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ABSTRACT

The modeling of style when synthesizing natural human speech from text has
been the focus of significant attention. Some state-of-the-art approaches train
an encoder-decoder network on paired text and audio samples 〈xtxt, xaud〉 by
encouraging its output to reconstruct xaud. The synthesized audio waveform is
expected to contain the verbal content of xtxt and the auditory style of xaud. Un-
fortunately, modeling style in TTS is somewhat under-determined and training
models with a reconstruction loss alone is insufficient to disentangle content and
style from other factors of variation. In this work, we introduce an end-to-end TTS
model that offers enhanced content-style disentanglement ability and controllabil-
ity. We achieve this by combining a pairwise training procedure, an adversarial
game, and a collaborative game into one training scheme. The adversarial game
concentrates the true data distribution, and the collaborative game minimizes the
distance between real samples and generated samples in both the original space
and the latent space. As a result, our model delivers a highly controllable gener-
ator with disentangled representation. Benefiting from the separate modeling of
style and content, our model can generate human fidelity speech that satisfies the
desired style conditions. Our model achieves start-of-the-art results across multi-
ple tasks, including style transfer (content and style swapping), emotion modeling,
and identity transfer (fitting a new speaker’s voice).1

1 INTRODUCTION

In the past few years, we have seen exciting developments in Text-To-Speech (TTS) using deep neu-
ral networks that learn to synthesize human-like speech from text in an end-to-end fashion. Ideally,
synthesized speech should convey the given text content in an appropriate auditory style which we
refer to as style modeling. Modeling style is of particular importance for many practical applica-
tions such as intelligent conversational agents and assistants. Yet, this is an incredibly challenging
task because the same text can map to different speaking styles, making the problem somewhat
under-determined. To this end, the recently proposed Tacotron-based approaches (Wang et al., 2018;
Skerry-Ryan et al., 2018a) use a piece of reference speech audio to specify the expected style. Given
a pair of text and audio input, they assume two independent latent variables: c that encodes content
from text, and s that encodes style from the reference audio, where c and s are produced by a text
encoder and a style encoder, respectively. A new audio waveform can be consequently generated by
a decoder conditioned on c and s, i.e. p(x|c, s). Thus, it is straightforward to train the model that
minimizes the log-likelihood by a reconstruction loss. However, this method makes it challenging
for s to exclusively encode style because no constraints are placed on the disentanglement of style

1Project webpage: https://researchdemopage.wixsite.com/tts-gan
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from content within the reference audio. It makes the model easy to simply memorize all the infor-
mation (i.e. both style and content components) from the paired audio sample. In this case, the style
embedding tends to be neglected by the decoder, and the style encoder cannot be optimized easily.

To help address some of the limitations of the prior work, we propose a model that provides enhanced
controllability and disentanglement ability. Rather than only training on a single paired text-audio
sample (the text and audio are aligned with each other), i.e. (xtxt, xaud) → x̃, we adopt a pairwise
training procedure to enforce our model to correctly map input text to two different audio references
(xtxt, x+aud, x−aud), i.e. (xtxt, x+aud)→ x̃+; (xtxt, x

−
aud)→ x̃−, where x+aud is paired with xtxt, and

x−aud is unpaired (randomly sampled). Training the model involves solving an adversarial game and
a collaborative game. The adversarial game concentrates the true joint data distribution p(x, c) by
using a conditional GAN loss. The collaborative game is built to minimize the distance of generated
samples from the real samples in both original space and latent space. Specifically, we introduce two
additional losses, the reconstruction loss and the style loss. The style loss is produced by drawing
inspiration from image style transfer (Gatys et al., 2016), which can be used to give explicit style
constraints. During training, the the generator and discriminator combat each other to match a joint
distribution. While at the same time, they also collaborate with each other in order to minimize the
distance of the expected sample and the synthesized sample in both original space and hidden space.
As a result, our model delivers a highly controllable generator and disentangled representation.

2 BACKGROUND

TTS can be formulated as a cross-domain mapping problem, i.e. given the source domain Src (text)
and target domain Trg (audio), we want to learn a mapping F : Src→ Trg such that the distribu-
tion of F (Src) matches the distribution Trg. When modeling style in TTS, F shall be conditioned
on a style variable, which can be specified in many forms such as a reference audio waveform or a la-
bel. Given (xtxt, xaud), the goal is then to synthesize a new audio waveform that contains the textual
content specified by xtxt and the auditory style specified by xaud. Tacotron-based systems (Wang
et al., 2018; Skerry-Ryan et al., 2018a) solve this with a reconstruction loss by training on paired
data xtxt and xaud. Here, we describe their solution via a conditional probabilistic model admitting
two independent sources of variation: a content variable c1:T with T words specified by text xtxt,
and a style variable s given by the reference audio xaud. Given (xtxt, xaud), we can sample:

content : c1:T ∼ qϕ(c1:T |xtxt), style : s ∼ qφ(s|xaud), and output x̃ ∼ pθ(x|c1:T , s), (1)

pθ(x|c1:T , s) is a likelihood function described by a decoder network, Dec. We define deterministic
encoders Encc that maps xtxt to their corresponding content components, and Encs that parame-
terizes the approximate posterior qφ(s|xaud). It is natural to consider the conditional likelihood to
be written as x ∼ pθ(x|Encc(xtxt), Encs(xaud)), and the training objective could be maximizing
the log-likelihood:

Ec1:T∼qϕ(c1:T |xtxt), s∼qφ(s|xaud)
[
log pθ(x|c, s)

]
(2)

In practice, the learned mapping F should be injective, i.e. there should be a one-to-one correspon-
dence between input conditions and the output audio waveform. However, we argue that training
only on paired data with maximum likelihood objective is insufficient to learn this mapping. Unlike
xtxt that purely contains content components, xaud consists of both style components s and other
factors z, such as verbal content that matches with xtxt. Therefore, the model needs to be able
to disentangle s from z. Otherwise, in the case of training on paired data by maximum likelihood
objective, the model could simply learn to copy the waveform information from xaud to the output
and ignore s. When given the same xtxt but different xaud to such a model, it may still map sample
to the same x̃. In the following sections, we introduce a way to prevent this degenerate issue.

3 APPROACH

Our proposed approach combines adversarial and collaborative games to train a TTS stylization
model. Our training procedure, illustrated in Figure 1 (a), can also be considered as the swapping
of style components. After swapping, the content components of both observations will remain the
same, while the sources of style will change, and be aligned with x+aud and x−aud, respectively. We
now explain the two games involved in training the proposed model.
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Figure 1: Schematic diagrams of our model. (a) A content encoder Encc encodes xtxt into a text
embedding c1:T , and a style encoder Encs encodes both paired and unpaired audio samples, x+aud
and x−aud, into style embeddings s+ and s−, respectively. The decoder Dec takes each of the two
conditions (c, s+) and (c, s−), and generates x̃+ ∼ pθ(x|c, s+) and x̃− ∼ pθ(x|c, s−). All the
losses involved in solving the adversarial game (D) and collaborative game (R and C) are indicated
by dashed lines. (b) Given xtxt and xaud, we synthesize audio with Encc, Encs andDec. Note that
xaud does not have to be paired with xtxt. See Appendix A for more details of each module.

3.1 ADVERSARIAL GAME

Because x̃− need not be aligned with the content factors of x−aud, we cannot enforce the reconstruc-
tion of x−aud. Instead, we enforce both x̃+ and x̃− to be assigned high probabilities of belonging to
the target domain using generative adversarial networks (GAN) Goodfellow et al. (2014). Specifi-
cally, we use a conditional GAN (Mirza & Osindero, 2014) to model a joint distribution of audio and
content (i.e. D(x, c)), which provides a stronger constraint by enforcing the decision to be always
conditioned on the content variable c. We define the min-max adversarial game:

Ladv = min
G

max
D
LG + LD (3)

LG = −Ec,s∼s+
[
logD(G(c, s), c)3

]
− Ec,s∼s−

[
logD(G(c, s), c)3

]
(4)

LD = −Ec,s∼s+
[
logD(G(c, s), c)1

]
− Ec,s∼s−

[
logD(G(c, s), c)2

]
− Ec

[
logD(x+aud, c)3

]
(5)

Unlike the traditional binary classification setting (real or fake), we make D a ternary classifier with
D(·)i representing the probability of x being either “fake from paired input” (D(·)1), “fake from
unpaired input” D(·)2, or “real audio sample” D(·)3. This ternary setting makes the discriminator
more powerful because it must distinguish subtle differences between samples generated from paired
and unpaired input. A similar setting has also been used in cross-domain image generation (Taigman
et al., 2016). Our generator consists of two encoders Encc and Encs and a decoder Dec; the
discriminator is used only during training.

3.2 COLLABORATIVE GAME

Although our adversarial game theoretically drives pθ(x, c, s) toward the true data distribution, we
find it to be insufficient to find the desired distribution, as there is little supervision from the obser-
vation what s should represent. Especially for x−aud, the absence of a pairwise relationship makes it
difficult to find the correct correspondence. As a result, G might generate high-fidelity samples x̃−
with incorrect s, and D will still accept it as long as its style is different from x̃+. Therefore, we
impose explicit constraints on the generated samples with a style loss and a reconstruction loss.

Style Loss. In the computer vision literature, Gatys et al. (2016) captured the artistic style of an im-
age using the gram matrix of features maps produced by a convolutional neural network. The gram
matrix computes patch-level appearance statistics, such as texture, in a location-invariant manner.
It is thus natural to expect that a gram matrix of feature maps computed from a mel-spectrogram
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captures local statistics of an audio signal in the frequency-time domain, representing low-level
characteristics of sound, e.g. loudness, stress, speed, pitch, etc. In fact, while the prosodic varia-
tion is often suprasegmental, certain characteristics, such as emotion, are captured by local statistics
in the time-frequency domain. For example, Cheang & Pell (2008) have shown that a temporary
reduction in the average fundamental frequency significantly correlates with sarcasm expression.
More broadly, numerous past studies on prosody have been based on spectral characteristics, e.g.
Dmitry Ulyanov (2016); Barry & Kim (2018).

Let X and X̃ be the feature maps of the mel-spectrograms from the reference and the synthesized
audio samples, respectively. We compute the gram matrices W and G as the inner-product of vec-
torized feature maps X and X̃ , respectively:

Gi,j =
∑
k

X̃ikX̃jk, and Wi,j =
∑
k

XikXjk (6)

Our style loss Lsty is then the L2 distance between G and W over all pairs of filters i and j:

Lsty(G,W ) =
1

N2
f

∑
i,j

(Gij −Wij)
2 (7)

where Nf is the number of filters. To produce the features maps, most existing approaches in
image style transfer use the VGG-19 (Simonyan & Zisserman, 2014) pretrained on ImageNet (Rus-
sakovsky et al., 2015). However, mel-spectrograms look quite different from the natural images
of the ImageNet, making the VGG-19 unsuitable for our work. We found that a simple four-layer
CNN with random weights, denoted by R, perform just well for our purpose; similar findings have
been reported recently by Ulyanov et al. (2017), showing that the structure of a CNN is sufficient to
capture a great deal of low-level image statistics.

Reconstruction Loss. As x̃+ is expected to be the same as x+aud, we include Eq. 2 and encourage
the reconstruction in the original mel-spectrogram space:

Lori = −Ec∼f(xtxt),s∼g(x+
aud)

(log pθ(x|c, s+)) (8)

where f(·) and g(·) denote the deterministic encoding function of Encc and Encs, respectively. We
also encourage reconstruction in the latent space by introducing an inference networkC : xaud → zc
which approximates the posterior p(zc|xaud) as zc ∼ pc(zc|xaud) = C(xaud). C reduces to an N-
way classifier if zc is categorical. In our model, C and Encs share all layers and there is one final
fully-connected layer to output parameters for the conditional distribution pc(zc|xaud). To train
pc(zc|xaud), we define a collaborative game in the latent space:

Llat =
∑
j={+,−}

(
−Ex∼xjaud [log pc(zc|x)]− Ex∼x̃j [log pc(zc|x)]

)
(9)

Minimizing the first term w.r.t. C guides C toward the true posterior p(zc|xaud), while minimizing
the second term w.r.t. G enhances G with extra controllability, i.e. it minimizes the chance that G
could generate samples that would otherwise be falsely predicted by C. Note that we also minimize
the second term w.r.t. C, which proves effective during training that uses synthetic samples to
augment the predictive power of C. In summary, minimizing both Lsty and Lrec can be seen as
a collaborative game between players C, R and G that drives pθ(x|c, s) to match p(x|c, s), and
pc(zc|x) to match the posterior p(zc|x), the reconstruction loss is thus given by:

Lrec = Lori + Llat (10)

3.3 IMPLEMENTATION DETAILS

We train our model with a combination of the GAN loss, style loss, and reconstruction loss:

Lall = Ladv + αLsty + βLrec (11)

We set α = 0.1, β = 10 in our experiments. Our model is based on Tacotron (Wang et al., 2017b)
that predicts mel-spectrograms directly from character sequences. The predicted mel-spectrogram
can be synthesized directly to speech using either the WaveNet vocoder (van den Oord et al., 2016)
or the Griffin-Lim method (Griffin & Lim, 1984). In our experiments, we use the Griffin-Lim for
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fast waveform generation. For Encc, we use the same text encoder architecture of Skerry-Ryan
et al. (2018b). The style encoder Encs is a combination of reference encoder and style token layers
proposed in Wang et al. (2018). We combine the encoded s and c as in Tacotron, i.e. for a content
sequence c of length L, we concatenate the style embedding with each state of the text embeddings.
The inference networkC takes as input a style embedding and processes it through a fully-connected
layers followed by batch normalization and Relu is added on top of each convolution layer. The
output is mapped to an N-way classification layer. R is a 2-D fully-convolution neural network with
four layers, with filter dimensions of 32, 32, 64, 64, respectively. The discriminatorD has the similar
architecture with the reference encoder, except that a style and content fusion unit is added before
it, such that the predicted spectrogram and content information are jointly fed into the network.
Finally, a fully-connected layer followed by ReLU maps the output to a 3-way classification layer.
Note that, instead of using the character level content embedding c1:T , here we adopt the global
sentence embedding, which is the average of hidden unit activation over the sequence. A detailed
diagram can be seen in Appendix 5. We train our model with a minibatch size of 32 using the Adam
optimizer; we iterated 200K steps for EMT-4 and 280K steps for VCTK datasets. During training,R
is fixed weights. For testing, C, R and D are not needed, and we simply send a 〈text, audio〉 pairs
into the model (unpaired audios are not needed in the testing stage), which is shown in Figure 1.

4 RELATED WORK

Text-To-Speech (TTS): Recently, rapid progress has been achieved in TTS with end-to-end trained
neural networks, e.g., WaveNet (van den Oord et al., 2016), DeepVoice (Arik et al., 2017),
VoiceLoop (Taigman et al., 2018), Char2Wav (Jose Sotelo, 2017), (Saito et al., 2017; Saruwatari,
2018; Yang et al., 2017) and Tacotron (Skerry-Ryan et al., 2018b). Consequently, modeling style
in TTS has become a subject of extensive study. DeepVoice2 (Gibiansky et al., 2017) and Deep-
Voice3 (Ping et al., 2018) learn one or more lookup tables that store information about different
speaker identities. However, they are limited to synthesizing voices of speaker identities seen
during training. Unlike DeepVoice2 and DeepVoice3, Nachmani et al. (2018), which is based on
VoiceLoop, can fit unseen speakers’ voice at testing time. There is also a collection of approaches
that are based on Tacotron, e.g., Tacotron-prosody (Wang et al., 2017a), prosody-Tacotron (Skerry-
Ryan et al., 2018a) and GST (Wang et al., 2018). prosody-Tacotron uses an encoder to compute a
style embedding from a reference audio waveform, where the embedding provides style information
that is not provided by the text. The Global-Style-Token (GST) extends prosody-Tacotron by adding
a new attention layer that captures a wide range of acoustic styles.

Domain mapping by GANs: Recently, GANs have shown promising results in various domain
mapping problems. Cycle-GAN (Zhu et al., 2017a) and UNIT (Liu et al., 2017) perform image-
to-image translation by adding a cycle-consistency loss to the learning objective of GANs. Further
research has extended this to cross-domain translation. StackGAN (Zhang et al., 2016) generates
images from text, and DA-GAN (Ma et al., 2018) operates across different domains, e.g., object
transfiguration, human face to cartoon face, skeleton to natural object. Another line of work per-
forms one-sided domain mapping without using the cycle consistency loss, e.g.,(Taigman et al.,
2016). (Zhang et al., 2017) and (Hirokazu Kameoka, 2018) are mapping within text and speech do-
mains. Moving beyond one-to-one domain mapping, Bicycle GAN Zhu et al. (2017b) maps samples
from one domain to multiple target domains. Our work can also be considered as a one-sided cross-
domain mapping that does not require cycle consistency, which makes the training more practical.
We also follow the concept of Bicycle GAN that promotes a one-to-many mapping. To the best of
our knowledge, ours is the first to formulate TTS as a cross domain mapping problem using GANs.

Style transfer: The recent success in image style transfer Gatys et al. (2016) has motivated ap-
proaches that model the acoustic style of sound using spectrogram. For example, Dmitry Ulyanov
(2016) uses a simple 1-D convolutional layer with a ReLU to compute feature maps and then ob-
tain style features by computing the gram matrix. Barry & Kim (2018) followed the same concept
and adopted two different audio representations, the mel-spectrogram and the constant Q transform
spectrogram. Inspired by this, in this work, we adopt the image style transfer concept to impose
explicit style constraints on audio mel-spectrogram.
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EMT-4 VCTK
Recon. error WER Recon. error WER

Comparisons
prosody-Tacotron 0.42 10.6 0.70 19.4

GST 0.61 10.2 0.77 18.1
FaderNetwork 0.59 11.1 0.78 19.0
DeepVoice2 – – 0.81 18.5

Ablation study
Ladv 0.73 11.1 0.81 19.2

Ladv+Lsty 0.75 10.9 0.83 18.9
GST+Lsty+Lrec 0.58 22.3 0.77 28.9

Ours Ladv+Lsty+Lrec 0.76 10.2 0.83 18.2
Groundtruth – 7.1 – 9.8

Table 1: Experimental results on disentanglement ability and controllability.

5 EXPERIMENTS

We evaluate our model from three perspectives: content vs. style disentanglement ability (Sec.
5.1), effectiveness of style modeling (Sec. 5.2), and controllability (Sec. 5.3). We use two datasets:
EMT-4, an in-house dataset of 22,377 American English audio-text samples, with a total of 24 hours.
All the audio samples are read by a single speaker, in four emotion categories: happy, sad, angry and
neutral. For each text sample, there is only one audio sample labeled with one of the four emotion
styles. VCTK, a publicly available, multi-speaker dataset containing recordings of clean speech
from 109 speakers, with a total of 44 hours. As the raw audio clips have different specifications, we
preprocess them by downsampling the audio to 24kHz and trimming leading and trailing silence,
reducing the median duration from 3.3 seconds to 1.8 seconds.

We compare our method with three state-of-the-art approaches: prosody-Tacotron (Skerry-Ryan
et al., 2018a) is similar to our model but trained on the reconstruction loss only. The style embed-
dings are obtained from the reference encoder directly. GST (Wang et al., 2018) incorporates the
Global Style Tokens to prosody-Tacotron. DeepVoice2 (Gibiansky et al., 2017) learns a look-up
table capturing embeddings for different speaker identity. As DeepVoice2 is particularly designed
for multi-speaker modeling, comparisons with DeepVoice2 is only performed on VCTK.

5.1 CONTENT VS. STYLE DISENTANGLEMENT ABILITY

Reconstruction error of style embeddings: If the style encoder Encs has successfully disentan-
gled style from other factors of variation in the audio input, we expect the style embedding s to
contain very little information about the content of the audio input. Therefore, we should expect
poor performance when we try to reconstruct the audio sample purely from s. This motivates us to
evaluate our model with the task of reconstructing audio samples from style embeddings. To this
end, we train an autoencoder, where the encoder has the same architecture as Encs and the decoder
has six deconvolutional layers, with each layer having batch normalization and ReLU activation. To
set the baseline, we first train the autoencoder from scratch using only the L2 reconstruction loss;
this results in the reconstruction error of 0.12. Next, we use precomputed style embeddings from
different approaches and train only the decoder network using the reconstruction loss.

We report the results under the columns “Recon. error” in Table 5. prosody-Tacotron achieves the
lowest reconstruction error, suggesting that the approach has the weakest ability to disentangle style
from other factors in audio input. GST shows improvement over prosody-Tacotron, which demon-
strates the effectiveness of the style token layer that acts as an information bottleneck from audio
input to style embeddings. DeepVoice2 performs much better than both prosody-Tacotron and GST
on the VCTK dataset. This shows the model particularly works well on modeling speaker identities.
Compared to the three state-of-the-art approaches, our model performs the best on both datasets. We
also evaluate the importance of different loss terms in our model. We can see that the adversarial
loss Ladv provides a significant improvement over the baseline models, which suggests the effec-
tiveness of our adversarial loss and pairwise training. When we add the style loss we get further
improvements. We also remove the adversarial loss and add the style and reconstruction losses to
the baseline GST; this produces even worse results. It is because, when training only on paired data
with GST’s encoder-decoder network, the reconstruction loss already imposes very strong supervi-
sion. In this case, additional constraints might on the contrary impaired the performance due to the
risk of over fitting. While as our model is adversarially trained, the GAN loss regularizes the model,
thus under this case, the style loss and reconstruction loss can help optimizing in a better way.
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Figure 2: t-SNE visualization of the learned latent spaces for (a) EMT-4 and (b) VCTK datasets.

Content and style swapping: We conduct a qualitative evaluation where we generate audio samples
by combining content and style embeddings from different ground-truth pairs of text and audio.
Specifically, we randomly sample four (text, audio) pairs from the EMT-4 dataset, one for each
emotion category, and create 16 permutations of text (content) and audio (style). Qualitative results
are available on our project webpage. In in, the samples located on the diagonal are the results of
parallel style transfer, i.e. reference audio sample is aligned with the text input. Off-diagonals
are unparalleled style transfer where results in each column have the same content with different
styles, and each row shares the same style with different content. By hearing our samples, we can
see that the results are comparable for both parallel transfer and unparalleled transfer, which means
the content and style components are disentangled. Even when transferring on two samples which
are separated by a large distance in the latent space, e.g. sad to happy (row 2, line 4), the styles are
correctly mapped (compare this to sad to sad (row 4, line 4)). We also conducted subjective study to
ask seven subjects to classify these results by emotion category. The accuracy reaches 86%, which
suggests the efficacy of our model in disentangling style and content components.

5.2 EFFECTIVENESS OF STYLE MODELING

Speaker style modeling: We further evaluate the effectiveness of our approach on modeling styles
by means of speaker verification. Specifically, we compare our style embeddings with the i-vector
representation used in modern speaker verification systems (Kinnunen et al., 2017) on the speaker
classification task. We report the results under the columns “Embeddings” in Table 5.3. We can see
that, despite the fact that the i-vectors are specifically designed for speaker classification, our model
can still achieve comparable results, which suggests that our model can produce generic feature
representation for various auditory styles including speaker identity.

Visualization of style embedding: Figure 2 shows the t-SNE projection (van der Maaten & Hinton,
2008) of style embeddings from (a) the EMT-4 dataset and (b) the VCTK dataset. To create the
plots, we randomly sampled 1,000 instances from each dataset: (a) 250 instances from each of the
four emotion categories, and (b) 125 instances from 9 speakers (3 male and 5 female). We can see
that the projections show clear boundaries between different style (emotion and speaker) categories.
Interestingly, “sad” is far from the other three emotion categories; we believe that this is because sad
speech usually have much lower pitch compared to other emotion categories. “neutral” is projected
to the middle, which has roughly the same distance with other emotion categories. Also, we can see
that there is a clear boundary between male samples and female samples.

5.3 CONTROLLABILITY

A good TTS system should allow users to control both content and style of the output. We consider
two factors that affect the controllability: the fidelity, i.e. the synthesized speech should contain the
desired content in a clearly audible form, and the naturalness, i.e. the synthesized speech should
contain the desired style.

WER of synthesized samples: To validate the fidelity, we assess the performance of synthesized
samples in a speech recognition task. We use a pre-trained ASR model based on WaveNet (van den
Oord et al., 2016) to compute Word Error Rate (WER) for the samples synthesized by each model.
Results are shown in Table 5. Our model performs comparably with, and sometimes even better than,
the state-of-the-art approaches. Note that WER measures only the correctness of verbal content, not
its auditory style. The results suggests that all the methods we have compared perform reasonably
well in controlling the verbal content in TTS. When trained with more constraints on GST, i.e.
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Synthesized Audio Embeddings
prosody-Tacotron GST DeepVoice2 Ours i-vector Ours

EMT-4 68% 77% – 80% – –

VCTK seen 55% 65% 74% 72% – –
unseen 51% 62% – 70% 75% 71%

Table 2: Classification accuracy for synthesized samples and learned style embeddings.

GST+Lsty+ Lrec, the performance gets worse. We suspect that this is because the autoencoder
training procedure used in GST already gives strong supervision to the decoder. Thus, when added
with more constraints, the model has overfitted to the training data. Our model does not have such
problem because of the unpaired samples used during training, which act as strong regularizer.

Classification accuracy on synthesized samples: As the style we are modeling are all categorical,
we evaluate the synthesized samples by a classification task. We train two classifiers on each dataset,
which have 98% and 83% accuracy for EMT-4 and VCTK, respectively. We select 1000 samples
synthesized from test set on EMT-4. To assess on VCTK, we test samples from both seen and unseen
speakers, where ‘seen speakers’ mean the speakers are part of the training set, while the reference
audio are selected from the test set. ‘unseen speaker’ means the speakers have never be seen during
training, which means the model is asked to fit a new speaker’s voice on testing stage. The results
are shown in Table 5.3. As we can see, on the EMT-4 dataset, our model performs the better than
prosody-Tacotron and GST. When tested on the seen data on VCTK, DeepVoice2 performs the best,
but it fails to generalize to unseen speakers. Our model performs well in both cases.

Style transfer: To qualitatively evaluate Our model, we conduct style transfer. In this experiment,
we want to compare our model against GST in how well they model varied styles in EMT-4. We
randomly selected 15 sentences, where 10 of the sentences are from the test set, and 5 of them are
picked on web (out of the dataset). To perform style transfer, we select four different reference
audios from ‘happy’, ‘angry’, ‘sad’ and ‘neutral’, all of the reference audio samples are unseen
during training. Each sentence is paired with these four reference audio samples for synthesizing,
which will produce 60 new audio samples in total. The results can be found in our project page.
We also compare our model against GST on the task of unparalleled transfer at scale. Specifically,
we follow the same setting in Wang et al. (2018) to run side-by-side subjective study on 7-point
ratings (-3 to 3) from “model A is the closest to the reference style” to “model B is the closest to the
reference style”, where model B is ours.

We recruited seven participants. Each listened to all 60 permutation of content and rated each set of
audio style (emotions) comparing the result of our model versus the prosody-Tacotron model. They
rated each pair of audio outputs on the 7-point scale. We performed a single-sample T-Test on the
resulting ratings averaged across all participants. µ¿0 means our model was judged as closer to the
reference. Overall the emotion samples the participants rated our model as significantly closer to
the reference (µ=0.872, p�0.001). For each of the styles individually our model was consistently
rated as significantly closer to the reference (neutral: µ=0.295, p=0.01, happy: µ=0.905, p�0.001,
sad: µ=1.646, p�0.001, angry: µ=0.641, p�0.001). These results provide further evidence that our
model can synthesize speech with the correct content and distinct auditory styles that are closer to
the reference than the state-of-the-art comparison. We also evaluate the output using mean opinion
score (MOS) naturalness tests. Our model reaches 4.3 MOS, outperforming 4.0 MOS reported
in (Wang et al., 2018) and 3.82 MOS reported in (Skerry-Ryan et al., 2018a).

6 CONCLUSION

We propose an end-to-end conditional generative model for TTS style modeling. The proposed
model is built upon Tacotron, with an enhanced content-style disentanglement ability and controlla-
bility. The proposed pairwise training approach that involves a adversarial game and a collaborative
game together, result in a highly controllable generator with disentangled representations. Bene-
fiting from the separate modeling of content c and style s, our model can synthesize high fidelity
speech signals with the correct content and realistic style, resulting in natural human-like speech.
We demonstrated our approach on two TTS datasets with different auditory styles (emotion and
speaker identity), and show that our approach establishes state-of-the-art quantitative and qualita-
tive performance on a variety of tasks. For future research, an important direction can be training
on unpaired data under an unsupervised setting. In this way, the requirements for a lot of work on
aligning text and audios can be much released.
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APPENDEX

A NETWORK ARCHITECTURES

We provide architecture details of our model. Figure 3 shows both the content and style encoder
networks (Encc and Encs, respectively) as well as the inference network (C). Figure 4 shows the
decoder network (Dec), and Figure 5 shows the discriminator network (D). We further provide
network parameter settings in the captions of each figure.

Figure 3: Encoder network architectures. (Left) The content encoder (Encs): A sequence of 128-
D character-level embeddings is fed into two fully-connected layers which have [256, 128] units,
respectively. Each layer is followed by a ReLU activation and dropout with a 50% chance. The
output is fed into a CBHG block Wang et al. (2017b). Inside in the CBHG block, the Conv1D bank
has 16 layers, where each layer has 128 units and comes with a ReLU activation. Next, the max-
pooling layer has a stride of 1 and with a width of 2. The Conv1D projection has three layers, each
with 128 units and a ReLU activation. After the residual connection is four fully-connected layers,
each with 128 units and a ReLU activation. The final Bidirectional GRU has 128 cells. (Right) The
style encoder (Encs) and the inference Network (C): The style encoder consists of a reference
encoder and style token layers. The reference encoder takes a N × Tmel × 80 mel-spectrogram as
input, where N is batch size, Tmel is length of mel-spectrogram, and 80 is the dimension. The six
Conv2D layers have [32, 32, 64, 64, 128, 128] filters, respectively, each with a kernel size 3 × 3
and a stride of 2 × 2. Each layer is followed by a ReLU activation and batch normalization. Next
is a single-layer GRU with 128 units. The final state from the GRU is fed into a fully-connected
layer with 128 units and a tanh activation; this produces the reference embedding. In the style token
layers, 10 global style tokens (GSTs) are randomly initialized. The reference embedding is used as
a query for a multi-head attention unit. A learned linear weight is then output from the multi-head
attention unit, and the style embedding is computed as a weighted sum. The inference network (C)
shares the same architecture and parameters with Encs, except that a new N-way classifier (which
consists of a fully connected layer followed by Softmas) is added on top.
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Figure 4: Decoder network architecture. The decoder (Dec) takes as input a concatenation of a
content embedding sequence C1:T and the style embedding (replicated T times). We then unroll
each of the T time slices by feeding them into two fully-connected layers, with [256, 128] units,
respectively, followed by an attention RNN and a decoder RNN. The attention RNN has 2-layer
residual-GRUs, each with 256 cells. The decoder RNN has a 256 cell one-layer GRU. As an output
of each time step, 5 spectrogram slices are predicted (r = 5), and they are fed into the CBHG
block (see Figure 3(left) for detail). The final output of the decoder is the predicted spectrogram. A
vocoder is used to synthesize voice audios from the spectrograms. In this work, we use the Griffin-
Lim algorithm Griffin & Lim (1984) to achieve fast waveform generation.
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Figure 5: Discriminator network architecture. The main computation body is similar to the reference
encoder (part of the style encoder in Figure 3), as shown on the right. The difference is that, instead
of having only spectrograms as input, it has a combination of spectrograms (either ground truth or
synthesized) and the content information (output fromEncc), both shown on the left. Here we adopt
global sentence embedding to represent the content information. The output content embedding
from the Content Encoder Encc is averaged along time over the whole sequence, which produces a
N × 1× 128 single embedding. To match with the dimension of the spectrogram, the single content
embedding is replicated according to the spectrograms time step (Tmel), and they are concatenated
together as the combined input.
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B ATTENTION PLOTS

In this section, we show attention plots of our model and a baseline model, comparing the robustness
of these models for different lengths of the reference audio.

Figure 6: Attention alignments by different reference sentence lengths. From left to right, the
sentence length are short, medium and long, respectively. The first row is obtained by using the
Style EncoderEncs as shown in 3. The second row is obtained by only using the Reference Encoder
(remove the Style token layers in Encs). As can be seen, adding the global style token layer made
the network more robust to the variance in the length of the reference audio.
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C MORE EXPERIMENT RESULTS

To better analyze the inference and attention mechanisms of our model, we further evaluate the
performance in terms of the Word Error Rate (WER) and classification accuracy under different
embedding sizes (Table 3) and different number of attention heads (Table 4).

Table 3: Ablation study on different reference embedding sizes.

Embedding size 32 64 128 256 512
WER 10.3 10.2 10.2 10.2 10.5

Accuracy 61% 75% 80% 77% 69 %

Table 4: Ablation study on different number of heads in multihead attention.

Attention heads 2 4 8 16
WER 10.4 10.4 10.6 10.5

Accuracy 76% 80% 80% 74%

Table 3 shows the optimal embedding size is at 128; too small size (32) prevents essential informa-
tion from flowing through the network, while too big size (512) leads to a poor ability to bottleneck
the information from disentangling the style components with other factors within the reference au-
dio. Also, the large embedding size means more parameters to optimize for, which results in the risk
of over-fitting. Table 4 shows the results when applying difference numbers of attention heads. We
get the best performance with four attention heads.
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