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Abstract

Predictions often influence the reality which they
aim to predict, an effect known as performativity.
Existing work focuses on accuracy maximization
under this effect, but model deployment may have
important unintended impacts, especially in multi-
agent scenarios. In this work, we investigate per-
formative prediction in a concrete game-theoretic
setting where social welfare is an alternative ob-
jective to accuracy maximization. We explore a
collective risk dilemma scenario where maximis-
ing accuracy can negatively impact social wel-
fare, when predicting collective behaviours. By
assuming knowledge of a Bayesian agent behav-
ior model, we then show how to achieve better
trade-offs and use them for mechanism design.

1. Introduction

Recent frameworks such as performative prediction study
how predictions influence the distribution they aim to predict
(Hardt & Mendler-Diinner, 2023). These have focused on
accuracy for one predictor and independent predicted agents:
a spam producer changes its content to fool a spam classifier
(Dalvi et al., 2004; Hardt et al., 2016), or one loan applicant
adapts to improve its credit score ignoring adaptation by
others (Perdomo et al., 2020).

Performative prediction typically considers a larger set of
independent data points, but interdependencies among pre-
dicted agents are not explicitly modeled. However a plethora
of examples exists requiring a collective scale. Financial
markets are filled with self-fulfilling prophecies (Soros,
1987). These may have actually deeply harmed society
in cases such as the British pound collapse in 1992 (Naef,
2022), highlighting that accuracy is not the only metric of
concern. Examples of interdependent populations abound,
with implications on social welfare, such as road traffic pre-
diction, policy-making to handle the risk of pandemics or
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climate change, and even election polls (Simon, 1954).

Multi-agent extensions of performative prediction have fo-
cused mostly on multiple predictors (Li et al., 2022; Pil-
iouras & Yu, 2022; Narang et al., 2022; Wang et al., 2023).
In Eilat et al. (2022) prediction outcomes depend on a graph
G because the classifier assumes it. Mendler-Diinner et al.
(2022) mention spill-over effects as a way to give a causal
treatment to social influence. Hardt et al. (2023) consider
predicted agents that coordinate to influence the training
of a classifier. To model a dilemma such as cooperation
for climate change, here we propose the first setting with
inherent interdependence among predicted agents. Agents
play a cooperation game whose outcome depends locally on
others’ actions, and decisions are influenced by predictions.

Additionally, the broad goal of existing frameworks has been
to maximize accuracy under performativity (Miller et al.,
2021). However, accuracy is not necessarily the only goal
of predictions. These can be used as part of mechanism de-
sign, particularly in interdependent settings. Recommender
systems may wish to preserve content diversity (Filat &
Rosenfeld, 2023). Vo et al. (2024) consider a trade-off
between selecting good candidates and maximizing their
improvement, with consequences for agent welfare. In col-
lective scenarios, predictions of pandemic growth or climate
change can inform public policy, and become performative
if risk is successfully reduced. In financial markets, predic-
tions may aim at maximizing profit instead of accuracy. In
elections, each candidate wishes to push the forecast whose
collective reaction will benefit them the most. Even if a
neutral entity wishes to deploy an accurate election poll,
its performative effect may have strong unintended conse-
quences (Blais et al., 2006; Westwood et al., 2020; Nina
et al., 2023).

While deliberately deploying a wrong prediction is not an
ethical option, there may be multiple possible realities that
can be induced (Hardt et al., 2022) — therefore different
predictions may be equally correct. Providing a snapshot of
pre-prediction reality may be a way out of this dilemma, but
can be wrongly interpreted as a prediction of post-prediction
reality. The choice of how many snapshots to provide before
action will also influence arbitrarily the outcome. Our work
illustrates this problem and difficult choices that arise from
it, through the following contributions:

* We propose the first performative setting where the
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predicted population is inherently interdependent.

* We use predictions as a mechanism to maximize social
welfare, and explore trade-offs with accuracy.

2. A Model for Predicting Collective Action

We are interested in game-theoretic scenarios where a popu-
lation is interdependent and possibly influenced by predic-
tions of collective behaviour. This is motivated by multiple
examples where individual outcomes depend on a group’s
action — adherence to measures for controlling a pandemic
spread, protecting climate or governing common goods,
among others.

To that end, we propose a model where subgroups from a
larger population interact simultaneously in a given round,
drawing inspiration from evolutionary game theory on net-
works (Smith, 1982; Ohtsuki et al., 2006). Given a graph
G = (V, E), for any agent i, its group is composed of i
(itself) and its neighbors in the graph N (7). For one round
of the game, agents simultaneously select an action, and
each agent i receives a payoff ;(a;, ax(;)) depending on
its own action a; and on neighbours’ axr(;). The game
repeats indefinitely.

To choose 7;, we focus on a game coined Collective Risk
Dilemma (CRD; Milinski et al., 2008; Santos & Pacheco,
2011), suitable to study mechanism design (Géis et al.,
2019). Each round requires a critical mass of cooperators
to achieve success and prevent collective losses. This may
represent the protection of common natural resources, the
immunity of a partially vaccinated group, and the collective
development of tools like Wikipedia or Linux, among many
others. If the fraction of cooperators remains below a thresh-
old T', everyone risks losing their endowment with proba-
bility . Each agent chooses whether to defect (a; = 0) or
cooperate at a cost (a; = 1), with payoffs described below:

Definition 2.1. (Defector’s payoff) Let 1[-] be the indicator
function. k; = 5 jeN(i)ufi} @ is the number of coopera-
tors in agent ¢’s group. Given initial endowment B, k; coop-
erators in a group of size M;, threshold T"where 0 < T' < 1,
and risk r, where 0 < r < 1, the payoff of defector ¢ is
wp, (ki) = B (L[k; > [TM;]] + (1 - r)L[k; < [TM;]])
ey
Definition 2.2. (Cooperator’s payoff) Given a cost cB of
cooperating, where 0 < ¢ < 1, the payoff of cooperator ¢ is

7, (ki) = mp, (ki) — cB )

A CRD is used as payoff function 7 for all agents, using the
same threshold value T and unique M;’s given by G. This
leads to partially aligned incentives — each agent ¢ gains

from preventing a disaster where JI\} < T, but would rather

avoid incurring cost ¢ of cooperating to increase k;.

For one round of CRD with ¢ < 7 and one single group
(where G is a clique C'), the Nash equilibria are for everyone
to defect (sub-optimal) or to have exactly [T'M;] cooper-
ators (Pareto optimal). The challenge is in coordinating a
group towards the Pareto optimal Nash, which doesn’t hap-
pen spontaneously in the real world (Milinski et al., 2008).

2.1. Agent Model

We model agents as computing a best-response, given ex-
pectations of other individuals’ actions. To nudge behaviour,
a predictor provides predictions of the population actions.
Alternatively to correlated equilibria (Aumann, 1974) we
provide a public signal, which agents can choose to trust or
not. Since this signal is learned from global observations of
the whole population (and not just locally) it has the poten-
tial to bring additional information to agents. We assume
agents observe a public prediction of others’ actions, but
stop trusting it if it is inaccurate. More specifically, they
follow a Bayesian update to compute the probability of trust-
ing the prediction. Agent 7 has two competing explanations
for each neighbour j’s behaviour — the external prediction
9]- and an internal expectation «; ;. Both éj and oy ; are
Bernoulli parameters that estimate a hypothetical true pa-
rameter ; = P(a; = 1). The probability 7; ; of ¢ trusting
the external predictor in timestep ¢ is given by:

5 _1.:Pi(6
Tt,i:P(lrustla, 0) = Tt—1,i Z( t7at)

3

with P;(6:,a¢) := ][] ejgf(1 —0;4) ",

JEN(3)

Given the expectation of others’ actions, 7 can compute a
rational utility-maximizing action. As long as ¢ < 7, it
is rational for ¢ to cooperate if and only if > JEN(G) Y =
[TM] — 1. In words, i cooperates when it is the only
missing cooperator required to overcome the threshold in
its group. Given probability Oy = 01,1 of each
neighbour of ¢ to cooperate, a Poisson binomial distribu-
tion g(0 - (;)) gives us the aggregate probability of having
[T M| — 1 cooperators in the group. Best-response becomes

arg maxa, Eo ., ~g(0r ) [T(@is aniy)]. Then, i cooper-

ates if r(7i9(0jeni)) + (1 — Ti)g(ijen())) > ¢ and
defects otherwise (Appendix A).

3. Model dynamics

3.1. Simple Environments

We begin by analyzing the following simplified setting:

Assumption 3.1. (Simple controllable setting) a) agents are

Te-1,iPi(0r,a) + (1 — 7_1,;)Pi(cvi, ay)
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initialized with prior 7o = 1 ignoring their internal beliefs
a, and b) predictions are binary: ; € {0, 1}!V!

Let a self-fulfilling prophecy be when Vi, a; = 0;. As-
suming binary predictions is useful in this definition, since
a’s need to match 0’s. Removing the interference of in-
ternal expectations « by having 79 = 1, predictions be-
come static: ét = 6. With full trust guaranteed, there is
no need to balance between trust and other goals through
time. Under Assumption 3.1, if agents are never indiferent
between actions, predicting a strict Nash equilibrium is suf-
ficient and necessary to have a self-fulfilling prophecy (i.e.
Vi, BestResponse(éN(i)) = 0,).

Whether there is a Nash equilibrium that maximizes social
welfare determines whether the predictor must compromise
accuracy to maximize it. Note that, as long as Vi, [T'M;] >
1, all-defecting is always a self-fulfilling prophecy. This
explains why accuracy maximizers empirically induce low-
cooperation states. Using Assumption 3.1, the topology of
G and threshold 7" become the only constraints determining
whether a given system state is attainable.

Theorem 3.2. (Sufficient conditions for success) Let “full
success” be the setting where V1, J’\} > T. Under Assump-
tion 3.1 and ¢ < r, each of the following is a sufficient

condition to have 30 —> full success, where 0 is a
self-fulfilling prophecy:

1. G = C, where C'is a clique or a fully connected graph:
Assume 0 predicts a configuration with k; = [TM;].
Since all agents share the same group, it is not possible
for one agent to deviate from 6 without lowering its w;

2. T=1: no agent can free-ride, since all are required to
cooperate;

3. T=0: full success is guaranteed by default.

Figure 1 illustrates the previous remarks, over a 3-node
clique. a) and c) are Nash equilibria and self-fulfilling
prophecies, while b) and d) are self-defeating prophecies.
An accuracy maximizer would choose a) or c), while a wel-
fare maximizer would choose a) or b). Here it is possible to
maximize both quantities through a).

However, both goals may be at odds in other settings. In
Figure 2 there is no prediction that satisfies simultaneously
an accuracy maximizer and a welfare maximizer. The only
self-fulfilling prophecy is a), reaching full-defection. Only
e) reaches full success, but since it is not a Nash it is not
self-fulfilling. This is because the center node could have
achieved success while defecting, but this would have pre-
vented success in groups of size 2. Note that in general full
success is not always achievable, even if we do not require
a self-fulfilling prophecy (Appendix F).

a b c d
A T=2/3
D C

D ¢
PREDICTION c/—\c D/_\D D _\D c/—\c
\ D / \ D
ACTION 7N\ 7N
c—c D — D

Figure 1. Dark nodes have achieved success, and thick arrows
are self-fulfilling prophecies. Both a) and c) are self-fulfilling
prophecies where accuracy is maximized, therefore an accuracy
maximizer is indifferent between them. However, in a) full success
is achieved, but in c) all fail. b) also maximizes group success but
at the expense of 0% accuracy.
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Figure 2. Dark nodes have achieved success, and thick arrows are
self-fulfilling prophecies. Here there is no self-fulfilling prophecy
which maximizes group success, forcing a trade-off between ac-
curacy and group success. Only e) maximizes group success, but
the center node regrets having cooperated. Note that, with 7' = %,
groups of size M; = 2 require both agents to cooperate.

This shows how different predictions induce different re-
alities in this model. As a consequence, seeking only
high-accuracy predictions may inadvertently induce low-
cooperation states. The next section will further showcase
this in richer environments, lifting the simplifying assump-
tions in 3.1.

3.2. Learned Predictor and Simulations

As the population size |V| grows and internal expectations
are allowed to differ from predictions (0, # ), analysis be-
comes more complex. We resort to simulations and learned
predictors to study larger systems.

We choose to represent the predictor through a neural net-
work, which receives as input an embedding of the popu-
lation’s actions in the previous time-step: 0, = fola—1) :
{0,1,to V1 — [0,1]IV]. The loss is either cross-entropy,
a differentiable proxy for number of successful groups, or
a combination of both following Sener & Koltun (2018).
Each metric is the sum of 20 time-steps of a CRD. Gradi-
ents are computed assuming access to the inner behaviour
of agents. To maximize the number of successful groups,
it backpropagates through a differentiable version of their
decision rule and of the payoff, where both step-functions
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are replaced by sigmoids (Appendix B).

When optimizing for social welfare, the predictor still needs
to consider prediction accuracy in order to maintain agents’
trust. Let a;, = o(n¢, . — 7p, ) be a differentiable proxy
of agents’ true decision rule a; ; = 1[r¢, — 7p,+ > 0.
We analyze here a proxy goal Ug = Zthl Zf\;l @, whose
gradient can be decomposed in two components:

VUc = Z Zwt,i(@[

t=1 i=1

(90seny (@) — gai jeni))) Vore,i(d)
—_———

accuracy

+ 71,4(0) Vog(Ojeni(0)] @)
N—————

steering

1,i(¢) = ay,;(1 — a,;)rB is a scalar which is higher when
agents are closer to flipping their choice of action between
cooperation and defection. An optimizer using this goal
needs to control accuracy to keep trust high, and steer to-
wards higher cooperation when trust is high. In practice
we use a slightly more complex goal Upop that is closer to
true social welfare, leading to qualitatively similar empirical
results and amenable to a similar analysis (Appendix B).

Cooperation-accuracy tradeoff
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Figure 3. Accuracy vs. social welfare trade-off for different thresh-
old values. Pareto front computed through multi-objective opti-
mization for 7' = 0.5. All experiments were conducted using
a scale-free G with 20 nodes and mean degree of 2 (Barabdsi &
Albert, 1999),c = 0.2, B=1,r = 0.4, o;,; = 0.8 and 790 = 0.5.

In Figure 3 we observe the result of training either for accu-
racy or welfare maximization, for different values of thresh-
old. Unless the threshold is very low (T' € {0.2,0.3}), a
predictor maximizing accuracy will induce states of very

low cooperation (find a related discussion in Appendix F).
A predictor maximizing welfare can prevent this, but at the
expense of accuracy. This is in line with § 3.1, where both
metrics may be impossible to maximize simultaneously. To
overcome this, we follow Sener & Koltun (2018) to jointly
optimize for both metrics. For T' = 0.5, we compute the
Pareto front in this way.

Optimizing social welfare with different architectures
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Figure 4. Performance of different architectures, when optimized
to maximize social welfare. 7" = 0.5 and other parameters follow
Figure3.

Regarding architecture choices, we use a multilayer percep-
tron (MLP), a graph neural network (GNN), GNN+MLP
and GNN+linear (Figure 4). For an MLP, a concatenation of
all nodes’ actions is provided as input, and their actions for
the next step are jointly predicted. Having a GNN followed
by an MLP or a linear layer provides a gain over MLP alone,
by adding information about G. Interestingly, GNNs alone,
being the only model unable to do centralized coordination,
are not able to promote cooperation. For two equal nodes,
some settings may require one to cooperate and the other
to defect. A GNN however is unable to provide different
outputs to each node. When optimizing for accuracy, this
limitation of GNNs goes by unnoticed (Appendix C).

4. Conclusion

We have introduced a framework to study performative ef-
fects under game-theoretic settings on a network of agents.
We show how social welfare and accuracy can be in con-
flict, and empirically compute their Pareto front. Although
accuracy may seem like a way to avoid manipulating reality,
multiple accurate outcomes with different social welfare
can be induced when performativity is strong enough. Ig-
noring side-effects may be more harmful than considering
them, making it inevitable to regard performative prediction
(partly) as mechanism design in our examples. It is impor-
tant to connect this kind of model to real data in future work,
despite challenges of doing so in performative settigs. We
also plan to further develop theory and study other models
of agent behaviour.
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A. Best response

An agent’s best response selects the action with highest expected payoff, between cooperation and defection. Let k, =
> JEN() % be the number of cooperators in ¢’s group, excluding @ itself. The payoff gain of switching from defection to
cooperation is

—¢)B ifkl=[TM;] -1
mu(k 4+ 1) —mp (k) = T~ OF 0k = [T
' ) —cB otherwise
In words, ¢ gains (r—c) B from cooperating when it is the last member required to overcome the threshold in its group. It loses
¢B for any other group configuration. Its best response is then to cooperate when it is “at the threshold” (k} = [T M;] — 1)
and defect otherwise, as long as ¢ < r.

Its expectation of others’ actions depends on two competing explanations g(6;ex(iy) and g(a; jen(i)), and the likelihood
7; of trusting the first option. Each explanation provides the likelihood P(k} = [T'M;] — 1) = g(-), by using a Poisson
binomial distribution to aggregate individual likelihoods of each neighbour to cooperate. It should then cooperate if

E-, [Eg(éje_,\/“))[Eg(ai,jej\/(z))[ﬂ-c’i (k; + 1) —TD; (k;)]“ >0 (:)

r(1ig(Ojen)) + (1 — 1i)g(ci jeny)) > ¢

B. Gradient decomposition

We wish to maximize social welfare Upo, = B Zle Zf\il(]l[}\} > T) %1 —a;s * c). Note that a; = 1[mr¢, — mp, > 0],

meaning there are 2 step-functions 1[-] in Up,, Where gradient is zero. Both can be replaced by sigmoids o (), leading to a

differentiable approximation Upop. We first analyse a further simplified Uc, where the goal is to maximize the total number
of cooperators in the population.

Uc = ZtT:I Zivzl Qit = 23:1 Ez]\il ]l[ﬂ-cnt — 7Dt > O]
Let (Nli’t = U(WC‘i,t — 77Di,t) and UC = Z;T:l leil di,t.

2 T N ~
VU =321 > im1 Velit

= SN Vo (rBlrei(9)9(Bien iy () + (1 — 1.4(0))g(ci jens))] — cB)
he,i(9)

= N o(hei(@)(1 — o (hei(6)Vshei(9)

= S i @it (@) (1 — @i4(8))rB Vo 7,i(0)9(jen iy (0)) + (1 — T1.i(0))g(v jeni))]
Pi,i(P)

= Y S (@) Valmi (0)(90ien (0) — 9(ai jen))]

= Zthl Zi]\il V1,i(0) Vo 7 (0) (9(Fieniy (@l N (0): 0)) — gl jeniy))]

= SN (D)9 fien (@ n (0):0) — 9(ijen@) Vorei(d) +7.i(8) Vog(fien (@lin (6); 6))]
———

accuracy steering

V s7:,i(¢) can be interpreted as an accuracy component, where we are interested in having predictions that match past
observations in order to increase trust. Interestingly, if the difference g(fjenri) (YN (8):0) — g(ci jenr(s)) becomes
negative, it means the model’s current predictions are less cooperation-inducing than the agent’s innate behaviour. In this
case, the gradient will push to decrease accuracy, to incentivize agents to ignore predictions and instead follow their innate
behaviour.
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The second gradient V¢g(§je N i) (), or equivalently Vg(fjenr(i) (Y (¢); @), can be interpreted as a steering compo-
nent. If trust 7; ;(¢) approaches zero, we won’t care about steering since the agents are currently ignoring predictions.

The role of ¢, ;(¢) is to scale the gradient. Gradients have a larger magnitude when h; ;(¢) is close to zero, where the agent
1 is closer to flipping her action between cooperate and defect.

St > T, its differentiable version S, = o5t —T) and Upop = B Y-y 310 (S ¢ —as gc).

M; i=1
VoUpop = B ZtT=1 Zf\;(r * VSie — ¢ Vi)
Vcbgi,t = Si,t(l - gzt)v¢(% -T)= Si,t(l - Si,t)ﬁiv¢ki,t = Si,t(l - Szt)ﬁ Zje/\[(i)u{i} Vg, ¢

Now let success S; ; = 1

where each V4a;; can be analyzed as in VsUe.

Optimizing for either Upop or Uc leads to qualitatively similar results empirically.
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C. Performance of architectures when maximizing accuracy

Optimizing accuracy with different architectures

¥ N N R
T8 8§ R
N N
8RR R
0.0 F.\ /T.\ 'T.\ '1".\

Figure 5. Performance of different architectures, when optimized to maximize social welfare. All parameters follow Figure 4.

D. Visualizing a population playing CRD

time step 4

0.8

(=
o

T
o
>

Trust in predictor

r0.2

Figure 6. Population playing the Performative Collective Risk Dilemma over a scale-free network (Barabasi & Albert, 1999). Circle
borders indicate the agents’ last action (green for cooperate, red for defect), and the filling indicates how much the agent currently trusts
the predictor.

E. Connections to existing frameworks

Unlike with the repeated risk minimization (RRM) algorithm from performative prediction, most work on strategic
classification assumes knowledge of how the predicted adapt to a prediction. As a first step, we also assume this knowledge
in our optimization procedure. Interestingly, we would not be able to apply RRM in our setting. This is because, unlike with
accuracy, there is no gradient for welfare which does not flow through the agent adaptation (known as a mapping D(f) in
Perdomo et al. (2020)). As a next step, one could assume a family of behaviours and estimate the correct one, as done in

9
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Miller et al. (2021); Izzo et al. (2021).

F. Full success is not always achievable

d
a)~by~c) | T=3/4
e
ex. 1 ex. 2 ex.3
A° A
PREDICTION c—crc | c—pb){c | c—{c—c

ACTION c —c—b | D —cr—c | c +—c)rA{c |

Figure 7. Achieving full success is not possible for all configurations of G and T'. In this counter-example, node c requires [T M.] = 3
cooperators out of M. = 4, meaning one node in ¢’s group can defect without preventing success. As a consequence ¢ will cooperate
only if one of b, d, e is predicted to defect. All the other groups require 100% of cooperators since they have M; < 4 and T' = % Ifc
doesn’t cooperate (ex. 1), it’ll prevent success for its neighbours. If any of b, d, e is predicted to defect (ex. 2 and 3), it’1l also prevent
someone’s success. These contradicting requirements make it impossible to reach full success for any given prediction 0.

There exist combinations of 7" and G for which full success is unattainable, even without requiring a self-fulfilling prophecy.
This is due to contradicting requirements in neighbour nodes, which cannot be simultaneously satisfied through any
prediction 6. One example is Figure 7.

A sufficient condition for full success to be unattainable is the following:

1. graph G has a “hub” node H whose degree My — 1 is higher than any of its neighbours: Vi € N'(H) : M; < My.
2. Threshold T € [0,1] is set to Mz=1,
H

3. VZEN(H),H]EN(’L)M] < Mpy.

With condition 2, for H to overcome threshold, one out of M agents does not need to cooperate (since My € N and
[TMpy] = [Mﬁi:M m| = My — 1). However, all neighbours ¢ € N'(H) require 100% cooperators since they have
M; < My = [TM;] = M;. Condition 3 ensures each neighbour of H is connected to another neighbour j with
low degree M; < M. This combination requires all i € N'(H) to be predicted to cooperate (i.e. Vi € N(H), 0; = 1),
otherwise their neighbours j € N (i)/{H} will not cooperate (since they require 100% cooperators). However, Vi €
N(H), 6; =1 = ay = 0since H can afford one defector in its group. Since ag = 1 is a requirement for the success of
i € N'(H), but that requires 3'i € N'(H) : 6; = 0, we arrive at contradicting requirements.

This condition matches empirical observations in Figure 3. Thresholds that are close to but below 100% yield low success,
even when maximizing welfare. This indicates that there may be no configuration which allows for high success, for settings
(G, T) with high T..
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Other counter-examples may be derived from this sufficient condition, such as those in Figure 8.

IXI T=4/5 T=4/5 T=3/4

Figure 8. Other counter-examples where full success is not attainable.
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