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Abstract

Recommendation systems have developed beyond simple matrix factorization
to focus on two important sources of information: the temporal order of events
(Hidasi et al., 2015) and side (e.g., spatial) information encoded in user and item
features (Rendle, 2012). However, state-of-art temporal modeling is often limited
by model capacity for long user histories. In addition, meta data are rarely used
in generic sequence models, perhaps due to a lack of improvement guarantees in
end-to-end training. Important kinds of meta-data, like interaction feedback (e.g.
click vs. add to cart, view duration) are not modeled. In this paper we propose a
hierarchical recurrent network with meta data (HRNN-meta) model to solve both
problems. To compactly store long histories, and propagate gradients through
them, we use HRNN to group user interactions into hierarchical sessions of activity
intervals, within which a user tends to maintain related interests. Different from
previous hierarchical models (Quadrana et al., 2017), which manipulate model
hidden states, HRNN encodes session information in the embedded inputs. We
show that this change not only yields up to 10x better computational efficiency
due to better ability to align batches, but also allows us to extend from GRUs
(Cho et al., 2014) to the entire family of RNN models, and further increases model
capacities when combined with temporal convolutional networks. To use meta data
in sequential models, we extend the HRNN decoder with a factorization machine
inspired network, between the HRNN output embedding and item meta data, which
improves over the vanilla HRNN which is a special case of the model. We also
extend HRNN-meta model to handle user features and interaction feedback to
learn different objectives such as click or rating predictions. We report significant
improvements both in simulation studies and in real-world datasets.

1 Introduction

Personalized recommendation systems typically use two sources of information: collaborative
filtering based on user-item interaction histories (Shi et al., 2014) and content filtering based on
user/item features (Rendle, 2012). Collaborative filtering techniques that use user-item interaction
histories are often limited by the model capacity in their ability to embed, summarize and use the
ordered sequences of long histories. This observation has driven many model improvements ranging
from multi-hot auto-encoders (Sedhain et al., 2015) to n-gram factorization machines (Rendle, 2012)
and recurrent neural networks (RNNs) (Hidasi et al., 2015) for recommendations.

One important limitation when adopting the basic RNNs from language modeling, e.g. Cho et al.
(2014) for recommendations is their limited ability to model long sequences due to vanishing gradients.
While natural sentences have a typical length of twenty words, a user browsing a website easily
receives twenty recommendations in a few minutes and consumes more than twenty items each day.
To solve this problem, we group user activities into sessions, where we assume users keep the same
interests. These sessions can be identified by simple heuristics, e.g. thirty minutes of inactivity.
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Figure 1: HRNN sequence model to predict the next item in a recurrent fashion. The second input
position encodes a categorical hierarchy control signal which can be inferred from time-deltas. HRNN
may be combined with temporal convolution networks (Bai et al., 2018) to model long sequences.

Quadrana et al. (2017) further proposed a two-layer hierarchical GRU (HGRU) model: one layer for
inter-session dynamics and another layer, which performs updates only at the end of each session,
for cross-session dynamics. As a result, HGRU can more easily learn from long sequences due
to short gradient paths between more distant pasts and futures. However, direct manipulation of
the RNN hidden states breaks truncated back-propagation through time (TBPTT, Williams & Peng
(1990); Merity et al. (2017)) training paradigm, where multiple user histories are concatenated to
a long sequence and then split at even intervals for back-propagation efficiency. In this paper, we
encode the session information at the inputs, through a learned embedding, which not only achieves
computational efficiency but also allows us to easily extend these hierarchical structures to other
RNNs (e.g., LSTMs) and beyond (e.g., Transformers). We call our model HRNNs. Related to our
work, Li et al. (2017) model time-deltas, but without making the connection to hierarchical sessions.

The second contribution of our work is to show to include meta data such as user and item features,
directly into sequence models. The basic idea is to score each user and item pair using their separate
features, where some subsets of the features are learned representations from the RNN, followed
by a ranking loss. To focus on the interaction effects between user and item features, Rendle
(2012) explicitly included higher-order multiplicative terms in the scoring function. We extend the
observation to sequence models, by considering second-order terms between user embedding vectors
from the RNN and item embedding vectors from a separate feed-forward network. The resulting
models include vanilla RNNs as a special case, if we view the RNN decoder weights as embedding
vectors from one-hot encoded item ids.

2 Hierarchical Recurrent Networks with Meta Data (HRNN-Meta)

We start with the problem of making personalized recommendations based on an interaction dataset,
where each row contains a historical record of {(time, user id, item id, value)} = {(tk, uk, ak, vk) :
k = 1, . . . , n}. Value can be used to represent click vs. no-click or click vs. purchase. We will further
extend the representation to include other interaction labels (e.g. rating, purchase value, no click),
user profiles, product features, etc.

Sequence models gain statistical power by aggregating “people who watched X also watched” from
individual user histories, while personalizing to recent trends in customer behaviour. For this purpose,
we group the interactions into ordered user histories, Xi = [xi1, xi2, . . . , xiki

], with temporal re-
indexing, where xik = (ak, tk, vk). We focus on single user histories and omit the user indices below,
noting that we learn the global item-to-item dynamics by stochastic gradient descent on individual
user histories. We use RNNs such as GRUs to predict the probability of each item that a user may
watch next in their watch history, similar to how language models predict the next word in a sentence
(Zaremba et al., 2014; Sutskever et al., 2014; Bahdanau et al., 2014). Let Ak+1 be the random
variable representing the next watch item ak+1, x1:k = (x1, . . . , xk) be the relative history, and
φ = (φ1, . . . , φm)> be the scoring vector function corresponding to all items; we model:

ak+1 ∼ p(Ak+1 | x1:k) = softmax(φ(h(x1, . . . xk))), (1)

where hk = h(x1:k) is a hidden state representation of the respective user history. A naive state can
be the multi-hot encoding of past items, i.e., a sparse vector with each nonzero location correspond
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to the index of a past item. If we use ak = (0, . . . , 0, 1, 0, . . . , 0)> to denote the indicator vector
corresponding to the item index ak, the hidden state is then h(x1:k) = a1 + · · ·+ ak. In practice,
RNNs can be viewed as a weighted sum of representations of past events, where the weights are
‘gated’ by the salience of every item in the context of items the customer has interacted with so far.

Figure 1 sketches the RNN sequence models and our hierarchical extensions. While equation 1
describes the prediction of every single event, actual training back-propagates gradients through the
entire sequence (up to a fixed maximum length called TBPTT interval) in a single batch.

In our model, hierarchical sessions are used to divide long user histories into short activity intervals
within which the sequence has some consistency, e.g. a single user intent. Session breaks are often
inferred from periods of inactivity. Instead of direct manipulation of GRU hidden states as in HGRU
(Quadrana et al., 2017), which limits model expressiveness and computational efficiency, we simply
concatenate session start ‘control signals’ with the HRNN inputs, shown as the second input bit in
Figure 1. Our experiments empirically verify that allocating special “control” inputs allows the model
to reset states as appropriate in properly trained HRNNs. In addition to having comparable results,
the “control” channels allow the model to accomplish complex tasks, e.g., to retrieve an earlier item
from the previous session and copy it to proper locations in the next or future sessions.
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Figure 2: HRNN-meta cell model.

Item features can be naturally included in HRNNs, if
we notice the connections between RNN decoders and
factorization models. Vanilla RNNs find the score of
the jth item with function φj(hk) = w>

j hk+bj , where
wj ∈ Rr is the loading coefficients and bj ∈ R comes
from popularity bias. We view wj as the embedding
vector of the jth item and consider the decoder as a
second-order interaction model between xj and hk. A
natural extension:

φ̃j(hk) = (1− λ)φj(hk) + λ
(
w(fj)

>hk + b(fj)
)
,

where w(·), b(·) are learnable functions that embed
item features and 0 ≤ λ ≤ 1 is a mixing parameter.
Item features are particularly useful when recommend-
ing cold-start items where no interaction data is avail-
able. In this scenario, we found that item feature embeddings should be learned as substitutes rather
than complements of the decoder weights. We achieve this by randomizing λ during training.

Incorporating user features (e.g. location) and interaction feedback (e.g. rating, purchase cost)
often have significant impact on the recommendation quality. We concatenate learned dimension-
reduced embedding representations of both with the RNN inputs, i.e., similar to session control
signals (Figure 2). More complex models such as negating the RNN inputs for negative feedback or
deep-cross models (Wang et al., 2017) yielded similar performance in our preliminary experiments.

3 Experiments

Table 1: Simulation with hierarchical sessions

RNN HGRU HRNN

session-aware × X X
model hierarchies 1 2 1
test PPL 2 1 1
time per epoch 0.3s 25.5s 0.3s

We conducted ablation studies with both simu-
lation and real data to show the effects of every
aspect of HRNN-meta, including session infor-
mation, user and item features, and interaction
feedback. As a test dataset we used MovieLens
(Harper & Konstan, 2016), a dataset of movie
ratings. The conclusions were largely insensi-
tive to specific hyper-parameters. A good refer-
ence is Gluon-NLP. 1

Session information was shown directly in simulation studies and also indirectly in real-data ex-
periments. We simulated sequences containing random numbers (0-5) of sessions, each of which
contains a random number (1-5) of items. The item ids remain the same within a session - to reflect
similar user interests - and increment by 1 between sessions.

1https://github.com/dmlc/gluon-nlp/blob/master/scripts/language_model/index.rst
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Table 1 compared three models: a vanilla RNN, a HRNN that encodes sessions as inputs, and a HGRU
(Quadrana et al., 2017) that manipulates hidden states with session data. All models were trained to
predict all items and evaluated only for the first item of each new session. Particularly, both HRNN
and HGRU have a separate input channel for session-start signals, which are then handled differently
(Section 2). We used perplexity (PPL, Brown et al. (1992)) to measure the model inaccuracy. A PPL
of p is equivalent to a recommender that performs a uniform random selection from p items, one of
which is the true next item. The vanilla RNN is not session-aware and was often incorrect about the
next item. It did learn the average session length, and hence was able to predict correctly with 50%
chance. Both HGRU and HRNN are session-aware and predicted the correct first in session item.
HRNN has significant reduced training time due to temporal alignment in mini-batches.

Table 2: Meta data PPL benchmarks

Seq User Item Feedback Toy ml-20m

× × × × 100 2228
× × X × 54 1342
X × × × 3 447
X X X X 1 410

We evaluated Sequential meta data mod-
els with a toy simulation: The recommender
chooses an item to bet on (i.e. a measure of the
model’s confidence level) at each time. The first
item is uniformly random, and is also presented
as user feature side information. So a model that
correctly uses user features, should be able to
predict the first item, since it’s id is leaked. The
following bets are always +1 or -1 in item ids
depending on the previous interaction outcomes. The parity of the bet is recorded as item features.
The total range is 0-100 and there are 1000 independent sequence of random lengths 0-20.

Table 2 shows that besides interaction outcomes, all modeling aspects were useful. The user features
reveal the first bet, with which the gambler’s bets can be narrowed to an average of 11 items. Using
sequence models without knowing the first item will only have 1-in-3 chance of success, including
the first item. Having full information allows us to make perfectly accurate predictions.

We use movielens data (ml-20m) as a real-world dataset for movie recommendations. It contains
20 million interactions, 131 263 items,2 and 138 493 unique users. We split the data by user ids into
80% train and validation set and 20% test set. Table 2 shows that our vanilla RNN implementation
achieved 3x the performance of popularity baseline, i.e., PPL 447 versus 2228, similar to (Donkers
et al., 2017).3 The meta data model also improved the prediction accuracy, driving PPL to 429 and
410. Here, item features come from movie genre vectors, with L2 normalization; interaction feedback
were the standardized rating values; and user features were faked by using the features of the first item.
Notice, item features also improved popularity baseline to PPL 1342, using a vanilla factorization
machine (Rendle, 2012) with features from a user’s last item and features of all possible future items.

Table 3: Ml-20m rating prediction.

RMSE

Rolling average baseline 0.933
Factorization (Rendle, 2012) 0.916
I-AutoRec (Sedhain et al., 2015) 0.871
RNN wo. feedback encoding 0.941
RNN w/ feedback encoding 0.857
HRNN w/ feedback encoding 0.846

Since the dataset has both positive and negative feed-
back, we can extend the objective to root-mean-
square error (RMSE) for rating predictions. Ab-
solute values across papers are not meaningful3, but
we did observe improvements as the model complex-
ity increases. One particular observation is that RNNs
without feedback encoding are unaware of the user
average ratings and could not outperform the rolling
average baseline - which predicts the next item rating
as a simple average of the item average rating and
user average rating. RNN-meta overcame this limita-
tion. HRNN-meta can use extra contextual information at inference time (e.g. to trade-off relevance
and popularity depending on time since last customer interaction - see appendix).

4 Conclusions

We extend recurrent recommender systems with hierarchical session information and various meta
data types. The improvements were demonstrated with both intuitive simulations and real-world data.

2We treat the size of the index space as the number of items despite only 26 744 unique items being included.
3There are no standard temporal train-test splits on ml-20m, so we cannot make a more direct comparison.
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A Example on session and intent

Users tend to keep their intents in-session and and change intents between sessions. The example
below shows that the learned HRNN models tend to follow a similar pattern. For example, based
on item watch history reflected in Table 4, HRNN-meta generates different recommendations for
time-delta gaps corresponding to different session-start hierarchies (controls) (Table 5). When
the recommendation is made by HRNN within session, that is, when a short time delta is used
at query time, the theme stays relatively similar. As session control indicates a larger hierarchy,
the recommendation genres tend to be more diverse, i.e., move toward the base popularity with
diminishing personalization effects, as desired. We observed better performance when the hierarchy
is neither too short (leading to greedy repetitive choices) or too large.

Table 4: Example user watch history with relative time in seconds
time title genres popularity

-221 Secret of Roan Inish Children|Drama|Fantasy|Mystery 0.000258
-185 Postman Comedy|Drama|Romance 0.000718
-146 Thin Blue Line Documentary 0.000153

-99 Say Anything... Comedy|Drama|Romance 0.000493
0 Babe: Pig in the City (1998) Children|Comedy 0.000287

Table 5: Top-1 recommendation to the same user changes as the inference time changes.
time hierarchy title genres popularity

0 0 Purple Rose of Cairo Comedy|Drama|Fantasy|Romance 0.000236
60 1 Unbearable Lightness Drama 0.000209

3600 2 Local Hero Comedy 0.000195
86400 3 Big Comedy|Drama|Fantasy|Romance 0.001130
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