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ABSTRACT

More accurate machine learning models often demand more computation and
memory at test time, making them difficult to deploy on CPU- or memory-
constrained devices. Model compression (also known as distillation) alleviates
this burden by training a less expensive student model to mimic the expensive
teacher model while maintaining most of the original accuracy. However, when
fresh data is unavailable for the compression task, the teacher’s training data is
typically reused, leading to suboptimal compression. In this work, we propose to
augment the compression dataset with synthetic data from a generative adversarial
network (GAN) designed to approximate the training data distribution. Our GAN-
assisted model compression (GAN-MC) significantly improves student accuracy
for expensive models such as deep neural networks and large random forests on
both image and tabular datasets. Building on these results, we propose a com-
prehensive metric—the Compression Score—to evaluate the quality of synthetic
datasets based on their induced model compression performance. The Compres-
sion Score captures both data diversity and discriminability, and we illustrate its
benefits over the popular Inception Score in the context of image classification.

1 INTRODUCTION

Modern machine learning models have achieved remarkable levels of accuracy, but their complexity
can make them slow to query, expensive to store, and difficult to deploy for real-world use. Ideally,
we would like to replace such cumbersome models with simpler models that perform equally well.
One way to address this problem is to perform model compression (also known as distillation), which
consists of training a student model to mimic the outputs of a teacher model (Bucila et al., 2006;
Hinton et al., 2015). For example, expensive ensemble and deep neural network (DNN) teachers
have been used to train inexpensive decision tree (Craven & Shavlik, 1996; Frosst & Hinton, 2017)
and shallow neural network (Bucila et al., 2006; Ba & Caruana, 2014; Hinton et al., 2015; Urban
et al., 2017) students.

An important degree of freedom in the model compression problem is the compression set1 used to
train the student. Ideally, fresh (unlabeled) data from the training distribution would fuel this task,
but often no fresh data remains after the teacher is trained (Bucila et al., 2006; Ba & Caruana, 2014).
In this case, one branch of the literature, dating back to the pioneering work of Bucila et al. (2006),
recommends generating synthetic data for compression and proposes tailored generation schemes
for tabular (Bucila et al., 2006) and image (Urban et al., 2017) data. A second branch, rooted in the
distillation community (Hinton et al., 2015; Frosst & Hinton, 2017), simply uses the same data to
train teacher and student (see also Ba & Caruana, 2014). Here, we show that the latter convention
leads to suboptimal compression performance and propose a synthetic data generation strategy that
is suitable for image and tabular data alike.

Specifically, when fresh data is unavailable for model compression, we propose to augment the
compression set with synthetic data produced by generative adversarial networks (GANs) (Good-
fellow et al., 2014). GANs attempt to generate new datapoints from the distribution underlying a
given dataset and have achieved impressive performance for a variety of data types including images

1To avoid ambiguity, we will refer to the dataset used for compression as “compression set” and reserve the
name “training set” for the data used to train the teacher.
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(Goodfellow et al., 2014), text (Yu et al., 2017), and electronic health records (Choi et al., 2017).
Here, we develop GAN-assisted model compression (GAN-MC) to improve the compression of ex-
pensive machine learning classifiers and demonstrate its effectiveness for both image and tabular
data.

We further propose to use GAN-MC to evaluate the quality of synthetic datasets and their generators.
In essence, we declare a synthetic dataset to be of higher quality if a compressed model trained on
that data achieves higher test accuracy. Synthetic data evaluation is a notoriously difficult problem
marked by the lack of universally agreed-upon quality measures (Theis et al., 2015). Some standard
quality measures, like multiscale structural similarity (Wang et al., 2003), quantify the diversity
of a synthetic dataset but do not capture discriminability, the ability of datapoints to be correctly
associated with their labels with high confidence. Others, like the popular Inception Score (Salimans
et al., 2016), quantify discriminability based on the predicted label distribution of a trained neural
network. However, these scores do not account for within-class diversity and are easily misled by
adversarial datapoints that elicit high confidence predictions but do not resemble real data.

To address these shortcomings, we develop a Compression Score that quantifies the true test accu-
racy of compressed models trained using synthetic data; this offers a robust, goal-driven metric for
synthetic data quality that accounts for both diversity and discriminability. In summary, we make
the following principal contributions in this paper:

1. We propose GAN-assisted model compression (GAN-MC), a simple approach to improving
teacher-student compression by augmenting the compression set with GAN data.

2. On CIFAR-10 image classification, we show GAN-MC consistently improves student test accu-
racy for a variety of deep neural network teacher-student pairings and two popular compression
objectives.

3. For random forest teachers, we demonstrate 25 to 336-fold reductions in execution and storage
costs with less than 1.2% loss in test performance across a suite of real-world tabular datasets.

4. We introduce a new Compression Score for evaluating the quality of GAN-generated datasets
and illustrate its advantages over the popular Inception Score on CIFAR-10.

2 MODEL COMPRESSION WITH GANS

In this section, we review standard approaches to model compression for DNNs and describe our
proposals for compressing random forests and improving model compression with GAN data.

2.1 DEEP NEURAL NETWORK COMPRESSION

In the standard teacher-student approach to compressing a neural network classifier, a relatively
inexpensive prediction rule, like a shallow neural network, is trained to predict the unnormalized
log probability values—the logits z—assigned to each class by a previously trained deep net-
work classifier. The inexpensive model is termed the student, and the expensive deep network is
termed the teacher. Given a compression set of n feature vectors paired with teacher logit vectors,
{(x(1), z(1)), ..., (x(n), z(n))}, Ba & Caruana (2014) proposed framing the compression task as a
multitask regression problem with L2 loss,

L(θ) = ||g(x; θ)− z||22. (1)

Here, θ represents any student model parameters to be learned (e.g., the student network weights),
and g(x; θ) is the vector of logits predicted by the student model for the input feature vector x.

Hinton et al. (2015) introduced an alternative compression objective function, indexed by a tem-
perature parameter T > 0. Specifically, the student is trained to mimic the annealed teacher class
probabilities,

qj(z/T ) =
exp(zj/T )∑
k exp(zk/T )

,

for each class j by solving a multitask regression problem with cross-entropy loss,

LT (θ) = −
∑

j qj(z/T ) log(qj(g(x; θ)/T )).
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Hinton et al. (2015) showed that, under a zero-mean logit assumption, cross-entropy regression
recovers L2 logit matching as T → ∞; however, the two approaches can differ for small T . In
Sec. 3, we will experiment with both of these popular compression approaches.

2.2 RANDOM FOREST COMPRESSION

Random forests (Breiman, 2001) construct highly accurate prediction rules by averaging the pre-
dictions of a diverse and often large collection of learned decision trees. Effectively mimicking a
large random forest with a single decision tree or a small forest has the potential to reduce predic-
tion computation and storage costs by multiple orders of magnitude (Bucila et al., 2006; Joly et al.,
2012; Begon et al., 2017; Painsky & Rosset, 2016; 2018). Focusing on the common setting of binary
classification with labels in {0, 1}, we propose to train a student regression random forest to predict
a teacher forest’s outputted probability p of a datapoint x having the label 1.

2.3 GAN-ASSISTED MODEL COMPRESSION (GAN-MC)

In a typical compression setting, as much data as possible has been dedicated to training the highly
accurate teacher model, leaving little fresh data for training the student model. While one branch
of the model compression literature recommends generating synthetic data with customized aug-
mentation algorithms for tabular Bucila et al. (2006) and image Urban et al. (2017) data, the more
common solution in the distillation literature is to simply reuse the teacher training set as the com-
pression set (Hinton et al., 2015; Frosst & Hinton, 2017). However, we will see in Secs. 3 and 4
that compressing with training data alone leads to suboptimal student performance. To boost stu-
dent performance and compression efficiency, we propose a simple solution applicable to tabular
and image data alike: augment the compression set with synthetic feature vectors generated by a
high-quality GAN. These synthetic feature vectors are then labeled with the true outputted teacher
class probabilities or logits, as described in Secs. 2.1 and 2.2. We call this approach GAN-assisted
model compression (GAN-MC).

Intuition. Ideally, the student would be trained to mimic the predictions of the teacher on fresh
feature vectors drawn from the true data distribution. However, synthetic data with a similar distri-
bution can provide an effective surrogate for training an accurate student. The generator of a GAN
for instance can produce an auxiliary stream of fake feature vectors by transforming independent
noise vectors drawn from a simple distribution. The distributions of the synthetic and real data are
encouraged to align via an adversarial game between a generator and a discriminator.

To generate high-quality GAN feature vectors which capture the salient features of each class, we
use the auxiliary classifier GAN (AC-GAN) of Odena et al. (2017). The AC-GAN generator G
produces a synthetic feature vector Xfake = G(W,C) given a random noise vector W and an
independent target class label C drawn from the real data class distribution. For any given feature
vector x, the AC-GAN discriminator D predicts both the probability of each class label P (C | x)
and the probability of the data source being real or fake, P (S | x) for S ∈ {real, fake}. Given a
training datasetDreal of labeled feature vectors, two components contribute to the AC-GAN training
objective:

Lsource =
1

|Dreal|
∑

(x,c)∈Dreal
logP (S = real | x)+EW,C∼pc

[logP (S = fake | G(W,C))] and

Lclass =
1

|Dreal|
∑

(x,c)∈Dreal
logP (C = c | x) + EW,C∼pc

[logP (C | G(W,C))], (2a)

representing the expected conditional log-likelihood of the correct source and the correct class of a
feature vector, respectively. In the adversarial game, the generatorG is trained to maximize Lclass−
Lsource, and the discriminator D is trained to maximize Lclass + Lsource.

It should be noted that there is an important distinction between training a student to mimic a teacher
with GAN data and training a student to solve the original supervised learning problem with GAN
data. The goal of the original supervised learning task is to approximate the ideal mapping f∗

between inputs x and outputs y. This ideal f∗ is a functional of the true but unknown distribution
underlying our data, and our information concerning f∗ is limited by the real data we have collected.
The goal in model compression is to approximate the teacher prediction function g which maps
from inputs to predictions z. Because the teacher is a function of the training data alone, g itself
is a functional of the training data alone and is otherwise independent of the unknown distribution
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that generated that data. In addition, because we have access to the teacher, we have the freedom to
query the function g at any point, and hence our information concerning g is limited only by number
of queries we can afford. In particular, when we generate a new query point x, we can observe
the actual target value of interest, the teacher’s prediction g(x); this is not true however for the
supervised learning task, where no new labels can be observed. We believe these properties make
the model compression task a much more tractable one and one that is ideal for data augmentation
with generative models. For further discussion on the distinctions between model compression and
the original supervised learning task, we refer the reader to (Ba & Caruana, 2014).

3 DEEP NEURAL NETWORK GAN-MC

We now investigate how GAN-MC performs when used to compress convolutional deep neural
network (CNN) classifiers trained on the CIFAR-10 dataset of Krizhevsky & Hinton (2009). CIFAR-
10 consists of 32 × 32 RGB images from 10 classes, divided into 50,000 training and 10,000 test
images. The test images are randomly divided into a validation set with size 5000 and a test set
with size 5000. The AC-GAN is implemented in Keras (Chollet et al., 2015) and trained for 1000
epochs (Tuya, 2017). The discriminator D is a CNN with 6 convolution layers and Leaky ReLU
nonlinearity. The generator G consists of 3 ‘deconvolution’ layers which transform the class c and
noise vector w ∈ R110 into a 32×32 image with 3 color channels. We use the Adam optimizer with
learning rate 0.0002 and momentum term β1 = 0.5, as suggested by Radford et al. (2015).

We experiment with both of the compression objectives introduced in Sec. 2.1 using 200 compres-
sion training epochs. For L2 logit matching, the teacher and the student are NIN (Lin et al., 2014)
and LeNet (LeCun et al., 1998) models. The uncompressed networks are pre-trained by Caffe (Chan,
2016; Jia et al., 2014). Similar to Chan (2016), for compression training, we use the Adam optimizer
in Tensorflow (Abadi et al., 2015) with learning rate 10−4 and the L2 loss in Eq. 1.

For cross-entropy regression, we examine three additional networks: WideResNet-28-10
(Zagoruyko & Komodakis, 2016), ResNet-18 (He et al., 2016) and a 5-layer CNN with 3 convolu-
tion layers. Network training both with and without compression is carried out in Pytorch (Li, 2018;
Paszke et al., 2017). For compression, we use the student objective L(θ) = αLT (θ)+(1−α)L0(θ),
where 0 < α ≤ 1 and L0(θ) = −

∑
j 1 {j = c} log(qj(g(x; θ))) is the cross-entropy classification

loss for a datapoint x with class label c. For each teacher-student pair, we set T , α, and all optimizer
hyperparameters to the default values recommended in (Li, 2018). For the teacher-student pairs 1,
2, and 3 in Table 1, this yields the respective T values 5, 20, and 6 and the respective α values 0.9,
0.9, and 0.95. The Adam optimizer with learning rate 10−3 is used for the first two teacher-student
pairs, and the stochastic gradient descent optimizer with learning rate decayed from 0.1 is used for
the third pair.

We compare the standard approach of compression using only the teacher’s training dataset to two
versions of GAN-MC: compression using only GAN data and compression using a mixture of train-
ing and GAN data. The GAN data is produced in real time during the stochastic optimization
training. The mixture of training and GAN data is realized by generating GAN data with probability
pfake and by sampling from the training set with probability 1 − pfake. For each teacher-student
pair, we select the value of pfake in {0.0, 0.1, 0.2, . . . , 1.0} that yields the highest validation set
accuracy and report performance on the held-out test set. This results in the choice pfake = 0.8 for
the NIN-LeNet teacher-student pair and 0.2 for the other pairings.

Fig. 1a displays student test accuracy following each epoch of compression training with the L2

logit-matching objective. In the end, both versions of GAN-MC significantly outperform compres-
sion on training data alone and training without compression (‘Student Only’). The results are
particularly striking for the mixture of GAN and training data which doubles the impact of training
data compression. wIn this case, student accuracy increases by 10.5 percentage points (from 66.2%
to 76.7%) with GAN-MC as opposed to 5.3 percentage points (from 66.2% to 71.5%) with training
data alone. Table 1 reports comparable improvements for the NIN-LeNet teacher-student pairing
when the cross-entropy compression objective is used. Indeed, the mixture of GAN and training
data improves upon training data compression for all teacher-student pairings investigated.

At the start of the compression training in Fig. 1, compression with real data is more effective, pre-
sumably because the real training data provide a more faithful reflection of the real data distribution,
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(a) Student classification accuracy on test set. (b) Student L2 training loss on compression set

Figure 1: Student performance for L2 logit-matching compression as training progresses on CIFAR-
10 (see Sec. 3). The teacher and student are NIN and LeNet with test accuracies of 78.1% and 66.2%
(red dashed curve in (a)) when trained without compression. Compression is performed using only
real training data (blue curve), only synthetic GAN data (green curve), or a mixture of training
data and GAN data (orange curve, pfake = 0.8). Results are averaged over 3 independent student
training runs.

Table 1: CIFAR-10 image classification test accuracies for cross-entropy compression with various
teacher and student neural net architectures. GAN-MC outperforms compression on training data
alone and training without compression (‘Student Only’) in all cases. See Sec. 3 for more details.

Teacher Student Teacher
Only

Student
Only

Student after Compression with
Training Data Training & GAN

1 NIN LeNet 78.1% 66.2% 71.0% 75.3%
2 ResNet-18 5-layer CNN 94.2% 78.8% 84.4% 86.6%
3 WideResNet-28-10 ResNet-18 95.8% 94.2% 94.3% 95.0%

and the overfitting effect is not yet severe. Correspondingly, a quicker increase in test accuracy is
observed at the start, as shown in Fig. 1a. After approximately 10 epochs, the influence of overfitting
gradually increases and becomes dominant over the advantage of fidelity to the real data distribu-
tion. The compression set loss for real training data becomes significantly smaller than the loss with
either version of GAN-MC, as shown in Fig. 1b, and the test accuracy stops increasing, as confirmed
by Fig. 1a. Moreover, the teachers in our experiments yield 100% accuracy on the training set but
significantly lower accuracy on test datapoints, indicating a significant difference between the distri-
butions of training and test set logit values and a disadvantage to relying wholly on training points.
This dynamic illustrates the trade-off between GAN faithfulness to the real data distribution and the
influence of overfitting and suggests that GAN-MC improves accuracy by mitigating overfitting to
the compression set using a plentiful source of fresh and realistic (albeit imperfect) data.

Effect of the GAN training proportion parameter pfake. Adopting the experimental setup
of Fig. 1, we next examine how pfake, the probability of selecting a GAN datapoint over a real
datapoint when training the student, affects compression performance. We plot the dependence of
trained student test accuracy on pfake in Fig. 2a. When pfake = 0, only training data is used for
compression; when pfake = 1, only GAN data is used. Notably, every non-zero setting of pfake
leads to improved accuracy over compression with the real training data alone, underscoring the
value of GAN augmentation. Beyond this, we observe a non-monotonic but unimodal dependence
on pfake with a combination of GAN and real datapoints providing significantly higher accuracy
than GAN or real datapoints alone. This is consistent with a trade-off between the overfitting caused
by training data reuse and the inability of a GAN to perfectly approximate the true data distribution.

GAN-MC complements standard augmentation. Our next experiment explores the impact of
standard image augmentation on compression with and without GAN-MC. We follow the experi-
mental setup of Fig. 1 but, during teacher and student training, introduce random image augmenta-
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(a) Effect of pfake: GAN-MC student test accuracy
vs. probability pfake of training on GAN data. Com-
pression using only training (resp. only GAN) data
corresponds to pfake = 0 (resp. pfake = 1). The
colored stars are the final values of the curves with the
same color in Fig. 1a.

(b) GAN-MC complements standard augmenta-
tion: GAN-MC student test accuracy when teacher
and student are trained with and without standard im-
age augmentation (left-right flipping).

(c) Quality matters: GAN-MC student test accuracy
(pfake = 1) as a function of GAN quality, measured
in GAN training epochs.

(d) GAN-assisted supervised learning: Student test
accuracy when student is trained directly for the super-
vised learning task (without compression) and student
training data is augmented with GAN data.

Figure 2: Student test accuracies in four experiments using the CIFAR-10 compression setup of
Fig. 1. We report the average of 3 independent runs. See Sec. 3 for more details.

tions in the form of left-right image flips. In Fig. 2b, we see a clear benefit from introducing standard
augmentation, and the greatest gain is realized when GAN and standard augmentation are combined.

Quality matters. To investigate the degree to which the quality of synthetic data affects compres-
sion improvement, we repeat the compression experiment of Fig. 1 using GAN data of varying
quality and pfake = 1. We use the number of training epochs for the GAN as a proxy for the GAN’s
quality. As shown in Fig. 2c, student test accuracy is greatly impaired by using a low-quality GAN
trained for too few epochs. Fortunately, student test accuracy monotonically improves as the number
of epochs and GAN fidelity increase.

GAN-MC vs. GAN-assisted supervised learning. In Sec. 2.3, we discussed the significant differ-
ences between GAN-MC and using GAN data to augment the training set for the original supervised
learning problem. Fig. 2d shows that the same mixtures of GAN and training data that improve
student compression performance in Fig. 2a actually impair accuracy when the student is trained
without compression for the original supervised learning task.

4 RANDOM FOREST GAN-MC

We next use three tabular datasets from Kaggle and the UCI Machine Learning Repository to explore
how GAN-MC performs when used to compress large random forests for binary classification. A
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description of each dataset is given in Table 2. Higgs and MAGIC (MAGIC Gamma Telescope) are
physics datasets from the UCI Machine Learning Repository (Dheeru & Karra Taniskidou, 2017).
The nearly-class-balanced Higgs dataset was developed to learn whether a given observation was
produced by a Higgs boson (Baldi et al., 2014). For our experiment, a subset of 200,000 class-
balanced datapoints were selected uniformly at random. The target of the MAGIC dataset is the
registration of high energy gamma particles in a gamma telescope. The Evergreen (StumbleUpon
Evergreen) dataset is from Kaggle (https://www.kaggle.com/c/stumbleupon) and its
target is whether webpages are evergreen or not. Following the feature extraction protocol in (Liu
et al., 2017), we extract 29 continuous features for our regression. We split each datasets into training
and test sets uniformly at random, with training split sizes given in Table 3.

In our experiments, the teacher is a random forest classifier with 500 trees, and the student is a
regression random forest with one to 20 trees; both are trained using scikit-learn (Pedregosa et al.,
2011) with all features considered for the best split (max features = None) and default values
for all other hyperparameters. The trees trained by the teacher and students have similar depth
after training. When the student is trained without compression (‘Student Only’), the class labels
(0 and 1) are treated as real value targets. For the AC-GAN implementation in Keras, both the
generator and the discriminator are one layer fully-connected neural network with 50 neurons and
ReLU activation. We employed noise vectors w ∈ R100 and an Adam optimizer with learning rate
0.0002 and momentum term β1 = 0.5.

We study three scenarios: compression using training data only, GAN data only or a mixture of
training and GAN data. We generate nfake = 9nreal GAN datapoints for the compression set,
where nreal is the number of real training datapoints. The mixture compression set is generated by
pooling the nreal training datapoints and the nfake GAN datapoints together.

The results of compressing a random forest with 500 trees into a single decision tree are given in
Table 3. We use test accuracy as our performance metric for the balanced Higgs dataset and test
AUC for the unbalanced MAGIC and Evergreen datasets. We experiment with a variety of training
dataset sizes, ranging from n = 1k to n = 100k to demonstrate the versatility of GAN-MC. For all
datasets, compression with GAN data outperforms compression with training data and substantially
outperforms the student model trained without compression. Moreover, for the Higgs dataset, the
accuracy boost from GAN compression (62.1% to 68.5% on Higgs 100k) is 10 times the accuracy
boost achieved using training data compression (62.1% to 62.7%).

The example of the Evergreen dataset is also enlightening. Compression with training data increases
student test AUC from 0.731 to 0.856, and compression with only GAN data yields a further im-
provement to 0.882, nearly matching the 0.889 test AUC of the teacher. Remarkably, this is achieved
with a single decision tree which demands 336 times less computation and storage space than the
teacher at prediction time. The figure 336 comes from an assessment of student test-time speed-ups
summarized in Fig. 3f. For each dataset, we identified the highest accuracy and most compressed
students trained with and without GAN-MC and measured throughput as the time needed to com-
pute predictions for 30, 000 test examples using one core of an Intel Xeon 6152 processor. At a
cutoff of 1.2% excess test error, we observe speed-ups ranging from 25 to 336-fold.

Figs. 3a-3d displays student test performance as a function of the number of trees in the student
forest. For each dataset save Higgs 1k, compressing with GAN data offers the best (or nearly
the best) performance for all forest sizes. Indeed, for the Evergreen and MAGIC datasets, near-
maximal performance is achieved by a single GAN-MC decision tree, with additional trees yielding
relatively minor performance gains. For Higgs 1k, the combination of training and GAN data offers
the best performance for all multi-tree forests, with an accuracy boost consistently 2-4 times that of
compression with training data alone.

Table 2: Description of tabular datasets used for random forest GAN-MC.

Dataset # Datapoints # Features Class Imbalance

Higgs 200k 28 0: 50.0%; 1: 50.0%
MAGIC 19k 11 0: 35.2%; 1: 64.8%
Evergreen 7k 29 0: 48.7%; 1: 51.3%
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Table 3: Test accuracy (Higgs) and test AUC (Evergreen and MAGIC) of the learned student in
random forest compression. Here a forest with 500 trees is compressed into a single decision tree.

Dataset Training
Data Size

Teacher
Only

Student
Only

Student after Compression with
Training Data GAN Data Training & GAN

Higgs 1k 66.4% 56.2% 56.5% 59.0% 57.7%
100k 72.6% 62.1% 62.7% 69.6% 64.7%

MAGIC 10k 0.935 0.785 0.895 0.918 0.912
Evergreen 5k 0.889 0.731 0.856 0.882 0.849

GAN-MC vs. GAN-assisted supervised learning. Consistent with our discussion in Sec. 2.3 and
our findings in Fig. 2d, Fig. 3e shows that the same GAN data that substantially improves student
compression performance in Fig. 3d harms or scarcely improves test AUC when the student is trained
without compression for the original MAGIC supervised learning task.

5 EVALUATING GANS WITH A COMPRESSION SCORE

The evaluation of synthetic datasets is an important but challenging task. Two criteria commonly
considered essential for a high-quality synthetic dataset are datapoint diversity and discriminability.
The most widely used GAN quality measure, the Inception Score of Salimans et al. (2016), measures
across-class diversity but does not account for within class diversity. In addition, the Inception Score
measures a form of discriminability based on the predictions of a pre-trained neural network but is
easily misled by datapoints that elicit high confidence predictions without resembling real data. For
example, if the classification loss Lclass is heavily upweighted relative to the source loss Lsource

while training an AC-GAN, the generator will be more likely to produce feature vectors classified
with high confidence by neural networks. As we will demonstrate in Sec. 5.2, such feature vectors
need not resemble real data but will nevertheless receive high Inception Scores (which should be
reserved for high-quality datasets). To account for both discriminability and diversity in a more
robust and holistic manner, we propose to use the performance of a student trained on GAN data as
a measure of GAN dataset quality.

5.1 THE COMPRESSION SCORE

To evaluate the quality of a generated dataset D relative to a real dataset Dreal, we define a Com-
pression Score based on the test accuracy acc(D) of a student trained with compression set D to
mimic a teacher pre-trained on Dreal:

CompressionScore(D;Dreal) =
acc(D)− accmode

acc(Dreal)− accmode
.

The term accmode represents the accuracy obtained by always predicting the most common class in
Dreal. A higher Compression Score is designed to indicate a higher quality dataset D.

The Compression Score declares a synthetic dataset to be of higher quality if a compressed model
trained only on that data achieves higher accuracy on real test data. Increased within-class diversity,
increased across-class diversity, and increased discriminability all tend to increase the Compression
Score, as they enable the student to more accurately mimic the teacher’s output across all classes.
However, crucially, the Compression Score is only impacted by aspects of discriminability and
diversity that matter for performance on real test data. Hence, unlike the Inception Score which is
completely determined by the idiosyncratic output of an imperfect network, the Compression Score
is robust to the idiosyncratic preferences of an imperfect teacher or student. In particular, we would
not expect a student trained on unrealistic or adversarial synthetic data to perform well on real test
data even if it very accurately mimics the teacher’s predictions on such data.

By design, the Compression Score equals 1 for the real dataset Dreal and tends to 0 as the synthetic
data distribution diverges from the real data distribution one. As discussed in Sec. 3 and highlighted
in Fig. 1, we have found empirically that, in the initial epochs of compression training, test accuracy
typically increases more rapidly when training data is used than when synthetic data is used. As a
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(a) GAN-MC on Higgs 1k (b) GAN-MC on Higgs 100k

(c) GAN-MC on Evergreen (d) GAN-MC on MAGIC

(e) GAN-assisted supervised learning on MAGIC
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Figure 3: (a-e) Test accuracy (Higgs) and test AUC (Evergreen and MAGIC) of the learned student
in random forest compression. Here a 500 tree forest is compressed into a compact random for-
est. When the student is trained directly on training data without compression (‘Student Only’), its
performance is given by the blue dashed curve. (a-d) Compression is carried out on only training
data (orange curve), on only GAN data (green curve) or on a mixture of the training data and GAN
data (red curve). (e) Without compression, the student is trained for the original supervised learning
task using only GAN data (green curve) or a mixture of the training data and GAN data (red curve).
(f) For all datasets, GAN-MC students increase test time throughput (i.e., number of test examples
processed per second) 25 to 336-fold over teacher with less than 1.2% loss of accuracy.

result, a student restricted to one epoch of training tends to produce Compression Scores in [0, 1].
To exploit this desirable property and simultaneously reduce Compression Score evaluation time,
we train each student for only one epoch in our experiments.

5.2 EVALUATING GANS: AN ILLUSTRATION WITH CIFAR-10

To illustrate the potential benefit of the Compression Score over the commonly-used Inception
Score, we reinstate the CIFAR-10 experimental setup of Fig. 1. The standard error is obtained
from 3 independent runs. We evaluate the compression score on real data, well-trained GAN data

9
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Table 4: Inception and Compression Scores for CIFAR-10 images; larger scores should signify
higher quality images. Inferior data generated by training well-trained GAN for 10 additional epochs
using only the classification objective Lclass (see Sec. 5.2). Inception Score increases for inferior
images despite evident unrealistic artifacts. Compression Score decreases for inferior images.

Real Data Well-trained GAN Inferior GAN

Inception: 11.2± 0.1 Inception: 5.80± 0.06 Inception: 5.93± 0.06
Compression: 0.994± 0.003 Compression: 0.778± 0.002 Compression: 0.702± 0.002

(i.e., data from the AC-GAN described in Sec. 3), and inferior data which have high confidence clas-
sifications under the teacher network but do not resemble real data. The inferior data are generated
by training the well-trained AC-GAN for 10 additional epochs using only the classification objective
Lclass given in Eq. 2a. That is, both the generator G and discriminator D are trained to maximize
Lclass, while ignoring the traditional GAN objective component Lsource.

In Table 4, the quality of the GAN data degrades noticeably after the additional training with only
Lclass. Unrealistic artifacts are evident in the inferior images, but the Inception Scores of those im-
ages are higher than those of the well-trained images. In contrast, the Compression Score decreases
in accordance with our expectations as the GAN images become evidently worse. To highlight the
practicality of the Compression Score, we also performed a timing comparison of Inception and
Compression Score evaluations on this dataset. Using the Inception Score code of (Salimans et al.,
2016) and an NVIDIA Tesla V100 GPU, the Inception Score required 1436.6s and the Compression
Score 350.1s.

6 RELATED AND FUTURE WORK

To reduce the deployment costs of expensive machine learning classifiers, we introduced GAN-
assisted model compression (GAN-MC) as a straightforward way to improve teacher-student com-
pression. We demonstrated the benefits of GAN-MC for both image and tabular data classifiers and
developed a new Compression Score for evaluating the quality of synthetic datasets. While we have
focused on improving the popular teacher-student paradigm of model compression, we would be re-
miss to not mention alternative, model-specific approaches to reducing deployment costs, including
parameter sharing (Chen et al., 2015), network pruning (Han et al., 2015), and network parameter
prediction (Denil et al., 2013) for DNNs and indicator function selection (Joly et al., 2012), pre-
pruning (Begon et al., 2017), and probabilistic modeling and clustering (Painsky & Rosset, 2016;
2018) for random forests.

A number of exciting opportunities for future work remain. For example, GAN-MC is readily
integrated into more complex approaches to teacher-student compression that currently reuse the
teacher’s training data for compression. Prime examples are the recent approaches of Wang et al.
(2018) and Xu et al. (2018) which train an assistant network to discriminate between teacher and
student outputs. In addition, GAN development for tabular data has received much less attention
than GAN development for image data, and we anticipate that significant improvements over the
AC-GANs used in our experiments will result in significant performance benefits for GAN-MC.

10
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