.85 0.37% - 5.80 1.83% - 7.99 2.90% -
Chr.f. + 2OPT H, 2OPT 3.85 0.37% - 5.79 1.65% - - - -
PtrNet (Vinyals et al., 2015) SL, G 3.88 1.15% - 7.66 34.48% - - - -
PtrNet (Bello et al., 2017) RL, G 3.89 1.42% - 5.95 4.46% - 8.30 6.90% -
S2V-DQN (Khalil et al., 2017) RL, G 3.89 1.42% - 5.99 5.16% - 8.31 7.03% -
GAT (Deudon et al., 2018) RL, G 3.86 0.66% 2m 5.92 3.98% 5m 8.42 8.41% 8m
GAT (Kool et al., 2019) RL, G 3.85 0.34% 0s 5.80 1.76% 2s 8.12 4.53% 6s
GCN (Joshi et al., 2019) SL, G 3.86 0.60% 6s 5.87 3.10% 55s 8.41 8.38% 6m
GNN (Nowak et al., 2017) SL, BS 3.93 2.46% - - - - - - -
PtrNet (Bello et al., 2017) RL, S - - - 5.75 0.95% - 8.00 3.03% -
GAT (Deudon et al., 2018) RL, S 3.84 0.11% 5m 5.77 1.28% 17m 8.75 12.70% 56m
GAT (Deudon et al., 2018) RL, G, 2OPT 3.85 0.42% 4m 5.85 2.77% 26m 8.17 5.21% 3h
GAT (Deudon et al., 2018) RL, S, 2OPT 3.84 0.09% 6m 5.75 1.00% 32m 8.12 4.64% 5h
GAT (Kool et al., 2019) RL, S 3.84 0.08% 5m 5.73 0.52% 24m 7.94 2.26% 1h
GCN (Joshi et al., 2019) SL, BS 3.84 0.10% 20s 5.71 0.26% 2m 7.92 2.11% 10m
GCN (Joshi et al., 2019) SL, BS* 3.84 0.01% 12m 5.70 0.01% 18m 7.87 1.39% 40m
MCTS (ours) RL, 2OPT 3.8303 -0.0075% 8m 5.6906 -0.0212% 20m 7.7631 -0.0178% 40m

H: Heuristic, SL: Supervised Learning, RL: Reinforcement Learning, G: Greedy, S: Sampling,
BS: Beam search, BS*: BS and shortest tour heuristic, 2OPT: 2-opt local search.

As shown in Table 1, the exact solvers and LKH3 obtain good results on all the test instances, while
the remaining six non-learned algorithms perform overall poorly. Among the learning based al-
gorithms, in terms of solution quality the hybrid algorithms which combines ML and OR perform
clearly much better than the end-to-end ML models, although much more computational times are
required. Finally, compared to these existing methods, our MCTS algorithm performs quite well,
which succeeds in matching or improving the best known solutions (reported by Concorde) on most
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of these instances, corresponding to an average gap of -0.0075%, -0.0212%, -0.0178% 4 respec-
tively on the three subsets with n = 20, 50, 100. The computation times elapsed by MCTS remains
reasonable (40 minutes for the 10,000 instances with n = 100), close to the latest (currently best)
learning based algorithm (Joshi et al., 2019).

4.4 RESULTS ON DATA SET 2

This set contains 38 instances (51 ≤ n ≤ 318) extracted from the TSPLIB. For each of these in-
stances, we list in Table 2 the optimal result (reported by Concorde within 1 hour for each instance),
the results reported by S2V-DQN (Khalil et al., 2017) and our MCTS algorithm (indicated in bold if
reaching optimality). Notice that S2V-DQN did not clearly report the computational time, while n
seconds is allowed by our MCTS to solve each instance with n cities (the 38 instances are executed
sequentially, occupying a core of an Intel Xeon Silver 4110 2.1GHz processor).

As shown in the table, S2V-DQN reaches optimality on only one instance (berlin52), corresponding
to a large average gap (w.r.t. the optimal solutions) of 4.75%. For comparison, our MCTS succeeds
in matching the optimal solutions on 28 instances, corresponding to a much smaller average gap
(0.21%). Furthermore, MCTS dominates S2V-DQN on all these instances only except two instances
pr226 (worse than S2V-DQN) and berlin52 (with equal results), clearly demonstrating its superiority
over S2V-DQN.

Table 2: Performance of MCTS on data set 2 compared to S2V-DQN (Khalil et al., 2017).
Instance OPT S2V-DQN MCTS Instance OPT S2V-DQN MCTS
eil51 426 439 426 berlin52 7542 7542 7542
st70 675 696 675 eil76 538 564 538
pr76 108159 108446 108159 rat99 1211 1280 1211
kroA100 21282 21897 21282 kroB100 22141 22692 22141
kroC100 20749 21074 20749 kroD100 21294 22102 21294
kroE100 22068 22913 22068 rd100 7910 8159 7910
eil101 629 659 629 lin105 14379 15023 14379
pr107 44303 45113 44303 pr124 59030 61623 59030
bier127 118282 121576 118282 ch130 6110 6270 6110
pr136 96772 99474 96772 pr144 58537 59436 58763
ch150 6528 6985 6528 kroA150 26524 27888 26524
kroB150 26130 27209 26130 pr152 73682 75283 73682
u159 42080 45433 42080 rat195 2323 2581 2324
d198 15780 16453 15785 kroA200 29368 30965 29368
kroB200 29437 31692 29438 ts225 126643 136302 126643
tsp225 3916 4154 3926 pr226 80369 81873 83467
gil262 2378 2537 2391 pr264 49135 52364 49135
a280 2579 2867 2579 pr299 48191 51895 48195
lin318 42029 45375 42314 linhp318 41345 45444 42305

The average gap of S2V-DQN vs. OPT is 4.75%, while the average gap of MCTS vs. OPT is 0.21%.

Overall, we think the experimental results on above two data sets clearly show the potential of our
MCTS on the TSP.

5 CONCLUSION

This paper newly develops a novel flexible paradigm for solving TSP, which combines OR and ML in
a variable neighborhood search strategy, and achieves highly competitive performance with respect
to the existing learning based TSP algorithms. However, how to combine ML and OR reasonably
is still an open question, which deserves continuous investigations. In the future, we would try
more new paradigms to better answer this question, and extend the work to other combinatorial
optimization problems.

4On many instances, the best known solutions reported by Concorde are not strictly optimal (confirmed in
(Joshi et al., 2019), possibly due to round-off reasons), which could be slightly improved (< 10−2) by our
MCTS algorithm. On the 10,000 instances with n = 20, 50, 100, MCTS respectively improves (with different
permutations of the cities) 1094, 3682, 6404 and misses 0, 0, 1273 best known solutions, while matching the
best known solutions on all the remaining instances.
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Nenad Mladenović and Pierre Hansen. Variable neighborhood search. Computers & operations
research, 24(11):1097–1100, 1997.

Mohammadreza Nazari, Afshin Oroojlooy, Lawrence Snyder, and Martin Takác. Reinforcement
learning for solving the vehicle routing problem. In Advances in Neural Information Processing
Systems (NeurIPS), pp. 9839–9849, 2018.

Alex Nowak, Soledad Villar, Afonso S Bandeira, and Joan Bruna. A note on learning algorithms
for quadratic assignment with graph neural networks. In Proceeding of the 34th International
Conference on Machine Learning (ICML), volume 1050, pp. 22, 2017.

Marcelo Prates, Pedro HC Avelar, Henrique Lemos, Luis C Lamb, and Moshe Y Vardi. Learning
to solve np-complete problems: A graph neural network for decision tsp. In Proceedings of the
AAAI Conference on Artificial Intelligence (AAAI), volume 33, pp. 4731–4738, 2019.

César Rego, Dorabela Gamboa, Fred Glover, and Colin Osterman. Traveling salesman problem
heuristics: Leading methods, implementations and latest advances. European Journal of Opera-
tional Research, 211(3):427–441, 2011.

Gerhard Reinelt. Tspliba traveling salesman problem library. ORSA journal on computing, 3(4):
376–384, 1991.

Masato Shimomura and Yasuhiro Takashima. Application of monte-carlo tree search to traveling-
salesman problem. In The 20th Workshop on Synthesis And System Integration of Mixed Informa-
tion technologies (SASIMI), pp. 352–356, 2016.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van Den Driessche,
Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc Lanctot, et al. Mastering
the game of go with deep neural networks and tree search. Nature, 529(7587):484, 2016.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur Guez,
Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the game of go
without human knowledge. Nature, 550(7676):354, 2017.

Kate A Smith. Neural networks for combinatorial optimization: a review of more than a decade of
research. INFORMS Journal on Computing, 11(1):15–34, 1999.
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