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Abstract

We study deployment-efficient reward-free exploration with linear function approx-
imation, where the goal is to explore a linear Markov Decision Process (MDP)
without revealing the reward function, while minimizing the number of distinct
policies implemented during learning. By “deployment efficient”, we mean algo-
rithms that require few policies deployed during exploration — crucial in real-world
applications where such deployments are costly or disruptive. We design a novel
reinforcement learning algorithm that achieves near-optimal deployment efficiency
for linear MDPs in the reward-free setting, using at most H exploration policies
during execution (where H is the horizon length), while maintaining sample com-
plexity polynomial in feature dimension and horizon length. Unlike previous
approaches with similar deployment efficiency guarantees, our algorithm’s sample
complexity is independent of the reachability or explorability coefficients of the
underlying MDP, which can be arbitrarily small and lead to unbounded sample
complexity in certain cases — directly addressing an open problem from prior work.
Our technical contributions include a data-dependent method for truncating state-
action pairs in linear MDPs, efficient offline policy evaluation and optimization
algorithms for these truncated MDPs, and a careful integration of these components
to implement reward-free exploration with linear function approximation without
sacrificing deployment efficiency.

1 Introduction

In real-world reinforcement learning applications, deploying new policies often incurs significant
cost. For example, in robotics [Kober et al., 2013], deploying a new policy requires hardware-level
operations, which can involve lengthy delays. In medical settings [Almirall et al., 2012, 2014, Lei
et al., 2012], frequent policy changes are unrealistic, as each deployment typically requires a separate
approval process involving domain experts. Similarly, in recommendation systems [Theocharous
et al., 2015], deploying a new policy can take weeks due to mandatory internal testing to ensure
safety and effectiveness. In all these scenarios, while switching policies frequently—especially based
on instantaneous data, as standard RL algorithms require—is infeasible, it is often possible to run
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many experiments in parallel once a policy is deployed. This highlights the need for RL algorithms
that learn effective policies while minimizing the number of policy deployments.

Empirically, the notion of deployment efficiency was first proposed by Matsushima et al. [2020],
while a formal definition of deployment complexity was recently introduced by Huang et al. [2022].
Intuitively, deployment complexity measures the total number of policy deployments by an RL
algorithm, under the constraint that the interval between policy switches—i.e., the number of tra-
jectories collected before switching—is fixed in advance. Under this notion, a line of recent work
has developed provably efficient RL algorithms [Huang et al., 2022, Qiao et al., 2022, Qiao and
Wang, 2022] in various settings. In the tabular case where the state space is discrete and of small
size, Qiao et al. [2022] designed an RL algorithm with O(H ) policy deployments, where H is the
horizon length. Huang et al. [2022], Qiao and Wang [2022] studied deployment complexity in the
context of RL with linear function approximation (i.e., linear MDP [Yang and Wang, 2019, Jin et al.,
2023]). Specifically, their algorithms achieve sample complexity polynomial in the feature dimension
d and horizon length H, with deployment complexity of O(dH) or O(H). Huang et al. [2022]
further showed that any RL algorithm for linear MDPs must incur a deployment complexity of at
least Q(H).!

Although the aforementioned works provide important insights into the deployment complexity of
reinforcement learning for linear MDPs, achieving the nearly optimal O(H ) deployment complexity
remains challenging. Existing algorithms that attain this guarantee either operate in the tabular
setting [Qiao et al., 2022]—which is unsuitable for large or continuous state spaces—or rely on
strong assumptions such as the reachability assumption [Huang et al., 2022] or the explorability
assumption [Qiao and Wang, 2022]. Roughly speaking, these assumptions require that all directions
in the feature space can be explored by some policy. Such conditions are quite restrictive and
significantly limit the applicability of these algorithms. In particular, they typically assume a lower
bound on a reachability coefficient vy, and the sample complexity of existing algorithms with O(H )
deployment complexity depends polynomially on ——. In the tabular setting, this assumption is
equivalent to requiring that every state can be reached W1th anon-negligible probability by some policy.
However, in general linear MDPs, the reachability coefficient can be arbitrarily small, rendering the
sample complexity effectively infinite for such algorithms.

To address this limitation, we investigate the following fundamental question:

Is it possible to design RL algorithms for linear MDPs that achieve nearly optimal deployment
complexity and polynomial sample complexity, without relying on additional assumptions such as
reachability or explorability?

This question was explicitly raised in prior work [Huang et al., 2022, Qiao and Wang, 2022] and was
left as an open problem. Huang et al. [2022] conjectured that achieving O (H ) deployment complexity
would necessarily require additional structural assumptions like reachability or explorability.

Our Contribution. In this paper, we resolve the above question by designing a new algorithm for
linear MDPs with deployment complexity H. Our algorithm achieves polynomial sample complexity
for any linear MDP and does not rely on additional assumptions such as reachability or explorability.
Moreover, it operates in the reward-free exploration setting [Jin et al., 2020, Wang et al., 2020a, Chen
et al., 2022, Wagenmaker et al., 2022, Zhang et al., 2021b, Li et al., 2024, 2023], where the reward
function is not revealed during the exploration phase. This reward-free property further enhances the
practicality of our approach in settings where reward signals are unavailable or costly to obtain. An
informal statement of our main theoretical guarantee is summarized in the following theorem.

Theorem 1 (Informal version of Theorem 4). For reward-free exploration in linear MDPs, there is
an algorithm (Algorithm 1) with deployment complexity H and sample complexity polynomial in d,
H, 1/¢, and log(1/6), such that with probability 1 — ¢, for all linear reward functions, the algorithm
returns a policy with suboptimality at most €. Here, d is the feature dimension and H is the horizon
length.

Combined with the existing hardness result from Huang et al. [2022], our new result in the above
Theorem provides a complete answer to the deployment complexity of RL for linear MDPs. It
shows that additional assumptions such as reachability or explorability, previously conjectured to be
necessary, are in fact not required to achieve nearly optimal deployment complexity.

"Throughout this paper, we use O and Q to suppress logarithmic factors.



Table 1: Comparison with the most related works.

Sample Complexity Deployment Complexity
Huang et al. [2022] | poly (d, H, %, log(%), U;ﬁﬂ) H
Zhao et al. [2023] O (1) O(dH)
This work O (47 H

2 Related Work

There is a large body of literature on the sample complexity of RL. We refer readers to Agarwal et al.
[2019], Chi et al. [2025] for more thorough reviews, and focus on the most relevant work here.

Deployment Efficiency and Other Notions of Adaptivity. The notion of deployment efficiency was
first proposed in the empirical work [Matsushima et al., 2020], while its formal definition was first
defined by Huang et al. [2022]. Under this notion, Huang et al. [2022], Qiao et al. [2022], Qiao and
Wang [2022] designed provably efficient RL algorithms in various settings. As mentioned ealier,
in order to achieve a nearly optimal deployment complexity, existing algorithms either work in the
tabular setting, or rely on additional reachability assumption or explorability assumption which we
strive to avoid in this work. Zhao et al. [2023] designed deployment efficient RL algorithms for
function classes with bounded eluder dimension. However, even for linear functions, the deployment

complexity of the algorithm by Zhao et al. [2023] is O(dH ), which is far from being optimal.

The notion of deployment efficiency is closely related to the low switching setting [Bai et al., 2019,
Zhang et al., 2020c, Gao et al., 2021, Kong et al., 2021, Qiao et al., 2022, Wang et al., 2021]. We refer
readers to prior work [Huang et al., 2022, Qiao et al., 2022] for a detailed comparison between these
two different notions. Roughly speaking, in the low switching setting, the agent decides whether to
update the policy or not after collecting each trajectory. On the other hand, the notion of deployment
efficiency requires the interval between policy switching to be fixed, and therefore, deployment
efficient RL algorithms are easier to implement in practice. The low switching setting was also
studied for other sequential decision-making problems including bandits [Abbasi-Yadkori et al., 2011,
Cesa-Bianchi et al., 2013, Simchi-Levi and Xu, 2019, Ruan et al., 2021].

Reward-free Exploration. The notion of reward-free exploration was first proposed by Jin et al.
[2020]. In this setting, the agent first collects trajectories from an unknown environment without
any pre-specified reward function. After that, a specific reward function is given, and the goal is
to use samples collected during the exploration phase to output a near-optimal policy for the given
reward function. The sample complexity of reward-free exploration was studied and improved in a
line of work [Kaufmann et al., 2021, Ménard et al., 2021, Zhang et al., 2020b] A similar notion called
task-agnostic exploration was consider by Zhang et al. [2020a], Li et al. [2024, 2023]. For linear
MDPs, the first polynomial sample complexity for reward-free exploration was obtained by Wang
et al. [2020a]. Later, the sample complexity was improved by Zanette et al. [2020], Wagenmaker et al.
[2022]. Reward-free exploration was also considered in other RL settings including linear mixture
MDPs [Chen et al., 2022, Zhang et al., 2021a] and RL with non-linear function approximation [Chen
et al., 2022].

Technical Comparison with Existing Algorithms. Finally, we compare our new algorithm with
existing algorithms with O(H) deployment complexity [Qiao et al., 2022, Qiao and Wang, 2022]
from a technical point of view. A more detailed overview of our new technical ingredients is given in
Section 4. To achieve O(H ) deployment complexity in the tabular setting, Qiao et al. [2022] applied
absorbing MDP to ignore those “hard to visit” states. In this work, similar ideas are used, though
we work in the linear MDP setting which is much more complicated and requires a more careful
treatment. In order to design an algorithm with O(H) deployment complexity in linear MDPs under
the explorability assumption, Qiao and Wang [2022] showed how to solve a variant of G-optimal
experiment design in an offline manner. In this work, we also use offline RL to build exploration
policies in linear MDPs. However, the lack of the explorability assumption raises substantial more
technical challenges which necessitates more involved algorithms and analysis.



3 Preliminaries

In this section, we introduce the basic definitions of MDPs and the assumptions used in our analysis.
We use A(X) to denote the set of probability distributions over a set X, and [N] to denote the set
{1,2,..., N} for a positive integer N.

Episodic MDPs. A finite-horizon episodic Markov Decision Process (MDP) is defined by the tuple
(S, A,r, P, H, sini), where S x A denotes the state-action space, r : S x A x [H] — [0, 1] is the
reward function,” P : S x A x [H] — A(S) is the transition kernel, H is the episode horizon, and
Sini € S is the initial state.

Apolicy 7 = {m;, : S — A(A)}L | is a collection of mappings from the state space S to probability
distributions over the action space A, one for each time step h € [H]. We say that  is a deterministic
policy if m,(s) assigns probability one to a single action for all & and s.

In each episode, the learner starts from the initial state s; = sj,; and proceeds as follows: at step
h =1,..., H, the learner observes the current state sy, selects an action a;, according to 7, (sp,),
receives a reward rp, = rp(sp, ap), and transitions to the next state sp1 according to the transition
kernel Py, (- | sp,an). Fixing a policy 7, we define the Q-function and the value function as follows:
V(s,a) € S x A, h € [H],

H
Qh(s,a) :=E, lz Th

h'=h

(sn,an) = (s,a)|, Vi7(s) :=E,

H
E Th' | Sh = S| .

h'=h

The optimal @Q-function and value function are defined by:

Q5 (s,a) == max Qh(s,a), Vi(s):= max Vir(s).

By the Bellman optimality conditions, we have,
Vi (s) = max Qj(s,a),  Qi(s,a) = (s, a) + Bynp, (s, Vi (s)]-

Linear Function Approximation. We assume that both the reward function and the transition kernel
lie within a known low-dimensional subspace, a setting commonly referred to as a linear MDP [Yang
and Wang, 2019, Jin et al., 2023].

Assumption 2 (Linear MDP [Jin et al., 2023]). Let {¢n(s,a)} (s,a)esx.A4, he|H] be a collection of
known feature vectors such that max q ||¢n(s,a)||e < 1. For each h € [H), there exist vectors

0y, € R? and d measures jui;, = (b, p2, ..., /f,f) over the state space S, representing the reward and
transition kernels respectively, such that:

ri(s,a) = <<bh(s,a),9h>, V(s,a) € S x A, (1a)

Py(- | s,a) = (¢n(s,a), un()) , V(s,a) € S x A, (1b)

l6nl2 < V. (1o)

Moreover, we assume ||f8€$ v(s)dpup, (s)H2 < Vd for any mapping v from S to [—1, 1].

Under Assumption 2, both the reward function and the transition kernel are linear in a shared set of
d-dimensional features. This structure enables effective dimensionality reduction, especially when

d < SA.

Reward-free Exploration. We now introduce the framework of reward-free exploration. This
setting consists of two phases: the exploration phase (see Algorithm 1) and the planning phase (see
Algorithm 5). In the exploration phase, the learner interacts with the environment—without access to
any reward signal—to collect a dataset D. In the planning phase, given any reward function {74 },¢[m]
satisfying Assumption 2, the learner is required to output an e-optimal policy with probability at least
1 — 9, where € is the accuracy parameter and ¢ is the failure probability.

Deployment-efficient Reward-free Exploration. We now present the definition of deployment
complexity for reward-free exploration.

2We assume the reward is deterministic for simplicity.
SWe may also assume the initial state s1 is drawn from some fixed but unknown distribution dini, which can
be modeled by setting the transition from sin;i to follow din;.



Definition 3 (Huang et al. [2022]). An algorithm is said to have deployment complexity K in linear
MDPs if the following holds: given an arbitrary linear MDP satisfying Assumption 2, and for any
accuracy parameter € > 0 and confidence level 6 € (0, 1), the algorithm performs at most K policy
deployments and collects L trajectories per deployment, subject to the following constraints:

(a) With probability at least 1 — 6, for any reward kernel {Hh}he[H] satisfying Assumption 2,
the learner returns an e-optimal policy 7 under this reward kernel, i.e.,

H
Z ¢;Lr (S}H ah)&;| — €,

h=1

H
Ex [Z ‘15;(5%%)94 > max B

h=1

where the expectation B is taken over trajectories {sp, ah}le generated by executing
policy .

(b) The number of trajectories per deployment, L, is polynomial in the problem parameters,
i.e., L = poly (d, H, %, log %) . Moreover, L must be fixed a priori and cannot be adjusted
adaptively between deployments.

Notations. For positive semidefinite (PSD) matrices A and B, we write A < B if B — Ais PSD, i.e.,
B dominates A. We define the truncation operator T(A, B) as

T(4, B) = sup{¢ <1: CA< B} - 4, @)

which represents the largest scaling of A that is still dominated by B. For each h € [H] and v € RS,
we define 0, (v) := ;) v, where py, is the transition kernel. We also denote by 1 the |S|-dimensional
one-hot vector with a 1 in the s-th position.

4 Technical Overview

In this section, we give an overview of the technical challenges behind achieving Theorem 1, together
our new ideas for tackling these challenges.

The Layer-by-layer Approach. Similar to existing algorithms with O(H ) deployment complex-
ity [Huang et al., 2022, Qiao et al., 2022, Qiao and Wang, 2022], our new algorithm is based on a
layer-by-layer approach. For each layer 1 < h < H, based on an offline dataset obtained during
previous iterations, our algorithm designs an exploration policy (a mixture of deterministic policies)
for layer h, collect an offline dataset using the exploration policy, and then proceed to the next layer.
Since we only use a single exploration policy for each layer, and there are H layers, the deployment
complexity would consequently be H. Following such an approach, datasets obtained for previous
layers will be used for the purpose of policy optimization and policy evaluation for later layers,
and therefore, the dataset should be able to cover all directions in the feature space. Therefore, we
must carefully design the exploration strategy, so that for any direction that can be reached by some
policy, our exploration strategy could also reach that direction up to an appropriate competitive ratio.
By repeatedly sample trajectories following the exploration strategy, we would get a dataset that is
sufficient for the purpose of policy optimization and policy evaluation for later layers.

Dealing with Infrequent Directions. The main technical issue associated with the above approach,
is that there could be directions that cannot be reached frequently by any policy. In such a case, it is
unrealistic to require such a direction to be reachable by the exploration policy. Existing algorithms
with O(H) deployment complexity [Huang et al., 2022, Qiao and Wang, 2022] avoids such an issue
by assuming that any direction can be reached sufficiently frequently by some policy, in which case
designing an exploration policy that can reach any direction in the feature space is feasible. However,
since we do not assume explorability or reachability of the underlying MDP as in prior work [Huang
et al., 2022, Qiao and Wang, 2022], we must handle those infrequent directions carefully.

If one simply chooses to ignore such infrequent directions, the error accumulated for handling such
directions would in fact blow up exponentially, rendering the final sample complexity exponential in
the feature dimension d or the horizon length H. In fact, such an issue occurs even in the simpler
tabular setting. In the tabular setting, an infrequent direction is equivalent to a state-action pair
unreachable by any policy, and in order to handle such states, prior work [Qiao et al., 2022] applied
absorbing MDP to ignore those “hard to visit” states. More specifically, once the algorithm detects



some state unreachable by any policy, that state would be directed to a dummy state in the absorbing
MDP. Since we only direct states that are hard to visit to dummy states, the error accumulated during
the whole process would be additive as we have more layers, which gives a polynomial sample
complexity. Indeed, this is a high-level approach of the algorithm in Qiao et al. [2022].

On the other hand, for the linear MDP setting without the reachability assumption, handling infrequent
directions is much more complicated. In the tabular setting, designing exploration policies is relatively
simple since we can simply plan a policy for each individual state. On the other hand, for the linear
MDP setting, we need to build the exploration policy in an iterative manner. Given directions that
can be reached by the current exploration policy, we need to set the reward function appropriately to
encourage exploring currently unreachable directions. More concretely, suppose the A = E[¢¢ "]
is the information matrix induced by the current exploration policy, for each state-action pair (s, a)
with feature (s, a), the reward function 7(s, a) would be set to ¢(s,a) T A~ ¢(s, a). We then plan a
new policy for the current quadratic reward function, and test whether new policy can indeed reach
some new direction, both by utilizing the offline dataset. We proceed to the next layer if the algorithm
can no longer find any new reachable direction. The total number of directions found during the
whole process can be shown to be small, using a standard potential function argument based on the
determinant of the information matrix. To test whether the new policy can indeed reach some new
direction, we need to estimate its information matrix A = E[¢¢ ], again by using the offline dataset.

Note that by assuming reachability or explorability of the feature space, we no longer need to build
the exploration policy iteratively since the whole feature space can be reached and therefore one
can resort to approaches based on optimal experiment design. Indeed, this is the main idea behind
previous work [Qiao and Wang, 2022]. However, such an approach critically relies on reachability or
explorability of the feature space, which is one of the main technical challenges we aim to tackle.

Handling Bias Induced by Infrequent Directions. As mentioned, we heavily rely on the offline
dataset obtained in previous layers for the purpose the offline policy optimization (planning for the
quadratic reward function) and offline policy evaluations (for estimating the information matrix).
Moreover, since we do not assume reachability of the feature space, there are always directions that
cannot be reached by the exploration policy, and therefore, it is impossible for the offline dataset to
cover the whole feature space. Imperfect coverage of the offline dataset will introduce additional error
when conducting policy optimization and policy evaluation, due to the bias induced by infrequent
directions. Although the error accumulated during offline policy optimization can be handle relatively
easily, since a global argument based on comparing the groundtruth MDP and the MDP after ignoring
infrequent directions would suffice, the error accumulated during offline policy evaluation is much
more severe since the estimated information matrices would be used for deciding the next quadratic
reward function. If not handled properly, the error will accumulate multiplicatively as we proceed to
the next layer, rendering the final sample complexity exponential. Again, we note that by assuming
reachability or explorability of the feature space as in prior work [Qiao and Wang, 2022], such an
issue will not occur since the offline dataset would cover the whole feature space.

To handle such an issue, our new idea is to make sure the error of offline policy evaluation for
estimating information matrices is always multiplicative w.r.t. the information matrix to be evaluated.
More specifically, during the evaluation algorithm, if we encounter some state-action pair with feature
® = ¢(s,a), to ensure a multiplicative estimation error, we would add ¢¢ ' to the evaluation result
A only when ¢ " A~1¢ is small. However, this will introduce another chicken-and-egg situation:
without knowing the groundtruth information matrix A, it is impossible to test whether ¢ ' A~1¢ is
small or not. To handle this, we use another iterative process to estimate the information matrix.
Initially, the information matrix is set to be the identity matrix. In each iteration, in order to test
whether ¢ T A~1¢ is small or not, we use the information matrix A obtained in the previous iteration,
adding up ¢¢ ' for those ¢ that passed the test to form the new information matrix, and proceed to
the next iteration. We stop the whole iteration process if the two information matrices obtained in two
consecutive iterations are close enough in a multiplicative sense. By using another potential function
argument based on the determinant of the information matrix, it can shown that the iterative process
stops with small number of rounds. Such an idea is another major technical contribution of this paper.

Handling Dependency Issues by Independent Copies. As discussed ealier, our final algorithm
involves two iterative processes, and since the results of different iterations all rely on the same
offline dataset, these results are subtly coupled with each other. Fortunately, such dependency issues
are relatively easy to handle, as we can simply make independent copies of the offline dataset by



following the exploration policy and repeatedly sampling trajectories with fresh randomness. We
denote each independent copy as a sub-dataset, which will be explained in more details in Section 5.

Our final algorithm is a careful combination of all ideas mentioned above.

5 Algorithms

In this section, we describe our algorithms for achieving Theorem 1. The parameter settings are
postpone to Appendix A due to space limitation.

Datapoint and Sub-dataset. The typical approach for handling linear MDPs is to treat {¢y, (s, a), §}
as a datapoint, where for a state s, s is the next state obtained by taking action a at level h. In our
algorithm, we further assign a weight w to each datapoint to balance its importance in the whole
dataset. As a result, one datapoint in our algorithm has form {¢y, (s, a), 3, w}. We remark that the
weight w is determined immediately once { (s, a), §} is collected.

In our algorithm, we conduct linear regression for multiple times, each time using a group of N
independent datapoints. Here, N is a parameter to be decided. We denote these /N independent data-
points as a sub-dataset, which has form {¢ ; = ¢n(s;, ai), 5, )\h,i}ie[N]- To keep the statistical
independence between different linear regression instances, we collect multiple independent copies
of sub-datasets, so that the data used by different linear regression instances are independent.

Exploration phase: Algorithm 1. In the exploration phase, our algorithm collects samples in a
layer-by-layer manner, and each layer uses a single deployment. In each layer, we assume that enough
information about previous layers has been learned and focuse on learning the current layer. For the
current layer, Policy-Design is called to design the exploration policy based on existing samples,
and Policy-Execution is called to execute the exploration policy and collect new samples.

In each call of Policy-Design, there are m offline policy optimization sub-problems (see Line 6
of Algorithm 2) and m offline policy evaluation sub-problems (see Line 11 of Algorithm 2). As
mentioned, we collect multiple independent copies of datasets, and use a group of independent copies
datasets to solve each sub-problem. More precisely, we collect (2m? + 1) - H independent copies for
each dataset to solve the 2m H sub-problems, where each dataset consists of [V datapoints. Due to
page limitation, the detail about how to collect samples is deferred to Algorithm 7 in the appendix.

Policy-Design (Algorithm 2). Given datasets in the first o — 1 layers, now we con-
sider learning the h-th layer. The learner first designs reward function with form 7, (s,a) <+
min {¢,—f (s,a)A"1pp(s,a), 1}, where A is the current information matrix. We hope to update A as

Anew — Eﬂ'old [(bh(ﬁ}—lr] + Aold7

where 7,1q is a near-optimal policy w.r.t. the reward r,q = min{@[/\;}@m 1}. By iteratively
running this process, we will obtain some A so that max, E. [min{¢,} A~' ¢y, 1}] is small. However,
as discussed in Section 4, due to the infrequent directions, it is inappropriate to add E_ [th ¢;H to
A directly. Here, we need to truncate the infrequent directions in the distribution 74 , and evaluate
the truncated matrix with the offline datasets. Below we explain how to address this by Algorithm 3.

Matrix-Eval (Algorithm 3). In Algorithm 3, the input is a policy 7 and a group of datasets. The
goal is to truncate the infrequent directions under 7, and evaluate the information matrix after the
truncation. To describe the high-level ideas, we assume D is an distribution over R? and the goal is
to truncated the infrequent direction under D. For simplicity, we assume that D is known, so that one
can compute A = Ep[p¢ "] and those infrequent directions ¢ such that ¢ T A=1¢ is large. The next
step is to re-scale ¢, i.e., replace ¢ with w(¢) - ¢ such that w?(¢)¢ " A~ ¢ is small. However, after
truncation, the new information matrix would be Aoy = Epnp[w? (¢)p¢ "] = A, which means that
a frequent direction under A might turn to be an infrequent direction under A ey . A straightforward
idea is to repeat this process until A converges to some fixed point. Let F(A) = Egp [T(¢¢ ", c1A)]
where c; is the threshold for truncation and T is the operator defined in (2). By iteratively applying
F(-) and noting that F(-) is non-increasing and the set of bounded PSD matrices is compact, the
sequence {F(™(A)},>1 will converge to some A* so that F(A*) = A*, in which case no more
truncation is needed and hence, infrequent directions no longer exist. One might be worried that the
zero matrix is also a fixed point of F'(-) in which case the truncation is meaningless. Fortunately,
by choose ¢ properly large, we can show that Prypl¢p’ (A*) "¢ > ¢1] = O(e), where epsilon



is the desired accuracy. This means only a small portion of directions are truncated. When D is
unknown, we could draw samples from D to estimate Ep[T(¢¢ ', A)] and run the same iterative
process. Incorporating this idea with linear regression, we devise Algorithm 3 and 4 to evaluate the
truncated information matrix efficiently.

In the planning phase, we employ standard backward planning for linear MDPs (e.g., Algorithm 5
Planning and Algorithm 6 Planning-R). See Appendix D for more details.

Computational Efficiency. We remark that the time complexity of our algorithm is polynomial
in d, H,1/e and the number of actions A. In comparison, the algorithm in Qiao and Wang [2022]
is computationally inefficient, and the algorithm in Huang et al. [2022] suffers time complexity
depending on the realization parameter. We refer the readers to Appendix E for more details.

Algorithm 1 Exploration

1: Initialization: Dy, < (), Aj, « Ifor h € [H];

2: forh=1,2,...,H do 3

3: {{77'7 h :n 1> Ah} <~ Policy-Design (h, {Dﬁ(j)}Te[hfl],je[er‘)]) {AT}TE[hfl]);

4: /I Roll out the policy and collect the datapoints. Each D7}, (j) constructs a sub-dataset for the
h-th layer;
{Dj (j)}jelzm?+1],re[H] < Policy-Execution (h, {mbh}m 17Ah);

end for 3

return: {DZ(?mQ + 1)}h€[H] and {Ah}he[H]

AN

Algorithm 2 Policy-Design

Input: horizon i, € [H], block matrices {A, }refh—1]» sub-datasets {¢+;(5), 5+,4(j), Ari(J) bicin
forT € [h— 1] and j € [2m?];

Initialization: A) = (I;

for(=1,2,...,mdo

7 (s, a) — min{d)h(s, a)T(Affl)*lgbh(s, a), 1} forall (s,a);
rﬁ(s,a) < 0 for 7 # h and all (s7a);
{r*, vy} <« Planning-R(h,r* = {rf},cim, {dri(m? + £),5::(m? + £),Ar;(m? +
OYierny,rein—1s {81, (m* + O} {A Y ep-1));
Il Let Y. ;(a: b) denote {Y- ;(j )}]:afor a<bforY =¢,5 \and sq;
D« {¢ri((l=1)m—1:4m),5.;((—1)m—1:4m), A\ri({=1)m—1: lm)}ic|n) ren—1):
/| Feed independent sub-datasets to Mat rix— Eval
{Af Afl} < Matrix-Eval(h, {A, }refh— 1],77 D)
AL AL] L AL
end for _ 3
return: {7""}™  and Aj, < A"

Algorithm 3 Matrix-Eval

1: Input: horizon h € [H], block matrices {A, }"Z1, policy 7, sub-datasets
{¢T’L( ) s‘rz(]) )\ T, ( )}Te[h 1],16[N],]6[m]

2: A1,

3: forj=1,2,...,mdo
4: /] Estimate the truncated matrix with independent sub-datasets;
5. Fy + Truncated-Matrix-Eval (h,, {A Y2 A {r4(5), 57,i(3), Ai () Yreth—1),ic(N))
6: if Fy + 5:1 = 1A then
7: break and return {Fo + 3 I A}
8: else .
9: A+~ Fy;
10:  end if
11: end for




Algorithm 4 Truncated-Matrix-Eval

h—1

~_7, truncation matrix A , sub-datasets

1: Input: horizon h, policy 7, block matrices {A,
{fﬁm‘, 74> it re[h—1],i€[N]5

2: Fh(s) — T((bh(s, Wh(s))qb;';(s,wh(s)), flA) for s € {ghfl,i}ie[N];

3:forr=h—1,h—2,...,...,1do

N
4 X, e XN N2 6000+ 2T

5: for s € {57—,171'}716[1\/] do

6: QS(_?T(SW'T(S));

7: ifo"A-1¢ > 1 then

8: F.(s) « 0;

9: else .

10: Fr(s) « ¢TX VN A2 00 i By 1 (5r) + 22A;
11: end if ’

12:  end for

13: end for

14: return : Fo = FI(Sini);

6 Analysis

In this section, we present the formal version of the main theorem and sketch its proof.

Theorem 4. By running Algorithm 1, the learner collects samples so that with probability 1 — 9, for
any reward kernel {0y, },c ) satisfying Assumption 2, the learner can return an e-optimal policy T
with Algorithm 5, i.e.,

Exr

H H
Z¢Z(Sh7ah)9h] > max By lz ¢Z(Sh,ah)9h] — e

h=1 h=1

Moreover, Algorithm 1 uses O(H) deployments and o] (dwf 15) samples.

Although we achieve reachability-independent sample complexity, the current dependencies on d, H
and 1/e are far from being optimal, especially compared to the bound in Qiao and Wang [2022].
The reason is that the technical difficulty changes significantly when allowing dependency on the
reachability parameter. The core challenge in deployment-efficient linear MDPs arises from the fact
that the linear regression problem becomes ill-conditioned when the reachability parameter \ is very
small. In the reachability-dependent methods (e.g., Qiao and Wang [2022]), one can pay O(1/)\*)
episodes to collect samples {¢; };>1 such that the information matrix 3" ¢; ¢, is well-conditioned.
Meanwhile, in the reachability-independent methods, we need to identify the ill-conditioned directions
and avoid these directions in linear regression. This step would be even harder given the constraint in
deployments, which requires offline evaluation of the information matrix.

Proof of Theorem 4. We first analyze the deployment complexity and sample complexity.

Deployment complexity. Foreach h =1,2,..., H, there is one deployment in Line 5. Therefore,
the number of deployments is H.

Sample complexity. Algorithm 1 calls Algorithm 2 H times, each requiring (2m? + 1) N trajecto-

ries, resulting in a total sample complexity of H - H - (2m? + 1)N = 0 (dwfw )

To finish the proof, we use the following lemma to prove the optimality of the learned policy. See full
proof in Appendix C.9

Lemma 5. With probability 1 — 9, for any reward kernel 6 € {Hh}hH:1 satisfying Assumption 2,
Planning (9, {Ph.is Sh.is )\hﬁi}fvzl}he[m, {Ah}he[H]) (see Algorithm 5) returns an e-optimal policy,
where {Gn.i, Sh,i, Mn,i Yoy Fhe(m) and {Ah}he[H} is the output of Algorithm 1.



To prove Lemma 5, a central lemma is introduced as follows, which states that the output sub-dataset
of Algorithm 1 could efficiently cover all policies.

Lemma 6. Recall that A, is the block matrix output by Policy-Design in Line 3 in the T-th
iteration for T € [h — 1]. With probability 1 — % — O for any sub-dataset of Algorithm 1 for the

h-th layer {¢n.i, 5h.i, An,i tie[N), we have “
(i). max; Pry [¢f Ay on > 1,6 AT g, < 1,V7 € [h—1]] < gz forall h € [H];
(i)). SN N2 07000 + 21 = Lo Ay forall h € [H;
(iii). A} ;08 Ay bni < f1forall h € [H] and i € [N].

In proving Lemma 6, we use induction to construct a truncated MDP with information matrices
{A;}:>1. The three conditions in Lemma 6 serve the following purposes:

(i). To properly bound the truncation probability.
(i1). To ensure each A, is well-covered.

(iii). To rescale each sample for compatibility with the current information matrix A

The proof of Lemma 6 is postponed to Appendix C.1 due to space limitation.

7 Conclusion

In this work, we design a new RL algorithm whose sample complexity is polynomial in the feature
dimension and horizon length, while achieving nearly optimal deployment complexity for linear
MDPs. Moreover, our algorithm works under the reward-free exploration setting, and does not require
any additional assumptions on the underlying MDP. In our new algorithm and analysis, we propose
new methods to truncate state-action pairs in a data-dependent manner, and design efficient offline
algorithms for evaluating information matrices. Given our new results, an interesting future direction
is to generalize our new techniques to other RL problems. For example, for function classes with
bounded eluder dimension [Wang et al., 2020b, Kong et al., 2021, Zhao et al., 2023] , it would be
interesting to design RL algorithm with nearly optimal O (H) deployment complexity and polynomial
sample complexity without relying on any additional assumptions.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main contribution of this work is developing a deployment efficient
algorithm for linear MDPs.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: In the conclusion section, we have discussed the limitations of the work and
possible future directions to overcome these limitations.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: All assumptions are clearly discussed. Full proofs are also provided.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA] .
Justification: This paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA] .
Justification: This paper does not include experiments.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA] .
Justification: This paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA] .
Justification: This paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

15


https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA] .
Justification: This paper does not include experiments.
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: The research conforms with the NeurIPS Code of Ethics in every respect.
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA] .

Justification: This work focuses on the fundamental aspects of reinforcement learning, and
there is no foreseeable societal impact.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer:|[NA] .
Justification: This paper poses no such risks.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer:[NA] .
Justification: This paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the package
should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA] .
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA] .
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/
1.L.M) for what should or should not be described.
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A Additional Parameter Settings and Notations

1 _ 1 __ 320dH> _ é _ e 10
Assume d, H > 40, € < g5. Setx ~ Toooaz ;1 h ===, = oonosas: § = (10d2H2) ’
4773 10°d"H loegr
z = 10;)4029)6 ,m = 32000d°H" " py () . For a symmetric matrix A and a PSD matrix

B, we write |A| < B iff B+ A = 0Oand B — A >~ 0. We also present a table of notations as follows.

Table 2: Additional Notations.

Notation Comments

Pp(-|s,a) the transition probability for the triple (h, s, a)

rp(s,a) the reward expectation for the triple (%, s, a)

on(s,a) the d-dimensional feature vector for the triple (A, s, a)

h the probability transition kernel be such that Py (-], s,a) = udp(s, a)
0y, (v) the d-dimensional payoff vector defined as ;1) v

T(-, ) the truncation function

N the number of datapoints in one dataset

{b+, 5., A} one sample from the 7-th layer

{br.is 574, )\m-}?’: ; anindependent dataset from the 7-th layer

the regularization parameter

& the discretization parameter
E1(g,v) the concentration event for ¢ and value v w.r.t. an independent dataset
Es (o, f) the concentration event for ¢ and matrix value f w.r.t. an independent dataset

B Technical Lemmas

Lemma 7 (General Equivalence Theorem in Kiefer and Wolfowitz [1960]). For any bounded subset
X C R, there exists a distribution IC(X) supported on X, such that for any € > 0, it holds that

-1
max ! (eI + Eyox(x) [ny]) x <d. 3)

Furthermore, there exists a mapping ©¢, which maps a context X to a distribution over X such that

T -1
. < 2d.
max (I+Eyrex)lyy 1)z <2d

When supp(X) has a finite size, 7°(X) could be implemented within poly(|supp(X)],log(1/¢))
time.

Lemma 8. Assume 0 < x < 0.1. Let A° = (L. Foreachi > 1, let D¢ be a distribution over R4
satisfying that

Egpi [min {Trace (9o (A1) ), 1}] = & @
and
A= AT By pi (o0,
Then we have that
log(det(A™)) — log(det(A%)) > ”I

foranyn > 1.

Proof. Fix ¢ > 1. Note that (4) is equivalent to

Egopi min{e' (A1) 1¢,1}] > k.
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Let W := Egopi [T(¢¢", A1) <X Eyopi [¢67]. By definition, it holds that W < A*~" and
W + Ai~1 < 2A*=1 We then have that

log(det(A%)) — log(det(A™™1)) > log(det(A*™" + W)) — log(det(A*™1))
=log (det(I + (Ai_l)‘l/QW(Ai—l)—lﬂ))
= log (det (I + (NH"V2E,p [T(¢¢T, AT (Ai—l)—l/Q))

Ey~pi [Trace(T((;Sng7 Aifl)(AFl)*l)]

Y,
N

The proof is completed by taking sum over ¢ from 1 to n.

B.1 Concentration Inequalities

Lemma 9. Let X1, X5, ..., X, be a group of zero-mean matrices such that —A =< X; < A with
probability 1 for all i € [N]. Let wy,ws, ..., w, be a group of reals. With probability 1 — §,

ZwiXi = =2 wa log(2d/6)A — 2 max |w;| log(2d/d)A

D wiX; 2, 1Y w?log(2d/8)A + 2max |w;| log(2d/5)A.

i=1 i=1

Proof. Without loss of generality, we assume A = I. For 0 <t < m, define
k k
E, = E [Trace (eXp (t Z w; X; — 22 Zw?l))] .
i=1 i=1
Then we have that
[Ek|X1 h—1)
k—1 k
< E | Trace <exp <log [exp(twi Xi)| X1:6-1]) + 1 Z w; X; — 2t2 Z wfI) >]
i=1 i=1
k—1 k—1
=E |Trace (exp <log [exp(twr X )| X1:h1]) — 22wiT + ¢ Z w; X; — 22 Z wfI))]
i=1 i=1
. k—1
< E | Trace (t > wiX; 22 wfI)]
L i=1 i=1

= Ek*lv
where the first inequality is by Lieb’s inequality (see Theorem 3.2, Tropp [2012]) and the second
inequality is by Fact 10, 11 and 12. As a result, we learn that E[E,,] < E[Ey] = d, which means that

with probability 1 — §/2, the maximal eigenvalue of 3% w; X; is at most 2,/3 1, wZlog(2d/3) +
2max; |w;|log(2d/4). Similar arguments work for the other side. The proof is completed.

Fact 10. Assume X is a stochastic symmetric matrix and —1 = X < T and E[X] = 0. It then holds
that

Elexp(tX)] < exp(2t?)1
forany0 <t <1
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Proof. By definition, we learn that

O

Fact 11. Assume X andY are two positively definite matrices such that X <'Y. It then holds that
log(X) = log(Y).

Proof. Note that for any m > 0, it holds that
log(X) = log(X + mI) — / (X + ) d,
0
log(Y") = log(Y + mI) — / (Y + 1) dt.
0

Because X <Y, it holds that —(X + tI)! < —(Y +tI)~! for any ¢ > 0. Then for any m > 0,
log(X) < log(Y) 4 log(Y + mI) — log(X + mI).

Fix A > 0 and choose m > +||Y||os. We have that log(Y 4+ mI) < log(m(1 + A))I and log(X +
mI) = log(m(1 — X))I. As aresult, for any A > 0, we learn that

1+A

log(X) =X log(Y) + log (1)\) I,

which implies log(X) < log(Y). O
Fact 12. Let X, Y be two symmetric matrices and X = 0. It then holds that

Trace (exp(X +Y)) < Trace (exp(Y)) .

Proof. Tt suffices to verify that Trace((X + Y)*) < Trace(Y*) for each k > 2, which is a direct
result from Lowner—Heinz theorem.

O

C Missing Lemmas and Proofs

C.1 Proof of Lemma 6

We will prove by induction over the layers. Fix h € [H| and assume the three conditions in Lemma 6
holds for the first h — 1 layers. To facilitate the presentation of the proof, we first introduce the notion
of truncated MDP.

Truncated MDP. We define the truncated MDP M), by redirecting all state-action pairs (s, a)
to a dummy state at level 7 if ¢, (s,a) A7 ¢,(s,a) > 1 for 7 € [h — 1]. More precisely, a
trajectory {(s,,a,)}_; under the original MDP M is mapped to {(s1,a1),..., (S, ax), 2, ... ,z}
under M}, _1. Here £ < h — 1 is the smallest integer such that qSZ(sk, ak)]\,;lqﬁk (sk,ax) > 1and z
is the dummy state. If ¢ (s, ak)Alzlcbk(sk, ay) < 1forall k € [h — 1], the trajectory is unchanged.

In the following, we re-define E[-] and Pr[-] to be the expectation and probability under M}, _;. We
verify the three conditions as follows.
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Condition (i). By Lemma 15, with probability 1 — %, max, E, [min{¢; A, ' ¢4, 1}] < 55,
which implies that max, Pr, [d);';Ah on > 1] <3 g7z The proof is finished by noting the above
inequality in the truncated MDP M}, _; is equivalent to (i).

Condition (ii). By Lemma 19, with probability 1 — ¢ H, it holds that ZZ 1A%, 2 On, z¢’h ;,+2l =
g%f\h for all sub-datasets {¢n.i, §h.i, Ani} v g

Condition (iii). To verify the third condition, it suffices to note the definition A, ; =

. fl .
min { / AT 1} (See Algorithm 7).

The proof is finished.

C.2 Statement and Proof of Lemma 13

md log( &
Lemma 13. Fix h € [H]. Recall v = 15omy > 60 dl+(e"). Define Fp(s) :=
Fu(s) = T(on(s,mn(5))d) (s,7n(5)), fih). For 7 = h —1,h —2,...,1, we define F,(s) =
Eanp, , . o Fr1(s) - 1[0] (s,77(8)) A7 o (s, 77 (s)) < 1]] and Fy = Fi(s1) = Fi(Sini)-

Let Fy be the output of the Algorithm 4 with input A and a group of independent sub-datasets
{@7,i» 8745 A\rjitrefh—1),ic[N])- we have that

(1—3Hz)Fy < Fy < (14 3Hz)Fy + 4HzA.

Proof. Tt is obvious that F;(s) is PSD for any proper 7 and s. We prove by induction that

(1 —3(h —7)z)Fr(s) < Fr(s) < (1+3(h —7)x)Fy(s) + 4(h — 7)zA )
foranyl1 <7 <hands € {§._1,}i>1.
For 7 = h, we have that FT(S) = F,(s) for any s € S. Fix £ > 2 and assume that (5) holds for
T =2/
For s such that ¢y—1(s, m—1(s))A; ' ¢(s,me—1(s)) > 1, we have that Fy_1(s) = Fy_q(s) = 0,
where (5) holds trivially. Below we assume ¢¢—1(s, m—1(s))A; ", ¢(s, me—1(s)) < 1. Recall that
X, = Zfil )\3_17@4,1,@;_171» + zI. By definition, we have that for s € {5y_2; }i>1

N
Foa(s) = dpa(s,me1(s)) T X! Z A1 ibe-1iF0(50-1,) + 22A

=1
= ES’NPZ—I,s,wgfl(s) [FZ(S/):| + A(l) ( ) + 2x A
= Eonryy.n, o [Fe(9)]+AY (5) + AP (5) + 220
= Froa(s) + A () + AP (s) + 22A, ©)

where

N
AL () = der (s mea ()XY X ibe 1P Geri) = Barmp ey o |

=1

F@(s')}

N
= dem1(s.m—1(8) X7 N bem1aFu(Som1) — de—i (s, mm1(9)) Tl Fu(-);
- ™
AP () = By, [FH(s) ~ Fils)] ®
By the induction assumption, we have that

0= (1—3(h—0z)Fi(s) < Fi(s) = (14 3(h —7)x)Fy(x) + 4(h — 7)zA < 2A.
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By Lemma 14, with probability 1 — —°= it holds that

16mH

dl
AY, (s) < 60 mAECE) < g, ©)
dl
AW (s) = —60 %()A = —2zA. (10)

For the second term AEZ)l( ), by the induction condition, we have that

AP, (s) 2 3h — OxEynp, .. . [Fo(s)] +40h — OxA

=3(h—OxF_1(s) +4(h — O)zA; (11)
Aézjl(s) = _S(h - g)x]ES’NszLs,W_l(S) [Ff(s/)]
= _3(h— O)xFp(s). (12)

Putting all together and noting that z < 55 d 7> we learn that

Fri(s) — Fooq(s) = AN (s) + AP (s) + 22A

< 22A + (3(h — )z Fy_1(s) + 4(h — 0)zA)
<3(h—L04+1)axF_1(s) +4(h— £+ 1)zA (13)
Froa(s) — Fooa(s ) =AW, (5) + AP, () + 227
= —xzA —3(h— O)xFy_1(s) + 2zA
= =3(h =+ DaFp(s); (14)
The proof of (5) is finished.
Note that
Fo — Fy = F1(Sini) — F1(Sini)-
Using the induction condition, for any s € S it holds that
0= (1—-3(H—1)F(s) < Fi(s) < (14+3(H —1)x)Fi(s) + 4(H — 1)zA < 2A
As aresult,
Fl(sini) - Fl(sini) j S(h - 1)xF1(Sini) + 4<h — 1)1’A
=3(h — DaFy + 4(h — 1)zA;
Fi(sini) — Fi(sini)] = —3(h — 1)z F1 (Sin)
= —3(h — 1)z Fp.
As a result, we obtain that
(1 — 3ha)Fy < Fy =< (1 + 3ha)Fy + 4haA.
The proof is finished.
O

C.3 Statement and Proof of Lemma 14

Lemma 14 Fixf:S§8 — R® such that 0 < f(s) = A Vs € Sfor some PSD matrix A . Let
{br.is 8ris A}V X be a sub-dataset from the T-th layer. Assume {é+, z, 87y Ari Y1, is independent

of f. Let X, = Zi:l . qumgé ; + 2L Then with probability 1 — 15 H2

mdlog (44

0 i f— o' X7 1ZA i0rif (5+.4)| = 60 ~ N (15)

holds for any ¢ € R? such that ||p|s < 1 and T A-1p < 1.
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Proof. By the induction assumptlon (i) and (iii) about the sub-dataset {¢, ;, 54, Ar.i } 2V

probability 1 — we have that

16m H2’

oTulf—o" X, 1ZA i0rif (3

Y, inLemma6,
we have that X, > —A forl < 7 < h —1 and max; qi)mXT 1¢T,l < f1. By Lemma 17, with

: ( \/(NX (bdlog +8\/max¢ X 16n0T X0 dlog (gI) +C> !

mdlog (44)
N

<60 <A

C.4 Statement and Proof of Lemma 15

Lemma 15. Recall the definition of Aj, = A} in Algorithm 1. With probability 1 —

InferIE,r [min{qﬂ[\glgbh, 1}} <m - 7

{40dlog(3m/§) Qd}
——, -B+ < .
~ 8H?

8H’

it holds

€

that

Proof. Recall the definition of {Af 1}, {A§}72, and {Af}72, in Algorithm 2. It then holds that
A = Ai7P 4+ Af for 1 < ¢ < m. By the stop condition in Line 6, we have that Aj > A% for
1< /¢ <m.Let ye = max, Er [min {¢, (A},)"'¢n,1}]. Then y is non-increasing in ¢ because

A, is non-decreasing in £. Let y = y™ = max, E, [min{¢; A; ¢, 1}]

By Lemma 16 and Lemma 18, with probability 1 — San =1- 8H,

. : / -
E, . [mln {Trace (mm{m,l} ondn (AL 1) ,1}}

>E. . [min{Trace(th(b;(Af;l)_1)7 1}] — Pr [qb;([\fl)_l(bh > fl}

> By fmin{Trace(,] (4171) ). 1)] = -
>y'—B- ﬁ
d
2y—B- h(l-3Ha)
Casei: y — B — m > 4. Recall that Aﬁ = Afl_l —|—]\fL forl </ <m.

By Lemma 13 we have that

(1—3Hz)E

) fi T
min —— 1 - Opo
{ oy, (AL,) "o "
On the other hand, by (16), we have that

. . f T
(1-3H2)E, . {mln {Trace (mln {m, 1} QS;L(;S;(Af; 1) 1) , 1}}

(1-3Hz)y

4

(16)

>

By Lemma 8 with the Dy as the distribution of ¢y, - (1 — 3Hx - min {, / (A[ 5 } under

7t and k = 15 < 0.1, we have that

log(det(AI™)) — log(det(AY)) > %

25

a7

Y
10°



Using Lemma 13, we have that A§ < 3I and thus log(det(Am)) < dlog(3m). On the other hand,
we have that log(det(AJ)) = dlog(¢), which means that 7¥ < dlog(3m/(). Therefore, we have

40dlog(3m/¢) €
that y < 204108Bm/O) e

Caseii: y — B — m < Y. In this case, we have that y < 3B + ?fi < 553

C.5 Statement and Proof of Lemma 16

Lemma 16. Let B = 2,/ T21080/0) | 9 HIos/0) 4 oy (32 mdlos(5F) 4 32’”@1"%“?)).

Let {V{, 7'} be the output of Opt with input reward as r*. With probability 1 —

S’rnH ’

m;xxIE,T [, (sn)] — Exi [r},(sn)] < B.

Proof. Assume w € RS satisfying || w| s < 1. Let 6, (w) = p] w. By the induction condition (7),
we have that X, = g LA, forT € [h—1].

By Lemma 17 and the induction condition (iii) that A2 70T A7, < fi, with probability 1—

T6m H2 >
we have that

¢ 0, (w) — T X 1ZA ibri - (05,0-(w) + ;)

\/¢TX ¢ -dlog (dH> + 4\/max)\ q[)TT’iX;lqu’i cOTX - dlog (i?) +<¢

mdlog (44) N 32md+/fi log (44)

<32
- N N

(18)

for all ¢ such that ||¢||s < 1and ¢TA-1¢ < 1.

Let {v-(s)} and {v%(s)} denote respectively the value function under the policy 7* and the optimal
value function. Let vy = v1(sini) and v§ = max, E, [r}(sp)]. Because ri(s,a) € [0,1] for
any proper (s, a, ), we learn that v, (s), v(s),vg, v§ € [0, 1]. Recall the definition of {V(s)} in

YT

Algorithm 6. We next prove by induction that V,.(s) > v¥(s) > v,(s) forany s € Sand 1 < 7 < h.
For 7 = h, the inequality is trivial. Assume V,(s) > v.(s) for any £ < 7 < h. By (18) with
w="Vi()
Qe-1(s,0) 2 Bonp,, o [Ve(s)] 2 Bornp,_, (07 (5)] (19)
when ¢ | (s,a)A; ' de—1(s,a) < 1. Inthe case ¢, | (s,a)A; " dr—1(s,a) > 1, we have that
Qe-1(s,0) =Bonp,_, . [Ve(s)] =0 (20)
because Pr_1 5.4 = 15.

Therefore, we have that

Vioa(s) = Rangey ) (max Qs -1(s,a)) > Rangeyy ) (maxByp, , ., [07(5)]) = vi_(5)

By Bernstein’s inequality, with probability 1 — W’ it holds that
N
H?log(1/6 Hlog(1 0
Z (s1,4) 01%7( /%) +2 og(NGm/ ) > V1 (Sini) > V7 (Sini) = v§-
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To bound the gap max, E [} (s5)] — Exi [r(sn)], direct computation gives that

maXE (7, (sn)] = Exi [}, (sn)]

=y —E [ri(sh)}

< Voi —E. [r;—fl(sh)]

= Vol = Vi(sini) + Eh:l [VT(ST) - P, VT-H(')]

TSr,0r

H?log(1/4) Hlog(1/5 mdlog (—?) 32md+/f1 log (—d?)
< €
<2 e E 32 e - 1)

B H?2log(1/4) Hlog(1/4) md log (—?) 32md+/fi log (—?)
=2 N + 2 N +2H | 32 N + N

:_37

where (21) is by plugging ¢ s . = ¢ and w = V4 (-) into (18):

mdlog (24) N 32mdy/fi log (44)
N N

Vi(ss) =Py o Vigi() <232

T,Sr,ar

C.6 Statement and Proof of Lemma 17

Lemma 17. [Matrix concentration] Fix v € RS such that |v||ec < 1 and f : S — R such that
0 < f(s) X A, Vs € S for some A. Let {¢r i, 3., Ar.i } Y1 be a sub-dataset independent of vand f

from the T-th layer. Let X, Z 1A\ A2 b, Z(i) .+ zI. With probability 1 — 16mH2, it holds that
N
6TOw) — ¢ XS briv(Er)
i=1
dH dH
8\/¢’)TX71¢)(dlog( )+ 4\/max<bLX Gri¢ T X7 b - dlog(— = )+ ¢.

and

¢T;U'Tf7¢—r 1Z>\ ¢T’Lf 57’1

(16\/¢TX qbdlog d )+ 8\/max¢ X;1¢T7i¢TX;1¢dlog(%) + C) A

for any ¢ such that ||¢||2 < 1.

Proof. Let (&) be an £-net of the d-dimensional unit ball w.r.t. Ly norm. Recall that § = (m) 10,
Then log(&) < 20log(dH/¢). Let

51 (¢7 )

o

¢'0 o' X, 12)\ ®r,i0(37,)

< 4\/¢TX Lplog(1/6) + 2\/max¢ Xl 0T X g log(l/é)} .
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Then Pr[£(¢,v)] < 24 by Bernstein’s inequality. Assume Ugca(¢)€1(9,v) holds. Then for any
# € R?, letting v be the nearest neighbor of ¢ in ®(&), it holds that

N
¢TO(W) =" X1 priv(Er)

i=1

N
+ 0 T0w) = XY b iv(3r)

i=1

< |pT0(v) — T O(v)| +

N N
(ZST —1 Z QST,’L"U(gT,i) - ¢TX7—71 Z ¢T,iv(§7',i)
i=1

i=1

<&+ g + 4\/1/)TX;1¢10g(1/5) + 2\/max ¢>T'X;1¢rﬂ/fTX;1?/1 -log(1/4)

< 4/0T X 9log(1/6) + 2, fimax 6T X 0167 Xz 16 10g(1/5) + €+ 5 + Glog(1/0)

2
—

< /T X7 0 108(1/0) + 2, i 6T X7 0r T X0 1ow(1/0) +

Noting that [®(£)| < (d/€)?, we have that Pr[Ugecq(e)|€1 (¢, v) < 2(d/€)?6. By replacing § with

Tomma(e)» With probability 1 — 24, it holds that

¢T 1Z¢Tzv S'rz

\/wx b <d+log ( d )) + 2\/mau<<;5T X 0T X7 - <d+ log (;)) +¢.

for any ¢ such that ||¢]|2 < 1.
Define &> (¢, f) to be the event where

¢l f - ¢TX12A i0rif(3r4) 2

(4W+ 2 /max o] X166 T X g log G)) A

holds. We then show that Pr[&2(¢, f)] < 20.

N
STl = XD N 6rif(5ei) =0 X X f — ¢ X 1ZA”¢TJ §r.i)

i=1 i=1
:(bTX;l ( Tﬂq—f Z/\ngbﬂ’z gf)TZ,lLTerG-,—Z))
i=1
N
== 0T XN e+ 0 X bap] f, (22)

where we define ¢, ; = Eyp, . [f(s")] — f(5-,:) with (s, a) being the state-action pair such that
¢-(s,a) = ¢- ;. Noting that A = €-,; = A with probability 1, we have that

N
Z ¢ XN b€

N
J log(d/d) - > (A2 2 6TX: 6 ) A+ 2max | A2 6 X, 1o, | log(d/6)A
i=1 !

< 21/log(d/0)6T X7 6A + 2max \[oT X716 A2 0] X7, A 23)
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holds with probability 1 — §. In a similar way, with probability 1 — J, we have

— ZN: T XN br e 2 2\/ log(d/8)pT X7 A + 2 max \/ OTX o N2 oL X A
=1 (24)
To bound the second term z¢" X ~'p1 f in (22), we have
126" X g o < 26" Xl g vl
<Vz\/20T X% Vd
<A\fzd-¢TX7lo
<o X7 (25)

for any v € RS such that ||v||o < 1. As aresult, we have ||z¢" X~ 1ul||; < /¢ T X, '$. Noting
that 0 < f(s) < Aforall s € S, we have that

—\OTX A 220" X f < \[oT X7 1pA. (26)

By (22), (23), (24) and (26), we have that

N
STl f—dTXTY N b f (5ra)
=1

< 4y/log(d/6)9T X1 6A + 2max \[oT X162 6T X6 A (@7)

The proof is finished. Assume Ugeqe)E2(¢, f) holds. Fix ¢ and let ¢ be the nearest neighbor of ¢
in ®(&). We then have that

N
Ol f— T XY brif(5r)
=1

N N
= (¢"ulf=¢Tulf) + (EX:l > il (5ra) =T XY ¢T7if<§m>>

=1 i=1
N
+ (uﬁa(v) -y X! quf,if(ém)) . (28)
=1

We then bound the three terms in (28) separately. For the first term, we have that |(¢ — 1) ] v| <

€V/d for any v € RS such that ||v]|o < 1. As a result, we have that ||, (¢ — )||1 < £V/d, which
implies that

—&VdA 2Tl f =Tl f < ¢VdA. (29)
For the second term, we have that

< N
z

N N
d)TX;l Z ¢T,i7](§7',i) - ’(/)TX;l Z d)T,iU(‘;T,i)

=1 i=1

for any v € RS such that ||v]|», < 1. Using similar arguments, we learn that

N N
¢ X1 Z pri— 0 X! Z Gri VN
i=1 i=1

z

<

1
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and

ng

N
VAN N XS i 5ea) — 0TS b f ) < VN

=1 i=1

A. (30)

By Usca(e)€2(9, f), we could bound the third term as

< 4y log(d/0)T X7 A + 2max [T X7 0N 6T X ' oA
G1)

N
TOW) =T XY brif(5r)

i=1

Putting (29), (30) and (31) together, we learn that

N
S ulf—¢TXTNY ¢rif(5

i=1

< (gﬁ 4 YINE g (/307 X7 b+ 2 JuT X7 N2 0T iX:lasT,i) A

Vz
< (mog(d/é)ofxrle: + 2max\[6T X7 0N 6T X 0r + c) A 32)

< (5\/& + ‘/‘ZNS 412 lozg(d/é)f + 4\/log(d/5)¢TX:1¢ + 2max \/¢TX:1¢AZ7i¢IiX:1¢T,i> A

The proof is finished by replacing § with m.

C.7 Statement and Proof of Lemma 18

Lemma 18. By running Algorithm 3, we have the following claims: (1) The iteration in line 3 ends
in 10d log (%” + 1) rounds; (2) Let Aepq be the final value of A. Then it holds that

d

Pr, [QS;(Aend) (bh > fl] = m

Proof. Fix 7. Let F{ be the output of Algorithm 4 with input (h, {A,}"Z1 A, D) where D is a group

=1
of valid sub-datasets. Since i and {AT}}TL;% are fixed in the context, we write Fy = Fy(A) as a
(stochastic) function of A. We also define the expected truncated matrix as

FO(A) =K, [T(¢h¢;7f1A) 'H[¢T(ST77TT7ST)TA:1¢T(ST77TT737') <LVvVli<rt< hH .

Number of iterations. Let A; be the value of A after the i-th iteration. Suppose there are T'
iterations. For 1 < ¢ < T, we have that A; = F(A;_1). By Lemma 13, we have that

Then we prove by induction that
A 2O, (34)

where C; = (14 11Hz)" for 1 < < T. Fori = 1, we learn that Ag = Land A; = Fy(I) <
3Hxz)Fy(I)+4HaI < (14 THzx)IL. Fori > 2, by the induction and the fact that Fo(aA) <akFy
for a > 1, we have that

1+
(A)
Fo(Ai—1) 2 Fy (Ci—1Mi—2) = Ci—1Fo(Ni—2). (35)
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By (33) and (35), we have that
Ai j (1 + SH],‘)Fo(Ai_l) + 4HJ,‘AZ‘_1

= (1 + 3H1')Oi_1F0(Ai_2) + 4H1‘Ai_1

(1 + 3H.’17)Ci,1

=< . )
- 1_3Hz Azfl + 4H£L'A,L,1
< CiAi1.

The proof of (34) is finished.
By the update rule, we learn that

A =< (1+ 11H.’L‘)i/\i_1 <1+ 11H.%‘)iAi_1;

¢ L
I % 2A7/71;

A+ =
+2x

LetA; = A; + %I for i > 0. Then we learn that

A = (1+11Hx) A, At —Ay, A = 2£I~
x

N =

As a result, the maximal eigenvalue of A /?A;A;"/? is at most (1 4+ 11Hz)¢, while the minimal

eigenvalue of [\:_11/ 2[\2-/&1-__11/ 2 is at most % Then we have that
log(det(A;)) — log(det(A;_1)) < dilog(1 + 11Hz) — log(2).

By noting that dlog(¢/2x) < log(det(A;)) and log(det(Ag)) < dlog(1 4 ¢/2x), we learn that for
any1 <53 <T

J
—dlog(2x/¢ +1) <Y dilog(1+ 11Hz) — jlog(2) < 0.

i=1
As a result, it holds that
(i
dlog(2z/¢ + 1) > jlog(2) — %dlog(l +11Hzx)
for any 1 < j < T. Solving the quadratic inequality, we learn that 7" < 10d log (2% + 1).

Truncation probability. By definition, we have A¢ng = Ap. Note that Aeng = (1—3H2) Fo(Aend)
and Fy(Aena) = Ex [T(qﬁhgb;, flAend)]. We then have that

d
Ex [Trace (T(¢ndy, , fihend)(Aena) ™')] < (1—3Hz)
On the other hand, by noting that
d
Pr. [gb;(/\end)ild)h > fl] . f1 < Eﬂ [TI‘&CG (T(¢iz¢;7flAend)(Aend)il)} < (I—Tl‘),
we have
B d
Prr [65 (Aena) 'on > f1] < (1 —3Hz)
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C.8 Statement and Proof of Lemma 19

Lemma 19. Recall that z = 10010202%62. Let Dy, = {¢n,i,5n,5, i 1Y be the one sub-dataset in in
Line 9, Algorithm 7. With probability 1 — M#Hz, it holds that

a N
D Anibnidn+ 21 m — - Ap.
= 8m

Proof. Let X} and Y, be respectively the final value of A and Fy in the

i-th call of Algorithm 3 in Algorithm 2 for the h-th round. Let I, =
[[¢r(sr,mr(s7)) TAT (57, 7o (57)) < 1,V1 < 7 < h — 1]. By Lemma 13 it holds that
, , 4 1.
(1+3Hz)E in [IhT(¢>h¢,1—, le}L)} +4Hz X + %I =Yy + %I - §X}l
and
(1+3H2)Epin [I,T(ondy , 1X})] + 6HY) + %I =Y+ %I.

Because A, = 1 X}

N m
N .
: [Z AM} = g 2 B [lione] £
N & 1 ‘
= om’ — | (1—-6H YJ)
~2m ;1+3Hx (- 6H)Y;
N 1.
- —_ N
- 2m Z 9°h
Jj=1
N 1.
=am 2 ) 36
S m (2 e > (36)
Also noting that )\h,iQSh,iQS;zr,i < fiA;, using Lemma 9, we have that, with probability 1 — 167,;#}12 ,
N . N
Z/\%L,i(bh,i(ﬁ;,i > §E lz Ai@h,@b] — f1Ap log(16mH?/5)
i=1 —
N & N
AN A
~ 8m h Sme
N .
= —Ap — 2L -
8m
The proof is completed by re-arranging (37). .

C.9 Proof of Lemma 5

Let © be a dH-dimensional grid with distance g77. Let Projg(-) be the projection function to
© by projecting each dimension to the grid. It is obvious that if & = {0 },c(m) satisfies that
0nll2 < d,¥h € [H], then ||[Projg ,,(0)[l2 < 2d,Vh € [H].

It suffices to show that for any kernel {6}, } ,c[] € ©, the output policy is %e-optimal. Assume the
conditions in Lemma 6 holds. Let M be the final truncated MDP M. Then we have that
max Pry [Ih € [H], ¢ Angn > 1] < H - 8% < 8LH
As a result, for any 7 and reward function r such that ||r||. < 1, we have that
H H
Z Th| — E?T,M [Z Th‘|
h=1 h=1

Er <

€
<
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Fix reward kernel 6 = {0}, },c(z] € ©. We continue the analysis by assuming the ground MDP
is M. Let 7 be the returned policy and 7* be the optimal policy. Let {Viio(s), @5, o(s,a)} and
{Vire(s), Q7 4(s,a)} be respectively the optimal value function and the value function of 7. In
particular, we let Vi'p = V"4 (sini). Let {Vy0(s), Qn,0(s, @)} be the value of {Vj,(s), Qn(s,a)} in
Algorithm 5 with input reward kernel as 6. Let V g = V4 ¢(sini) and Vit = fo@(sini). When 0 is
clear from the context, we omit 6 in the subscript.

‘We then have that

Vo =Vo =05 =Vo)+ (Vo - V7). (38)
We then prove by induction that V;*(s) — Vi, (s) < (H — h) - g5 forall s € Sand h € [H ]
The inequality is trivial for h = H. Now we assume it is correct for all h > ¢. Let X,
SN 26 i ; + zLfor 7 € [H]. Recall that ®(£) is an &-net of the d-dimensional unit ball. Fix

XS <I>(§) with [|¢]|2 < 1and V € RS with ||V||o, < H. By Bernstein’s inequality (1-dimensional
case of Lemma 9), with probability 1 — it holds that

6
4H[®(g)|-[0]”

- ZA OniV (Bni) — o plv
4\/¢TX:1¢log e R R e T e e

< ¢ 1280 o (SN IOT) | 320t g (IO IO

With a union bound over ¢ € ®(&), we learn that, with probability 1 —

4H\O|’

mdH log (%) 128m dH
< € LOTX 1. il
<324/ N +4/ N o' X, ¢ dHlog(€6>

mdH log (“1)  32mdH log (%)
N + N

N
TXh_l Z A%L,iQShJV(th) — (ZST‘u;’rV
=1

€
<
~ 16H

for any ¢ such that [|¢[|2 < 1 and ¢ A,¢ < 1. Note that Vj, 41 4(-) is determined by 6 = {On}heim
and the sub-datasets after the h-th layer (non-inclusive). With a union bound over 6 € ©, we learn
that: with probability 1 — ¢,

N
Ty—1 2 z T, T €
X E An,i®hi i) — < —
¢ X, - hiPhiVhi1,0(8ni) — @ i Vag1,e| < i

for any ¢ such that ||¢||s < 1,¢" Ap¢ < 1 and # € ©. Then we have that
ViZi(s) = Viea(s)

=Qr_1(s,mp1(s)) = Via(s)

S Qroa(s,mp_y(s)) — Qe—1(s,mp_1(s))

N
_ ~ €
< PZ 1,s,m5_ 1(5)(‘/ ‘/f) + Pé 18,7 (s)w - ¢ZT—1,S,TI'271X€711 Z A?—l¢€—1,i%(8€7i) + ].67H
< PeT—l,s,ﬂ (Ve =V + 87H
< e(H — h).
- 8H
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As a result, we learn that Vi — Vo < ¢. For the second term (Vo — V() in (38), using similar
arguments, we have that

H
Vo—Vg =Ex Z Qn(sn.an) — dn0n — Py, o, Vir1(sn)
h=1
€
<H. S
- 8H
€
< —.
-8

Putting all together, with probability 1 — g, we have that Vi, — Vi) < § < % forall € ©. Asa
result, 7 is at least a %e-optimal policy under the original MDP M. The proof is completed.

D Missing Algorithms

In this section, we present and explain the missing algorithms. Let Rangey, ;;(z) = alz < a+zlfa <
x < b] 4 bl[x > b] for fixed a,b € Rand z € R.

Planning (Algorithm 5). This algorithm is used to compute the optimal policy given a group of
datasets. The planning method combines backward planning with linear regression. A key distinction
is that the feature is clipped based on block matrices. Here © denotes a d H-dimensional grid with
distance g7, and Projg (-) denotes the projection operator to © by projecting each dimension to the
grid. We refer the readers to Appendix C.9 for the effectiveness of this algorithm.

Planning-R (Algorithm 6). This algorithm is used to compute the near-optimal policy given a
fixed reward function. This algorithm is similar to P1anning (Algorithm 5), except that the reward
function is given as input (it is possible that the reward function is non-linear).

Policy-Execution (Algorithm 7). This algorithm is used to collect multiple copies of the
datasets. The efficiency of the collected dataset is explained in Lemma 19.

Algorithm S Planning

Input: reward kernel 6 = {0} }1,c(), sub-datasets {¢p i, 8n,i; An,i }ic[N],he|H]» Dlock matrices
{An}herms
Initialization: 6 <— Projg(6); Vi41(s) < Oforall s € S;
forh=H H-1,...,1do
for (s,a) € S x A; do

¢ < ¢n(s,a)
1 .
Ons.ay - 4 @T00 0T (DL a0l +21) T A 0nVina(8n), ¢TAy M0 <1
0, else;
Qn(s,a) < Rangejy 51(Qn(s,a));
end for
for s € S do

Vi (8) + max, Qn(s,a);
7Th(5) < argmaxg Qh(sv a);
end for
end for
return: 7 < {7 }re(H)-

E Computational Efficiency

In this section, we present the time complexity of our algorithms. In the rest of the analysis, we use
the fact that the time cost of computing the inverse of a d-dimensional PSD matrix is O(d?).
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Algorithm 6 Planning-R

Input: horizon h, reward function r, sub-datasets {¢r i, 5,i, A i bie[N],re[n—1]> Dlock matrices
{AT}TG[hfl];
Vi(s) < max, r4(s,a),Vs € {81, }i>13
forr=h—-1h—2,...,1do
Xr = S0 A2 ihri] + 2L
for s € {57—,177;}1'21, a € Ado

¢ — ¢T(Sa a);
_ - md log dﬁ—H 32md+/f1 lo dﬁ—H T
Qr(s,a) + {¢TXT ! Yois1 GriVer1(8r414) + 32 ng( 7) + < s )v pTATTO <14
0, else

Q- (s,a) Range[o’l] (Qr(s,0a));
end for
for s € {5-,-,1’1'}1‘21 do
Vi (s) = maxq Q- (s,a);
7 (s) = argmax, Q- (s, a);
end for
end for
Vo < Vi(Sini)s
return: {Vp, 7}

Algorithm 7 Policy-Execution
1: Input h, {7"}m Ay
2: 7 < uniform({w"}m );
3: forr=1,2,...,H do
4: forz=1,2,...,2m? + 1do
5: forj=1,2,...,Ndo
6: Run 7 to observe the feature ¢y, ; and the next state s, ;;

. ) : fi .
7: Ah,j < min { / T ATy 1},
8: end for
9: D7 (2) ¢ {&n,js 5njs Mg }ions
10:  end for )
1 Df « (Dj(2)}2m
12: end for

13: return : Dy, < {DF}L .
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Truncated-Matrix—Eval (Algorithm 4). Firstly, the truncation operator T(-) could be im-
plemented with time O(d®). Then the total computational cost of this algorithm is bounded by
O(H(Nd? + d3)) = O(NHd?).

Matrix—-Eval (Algorithm 3). The computational cost of this algorithm is at most O(m) multi-
plies that of Truncated-Matrix-Eval (Algorithm 4), which is O(mN Hd?).

Planning (Algorithm 5) and Planning—-R (Algorithm 6). These two algorithms shares similar
structure, with computational cost O(H AN d?) to compute the action give the current state.

Policy-Design (Algorithm 2). The computational cost of this algorithm is at most O(m)
multiplies that of Mat rix—Eval (Algorithm 3) and P1lanning-R (Algorithm 6), which is bounded
by O(m?N Hd?).

Policy-Execution (Algorithm 7). The time cost of this algorithm is simply
O(m*N?H?Ad?).

Exploration (Algorithm 1). By the above results, the total computation cost of this algorithm
is O(m*N2H2d?A) = O (dgzgjsA) .
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