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ABSTRACT

Deep neural networks have been tremendously successful in a number of tasks.
One of the main reasons for this is their capability to automatically learn represen-
tations of data in levels of abstraction, increasingly disentangling the data as the
internal transformations are applied. In this paper we propose a novel regulariza-
tion method that penalize covariance between dimensions of the hidden layers in
a network, something that benefits the disentanglement. This makes the network
learn nonlinear representations that are linearly uncorrelated, yet allows the model
to obtain good results on a number of tasks, as demonstrated by our experimental
evaluation. The proposed technique can be used to find the dimensionality of the
underlying data, because it effectively disables dimensions that aren’t needed. Our
approach is simple and computationally cheap, as it can be applied as a regularizer
to any gradient-based learning model.

1 INTRODUCTION

A good data representation should ultimately uncover underlying factors in the raw data while being
useful for a model to solve some task. Deep neural networks learn representations that are increas-
ingly abstract in deeper layers, disentangling the causes of variation in the underlying data (Bengio
et al., 2013). Formal definitions of disentanglement are lacking, although Ver Steeg & Galstyan
(2015); Achille & Soatto (2017) both use the total correlation as a measure of disentanglement. In-
spired by this, we consider a simpler objective: a representation disentangles the data well when
its components do not correlate, and we explore the effects of penalizing this linear dependence
between different dimensions in the representation. Ensuring independence in the representation
space results in a distribution that is factorizable and thus easy to model (Kingma & Welling, 2014;
Rezende et al., 2014).

We propose a novel regularization scheme that penalizes the cross-correlation between the dimen-
sions of the learned representations, and helps artificial neural networks learn disentangled repre-
sentations. The approach is very versatile and can be applied to any gradient-based machine learn-
ing model that learns its own distributed vector representations. A large body of literature have
been published about techniques for learning non-linear independent representations (Lappalainen
& Honkela, 2000; Honkela & Valpola, 2005; Dinh et al., 2015), but in comparison our approach
is simpler, and does not impose restrictions on the model used. The proposed technique penalizes
representations with correlated activations. It strongly encourages the model to find the dimension-
ality of the data, and thus to disable superfluous dimensions in the resulting representations. The
experimental evaluation on synthetic data verifies this: the model is able to learn all useful dimen-
sions in the data, and after convergence, these are the only ones that are active. This can be of great
utility when pruning a network, or to decide when a network needs a larger capacity. The disabling
of activations in the internal representation can be viewed as (and used for) dimensionality reduc-
tion. The proposed approach allows for interpretability of the activations computed in the model,
such as isolating specific underlying factors. The solution is computationally cheap, and can be ap-
plied without modification to many gradient-based machine learning models that learns distributed
representations.

Moreover, we present an extensive experimental evaluation on a range of tasks on different data
modalities, which shows that the proposed approach disentangles the data well; we do get uncor-
related components in the resulting internal representations, while retaining the performance of the
models on their respective task.
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Figure 1: When data is distributed along non-linear manifolds, a linear model cannot describe the
data well (left). However, with a non-linear model (right), it is possible to capture the variations of
the data in a more reasonable way and unfold it into a compact orthogonal representation space.

The main contributions of this work include: LΣ regularization, a novel approach penalizing the
covariance between dimensions in a representation (see Section 2). The regularizer encourages a
model to use the minimal number of dimensions needed in the representation. The approach is
computationally cheap and can be applied without any restrictions on the model. The experimental
evaluation shows how different models can benefit from usingLΣ regularization. From autoencoders
on synthetic data to deep convolutional autoencoders trained on CIFAR-10, we show that LΣ helps
us learn uncorrelated and disentangled representations (see Section 3).

2 DISENTANGLEMENT THROUGH PENALIZING CROSS-CORRELATIONS

We present a novel regularizer based on the covariance of the activations in a neural network layer
over a batch of examples. The aim of the regularizer is to penalize the covariance between dimen-
sions in the layer to decrease linear correlation.

2.1 DEFINITION

The covariance regularization term (LΣ) for a layer, henceforth referred to as the coding layer, is
computed as

LΣ =
1

p2
||C||1 (1)

where p is the dimensionality of the coding layer,

||C||1 =

N∑
i,j=1

|Cij |, (2)

is the element wise L1 matrix norm of C, and C ∈ Rp×p is the sample covariance of the activations
in the coding layer over N examples

C =
1

N − 1

N∑
i=1

(H− 1N h̄)T (H− 1N h̄).

Further, H = [h1; ...;hN ] is a matrix of all activations in the batch, 1N is anN -dimensional column
vector of ones, and h̄ is the mean activation.

2.2 USAGE

As LΣ has the structure of a regularizer, it can be applied to most gradient based models without
changing the underlying architecture. In particular, LΣ is simply computed based on select layers
and added to the error function, e.g. Loss = Error + λLΣ
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3 EXPERIMENTS

This section describes the experimental evaluation performed using LΣ regularization on different
models in various settings, from simple multi-layer perceptron-based models using synthetic data
(see Section 3.2 and 3.3) to convolutional autoencoders on real data (see Section 3.4). However,
before describing the experiments in detail we define the metrics that will be used to quantify the
results.

3.1 EVALUATION METRICS

A number of different metrics are employed in the experiments to measure different aspects of the
results.

Mean Absolute Pearson Correlation (MAPC) Pearson correlation report the normalized linear
correlation between variables ∈ [−1, 1] where 0 indicates no correlation. To get the total linear
correlation between all dimensions in the coding layer the absolute value of each contribution is
averaged.

MAPC =
2

(p2 − p)

p∑
i<j

|Cij |√
Cii

√
Cjj

Covariance/Variance Ratio (CVR) Though mean absolute Pearson correlation measure the
quantity we are interested in it becomes ill defined when the variance of one (or both) of the vari-
ables approaches zero. To avoid this problem we define a related measure where all variances are
summed for each term. Hence, as long as some dimension has activity the measure remains well
defined. More precise, the CVR score is computed as:

CVR =
1

p2

||C||1
tr(C)

where ||C||1 is defined as in Equation 2. The intuition behind CVR is simply to measure the fraction
of all information that is captured in a linear uncorrelated fashion within the coding layer.

Top d-dimension Variance/total variance (TdV) TdV measure to what degree the total variance
is captured inside the variance of the top d dimensions. When d is equal to the actual dimension of
the underlying data this measure is bounded in [0,1].

Utilized Dimensions (UD) UD is the number of dimensions that needs to be kept to retain a set
percentage, e.g. 90% in the case of UD90%, of the total variance. This measure has the advantage
that the dimension of the underlying data does not need to be known a priori.

3.2 DIMENSIONALITY REDUCTION

The purpose of this experiment is to investigate if it is possible to disentangle independent data that
has been projected to a higher dimension using a random projection, i.e. we would like to find the
principal components of the original data.

The model we employ in this experiment is an auto encoder consisting of a linear p = 10 dimen-
sional coding layer and a linear outputlayer. The model is trained using the proposed covariance
regularization LΣ on the coding layer.

The data is generated by sampling a d = 4 dimensional vector of independent features z ∼ N(0,Σ),
where Σ ∈ Rd×d is constrained to be non-degenerate and diagonal. However, before the data is fed
to the autoencoder it is pushed through a random linear transformation x = Ωz. The goal of the
model is to reconstruct properties of z in the coding layer while only having access to x.

The model is trained on 10000 iid random samples for 10000 epochs. 9 experiments were performed
with different values for the regularization constant λ. The first point on each curve (in Figure 2 and
3) is λ = 0, i.e. no regularization, followed by 8 points logarithmically spaced between 0.001 and
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Figure 2: In this figure we compare the amount of residual linear correlation after training the model
with LΣ and L1 regularization respectively, measured in MAPC (left) and CVR (right). The first
point on each curve corresponds to λ = 0, i.e. no regularization, followed by 8 points logarithmically
spaced between 0.001 and 1. All scores are averaged over 10 experiments using a different random
projection (Ω).

Figure 3: The resulting dimensionality the coding layer after training the model with LΣ and L1

regularization respectively, measured in TdV (left) and UD90% (right). The first point on each curve
corresponds to λ = 0, i.e. no regularization, followed by 8 points logarithmically spaced between
0.001 and 1.All scores are averaged over 10 experiments using a different random projection (Ω).

1. Each experiment is repeated 10 times using a different random projection Ω and the average is
reported.

The result of the experiment is reported using all four metrics defined in Section 3.1. The result in
terms of MAPC and CVR is reported in Figure 2. The first thing to notice is that LΣ consistently
lead to lower correlation while incurring less MSE penalty compared to L1. Further, looking at the
MAPC it is interesting to notice that it is optimal for a very small values of LΣ. This is because
higher amounts of LΣ leads to lowering of the dimensionality of the data, see Figure 3, which in
turn yields unpredictable Pearson correlation scores between these inactivated neurons. However,
this effect is compensated for in CVR for which LΣ quickly converges towards the optimal value of
one, which in turn indicates no presence of linear correlation.
Turning the attention to dimensionality reduction, Figure 3 shows that LΣ consistently outperform
L1. Further, looking closer at the TdV score, LΣ is able to compress the data almost perfectly, i.e.
TdV=1, at a very small MSE cost while L1 struggle even when accepting a much higher MSE cost.
Further, the UD90% scores again show that LΣ achieves a higher compression at lower MSE cost.
In this instance the underlying data was of 4 dimensions which LΣ quickly achieves. At higher
amounts of LΣ the dimensionality even locationally fall to 3, however, this is because the threshold
is set to 90%.
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3.3 DEEP NETWORK OF UNCORRELATED FEATURES

In Section 3.2 we showed that we can learn a minimal orthogonal representation of data that is
generated to ensure that each dimension is independent. However, in reality it is not always possible
to encode the necessary information, to solve the problem at hand, in an uncorrelated coding layer,
e.g. the data illustrated in Figure 1 would first need a non linear transform before the coding layer.
However, using a deep network it should be possible to learn such a nonlinear transformation that
enables uncorrelated features in higher layers. To test this in practice on a problem that has this
property but still is small enough to easily understand we turn to the XOR problem.

It is well known that the XOR problem can be solved by a neural network of one hidden layer con-
sisting of a minimum of two units. However, instead of providing this minimal structure we would
like the network to discover it by itself during training. Hence, the model used is intentionally over-
specified consisting of two hidden layers of four logistic units each followed by a one dimensional
logistic output layer.

The model was trained on XOR examples, e.g. [1,0]=1, in a random order until convergence with
LΣ applied to both hidden layers and added to the cost function after scaling it with λ = 0.2.

As can be seen in Figure 4 the model was able to learn the optimal structure of exactly 2 dimensions
in the first layer and one dimension in the second. Further, as expected, the first layer do encode
a negative covariance between the two active units while the second layer is completely free from
covariance. Note that, even though the second hidden layer is not the output of the model it does
encode the result in that one active neuron. For comparison, see Figure 5 for the same model trained
without LΣ.

Figure 4: Covariance matrix (left) and spectrum (right) of the hidden layers of a feed forward neural
network trained with LΣ regularization to solve the XOR problem. Layer one (top) has learned to
utilize unit zero and three while keeping the rest constant, and in layer two only unit two is utilized.
This learned structure is the minimal solution to the XOR problem.

3.4 NON-LINEAR UNCORRELATED CONVOLUTIONAL FEATURES

Convolutional autoencoders have been used to learn features for visual input and for layer-wise
pretraining for image classification tasks. Here, we will see that it is possible to train a deep con-
volutional autoencoder on real-world data and learn representations that have low covariance, while
retaining the reconstruction quality.

To keep it simple, the encoder part of the model used two convolutional layers and two fully con-
nected layers, with a total of roughly 500.000 parameters in the whole model. The regularization
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Figure 5: Covariance matrix (left) and spectrum (right) of the hidden layers of a feed forward neural
network trained without regularization to solve the XOR problem.
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Figure 6: Results from the convolutional autoencoder experiments on CIFAR-10: Left: CVR plotted
against MSE on the CIFAR-10 test set, using LΣ regularization and L1 regularization, respectively.
Right: UD90% plotted against MSE on the CIFAR-10 test set, using LΣ regularization and L1 regu-
larization, respectively. Each point in the plots correspond to doubling the regularization parameter:
λ ∈ [0.0, 0.2, ..., 10.24].

was applied to the coding layer which has 84 dimensions, giving a bottleneck effect. The model
was trained and evaluated on the CIFAR-10 dataset (Krizhevsky & Hinton, 2009), containing 32x32
pixel colour images tagged with 10 different classes. The model was trained on 45,000 images,
while 5,000 were set aside for validation, and 10,000 make out the test set. We compare the results
from using LΣ regularization with L1 regularization and with no regularization at all.

The autoencoder was trained with a batch size of 100, using the Adam optimizer (Kingma & Ba,
2015) with an initial learning rate of 0.001. Training was run until the MSE score on the validation
set stopped improving1. The regularization parameter λ was chosen to be 0.08, for a reasonable
trade-off between performance and covariance/variance ratio. The reported scores in Table 1 and
Figure 6 are averages from training the model five times with different initialization.

1The source code will be made available when the paper is deanonymized.
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The results (see Table 1) show that the high-level features become more disentangled and has a lower
CVR (6.56) using LΣ regularization. Without regularization, the score is 20.00, and with L1 regu-
larization the score is 4.03. The model with LΣ regularization obtains a reconstruction error (MSE)
of 0.0398, roughly the same as without regularization (0.0365), both of which are much better than
using L1 regularization, with an MSE of 0.0569. Figure 6 shows the CVR score plotted against the
MSE, illustrating that the LΣ technique leads to more disentangled representations while retaining a
better MSE score. As you increase the regularization factor both LΣ regularization pushes down the
CVR quickly, while retaining an MSE error that is almost constant. L1 regularization also pushes
the model towards learning representation with lower CVR, although slower, and while worsening
the MSE error. The UD90% results show that LΣ encourages representations that concentrate the
variation, and the model constantly learns representations with lower UD90% score than using L1.
With λ > 0.08, the MSE, the CV R, and the UD90% all becomes much worse when using L1 reg-
ularization, while the LΣ seems to continue smoothly to improve CV R and UD90%, as the MSE
starts to grow.

Regularizer CVR UD90% MSE
LΣ 6.56 35.18 0.0398
L1 4.03 20.59 0.0569
No regularization 20.00 41.69 0.0365

Table 1: Results from the convolutional autoencoder experiments on CIFAR. The coding covariance
is a normalized sum of covariance over the dimensions of the coding layer. Reproduction MSE is
the mean squared error of the reconstructed images produced by the decoder.

4 RELATED WORK

Disentanglement is important in learned representations. Different notions of independence have
been proposed as useful criteria to learn disentangled representations, and a large body of work has
been dedicated to methods that learn such representations.

Principal component analysis (PCA; Pearson, 1901) is a technique that fits a transformation of the
(possibly correlated) input into a space of lower dimensionality of linearly uncorrelated variables.
Nonlinear extensions of PCA include neural autoencoder models (Kramer, 1991), using a network
layout with three hidden layers and with a bottleneck in the middle coding layer, forcing the network
to learn a lower-dimensional representation. Self-organizing maps (Kohonen, 1982) and kernel-
based models (Schölkopf et al., 1998) have also been proposed for nonlinear PCA.

Independent component analysis (ICA; Hyvärinen et al., 2004) is a set of techniques to learn additive
components of the data with a somewhat stronger requirement of statistical independence. A num-
ber of approaches have been made on non-linear independent components analysis, (Lappalainen
& Honkela, 2000; Honkela & Valpola, 2005). While ICA has a somewhat stronger criterion on the
resulting representations, the approaches are generally more involved. Dinh et al., (2015; 2017)
proposed a method to train a neural network to transform data into a space with independent com-
ponents. Using the substitution rule of differentiation as a motivation, they learn bijective transfor-
mations, letting them use the neural transformation both to compute the transformed hidden state, to
sample from the distribution over the hidden variables, and get a sample in the original data space.
The authors used a fixed factorial distribution as prior distribution (i.e. a distribution with inde-
pendent dimensions), encouraging the model to learn independent representations. The model is
demonstrated as a generative model for images, and for inpainting (sampling a part of the image,
when the rest of it is given). Achille & Soatto (2017) connected the properties of disentanglement
and invariance in neural networks to information theoretic properties. They argue that having in-
variance to nuisance factors in a network requires that its learned representations to carry minimal
information. They propose using the information bottleneck Lagrangian as a regularizer for the
weights. Our approach is more flexible and portable, as it can be applied as a regularization to learn
uncorrelated components in any gradient-based model that learns internal representations.

Brakel & Bengio (2017) showed that it is possible to adversarial training to make a generative net-
work learn a factorized, independent distribution p(z). The independence criterion (mutual informa-
tion) makes use of the Kullback-Leibler divergence between the joint distribtion p(z) (represented
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by the generator network) and the product of the marginals (which is not explicitly modelled). In
this paper, the authors propose to resample from the joint distribution, each time picking only the
value for one of the components zi, and let that be the sample from the marginal for that component,
p(zi). A discriminator (the adversary) is simultaneously trained to distinguish the joint from the
product of the marginals. One loss function is applied to the output of the discriminator, and one
measures the reconstruction error from a decoder reconstructing the input from the joint.

Thomas et al. (2017) considers a reinforcement learning setting where there is an environment with
which one can interact during training. The authors trained one policy πi(a|s) for each dimension
i of the representation, such that the policy can interact with the environment and learn how to
modify the input in a way that modifies the representation only at dimension i, without changing
any other dimensions. The approach is interesting because it is a setting similar to humans learning
by interaction, and this may be an important learning setting for agents in the future, but it is also
limited to the setting where you do have the interactive environment, and cannot be applied to other
settings discussed above, whereas our approach can.

5 CONCLUSIONS

In this paper, we have presented LΣ regularization, a novel regularization scheme based on pe-
nalizing the covariance between dimensions of the internal representation learned in a hierarchical
model. The proposed regularization scheme helps models learn linearly uncorrelated variables in
a non-linear space. While techniques for learning independent components follow criteria that are
more strict, our solution is flexible and portable, and can be applied to any feature-learning model
that is trained with gradient descent. Our method has no penalty on the performance on tasks evalu-
ated in the experiments, while it does disentangle the data.

We saw that our approach performs well applied to a standard deep convolutional autoencoder on
the CIFAR-10 dataset (Krizhevsky & Hinton, 2009); the resulting model performs comparable to the
model without LΣ regularization, while we can also see that the covariances between dimensions in
the internal representation decrease drastically.
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