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Abstract

In-Context Learning (ICL) with dynamically selected demonstrations combines the
flexibility of prompting large language models (LLMs) with the ability to leverage
training data to improve performance. While ICL has been highly successful for
prediction and generation tasks, leveraging it for agentic tasks that require sequen-
tial decision making is challenging—one must think not only about how to annotate
long trajectories at scale and how to select demonstrations, but also what constitutes
demonstrations, and when and where to show them. To address this, we first pro-
pose an algorithm that leverages an LLM with retries and demonstration selection
to automatically and efficiently annotate agentic tasks with solution trajectories.
We then show that set-selection of trajectories of similar tasks as demonstrations
significantly improves performance, reliability, robustness, and efficiency of LLM
agents. However, trajectory demonstrations have a large inference cost overhead.
We show that this can be mitigated by using small trajectory snippets at every step
instead of an additional trajectory. We find that demonstrations obtained from
larger models (in the annotation phase) also improve smaller models, and that ICL
agents can even rival costlier trained agents. Thus, our results reveal that ICL, with
careful use, can be very powerful for agentic tasks as well.

1 Introduction

Due to advances in pretraining, instruction tuning, and scaling, Large Language Models (LLMs) are
now increasingly powering autonomous agents to perform complex real-world tasks that require acting
in an environment and sequential decision-making. Using LLMs to simulate such agentic behavior
involves repeatedly prompting and asking them to generate the next action to be executed. However,
LLM agents can be unreliable, especially for complex tasks with long trajectories. Prior work
on enhancing LLM agents through structured prompting-based workflows with explicit reasoning,
planning, or reflection steps [Shinn et al.| [2023]], |Kim et al.| [2023]], |Sun et al.| [2024]] used a fixed
prompt for every task instance, without leveraging training data. On the other hand, approaches
based on task-specific supervised finetuning or reinforcement learning |Chen et al.|[2023]], Mitra et al.
[2024]], (Chen et al.| [2025] are too expensive to apply to larger, more powerful LLMs and to update
with the knowledge needed for new tasks after training.

In this work, we explore an alternative approach that is prompting-based yet takes advantage of
training data, namely In-Context Learning (ICL) with Demonstration Selection, where demonstrations
relevant to each instance are selected at inference time from a pool of annotations. While ICL is
already effective [Brown et al.,[2020], demonstration selection can dramatically boost it for traditional
NLP tasks|Gupta et al.| [2024} [2023]], | Ye et al.| [2023a]. However, unlike such non-sequential tasks
where demonstrations can simply be input-output pairs from a train set, for agentic tasks, the training
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Figure 1: Different types of demonstrations for agentic tasks. Top Using LLMs to simulate agentic
behavior involves repeatedly prompting it with the general setup, a task description, and an execution
trace recording the agent’s thoughts (), actions (a), and observations (o). Middle Given a pool of
tasks paired with solution trajectories, one way to show demonstrations is to use entire trajectories
for similar tasks in the prompt. While effective, this has a large overhead. Bottom Another way is to
use smaller trajectory snippets with similar reasoning that are post-fixed to the prompt.

sets of tasks, even when available, are rarely annotated with solutions that can serve as demonstrations.
Moreover, due to context length limits and recency bias of LLMs, one needs to think not just of how
to select demonstrations, but also what these demonstrations comprise (e.g., entire trajectories or
snippets thereof), when to show them (i.e., what step), and where to place them in the prompt.

To address these challenges, we propose an iterative annotation algorithm that leverages ICL and
demonstration selection itself to automatically and efficiently annotate training tasks with solutions
that can be used as demonstrations. We then use these annotations to study different demonstration
granularities and placements. We begin with the simplest approach, which is to show entire trajectories
of similar tasks. As shown in Fig. [T] (middle), these are placed before the test task and shown at every
step. Since trajectories tend to be long and only a limited number of them can fit in the prompt, we
explore how to select optimal sets of trajectories. Finally, as trajectory demonstrations can have a
large overhead in terms of inference costs, we explore two forms of smaller demonstrations. First,
we consider smaller subtask trajectories by switching to a Plan-and-Execute (PnE) solver|Yang et al.
[2023]],|Sun et al|[2024] that decomposes tasks into a sequence of subtasks and executes them one by
one. Second, we show small relevant snippets of trajectories at every step (Fig. [I] (bottom)). These
are selected based on the agent’s reasoning in the latest step and shown at the end of the prompt for a
single step, thus accounting for LLMs’ recency bias and also having a minimal overhead.

For our testbed, we use the AppWorld benchmark [Trivedi et al.| [2024]], which evaluates an LLM
agent’s ability to carry out complex day-to-day user tasks involving sending emails, making payments,
playing music, shopping, etc., by interacting with a variety of apps via their APIs. AppWorld’s rich
code-based action space, varying observation sizes, and complex tasks make it an ideal testbed for
studying various design decisions relating to demonstration selection. Using our annotation algorithm,
we automatically annotate over 95% of training tasks with solutions to create a demonstration pool.
We show that using the annotated trajectory of even a single most similar task as a demonstration
boosts a zero-shot agent’s performance by 29 points, 16 points more than using a fixed, manually
written trajectory. Further, when additional trajectories can be included, selecting them jointly as a
set|Gupta et al.[[2023]] is more effective than independent ranking-based selection.

Selecting trajectory demonstrations is particularly effective at improving reliability (across multiple
runs of the same task) and robustness (across variations of the same tasks), outperforming the use



of a fixed trajectory by 20.8 and 23.2 points, respectively. However, while effective, trajectory
demonstrations also have a large overhead in terms of inference costs—each additional trajectory
adding on the order of 100K tokens on average in inference costs. Instead, as we show, providing
small, relevant snippets of the trajectories as demonstrations at every step is also effective at improving
performance, notably with negligible overhead. We find a combination of trajectory and snippet
demonstrations to be the optimal approach, and with these, a prompted LLM agent can be made
competitive with most state-of-the-art training-based approaches |Chen et al.| [2025]. Overall, our
results show that, similar to traditional NLP tasks, demonstration selection can yield significant
performance gains for LLM agents and can enable prompted LLM agents to rival even trained ones.

2 Related Work

LLM Agents. LLMs are increasingly being used to power autonomous agents for a variety of agentic
tasks involving sequential decision-making. These include web navigation to answer user queries
Zhou et al.|[20244a]], |Drouin et al.| [2024]] and e-commerce Yao et al.|[2022], playing games |Shridhar|
et al.|[2021]], interacting with applications and APIs to carry out user tasks [Trivedi et al.| [2024]],
running ML experiments [Bogin et al.|[2024]], and more. Prior work on improving agent performance
on such tasks has looked into (1) prompting based approaches to inducing structured workflows
with explicit reasoning, planning, and reflection steps|Yao et al.|[2023]], Shinn et al.| [2023]],[Wang
et al.[[2023]], Kim et al. [2023]],[Sun et al.|[2024]], (2) training-based approaches including supervised
finetuning on agent trajectories and reinforcement learning |[Nakano et al.|[2021]], Yao et al.|[2022],
Deng et al.|[2023]],|Chen et al.| [2023]], Qin et al.| [2024]], [Mitra et al.|[2024],Chen et al.|[2025].

In-Context Learning (ICL) Brown et al.|[2020] is the ability of LLMs to solve unseen tasks without
training by merely conditioning on a few task demonstrations and without any task-specific training.
However, ICL performance is highly sensitive to the choice of demonstrations |Zhao et al.| [2021]],
and can be significantly improved by dynamically selecting demonstrations for each test input|Liu
et al.| [2022]]. There is now a large body of work on selecting better demonstrations, exploring among
other things, better metrics for scoring demonstration candidates |[Rubin et al.| [2022], (Gupta et al.
[2023] 2024], |Askari et al.| [2025]], selecting demonstrations as a set|Gupta et al.| [2023]], |Ye et al.
[2023a]], selecting diverse demonstrations to reduce redundancy among them [Su et al.|[2023]], Levy:
et al.| [2023]],|Agrawal et al.|[2023],|Ye et al.[[2023Db]], etc.

Demonstration Selection for Agentic Tasks. Prior work on demonstration selection for ICL has
primarily focused on traditional, non-sequential NLP tasks that involve mapping inputs to outputs.
The two prior works that have studied demonstration selection in the context of agentic tasks are
Synapse Zheng et al.|[2024]] and TRAD [Zhou et al.|[2024b]. However, they primarily focused on web
navigation tasks where the main challenge was the size of individual HTML observations rather than
task complexity (in terms of number of steps). In contrast, we focus on more complex tasks which
involve numerous steps with long-range dependencies, but not every step yields a large observation,
allowing an entire trajectory or two can fit in the context. This setup allows us to study the impact of
different granularities, selection, and placements of demonstrations. Notably, this will also become
an increasingly common scenario as LLM context lengths increase, but the cost-benefit trade-offs we
explore will remain.

3 Preliminaries
3.1 LLM Agents

ReAct. The predominant approach to creating LLM-powered agents for agentic tasks is ReAct
Yao et al|[2023]]. As shown in Fig. [I] (Top), it involves repeatedly prompting the LLM with a
trace of past execution and asking it to produce a thought (denoted r) describing its reasoning
about its progress and an action (denoted a), to be executed in the environment to obtain the next
observation (denoted o). Formally, given (1) a context ¢ = (p, q) comprising a general context p
which describes the setup, provides demonstrations and guidelines, etc., and a task-specific context
q describing the task to be carried out, and (2) a trace of past thoughts, actions, and observations
h; = (r1,a1,01,...,r4,a4,0;), the LLM is prompted to generate the next thought and action:

riy1, a1 ~ Poa (] ¢, hy) (D



The next observation o, 1 is then obtained by executing the action a;; in the environment. This
process is repeated until a terminal state is reached. We will refer to the complete execution trace hp
as a trajectory 7.

Plan & Execute (PnE). The ReAct approach, as described above, tries to solve the entire task in
one go and retains the entire execution trace in the prompt. However, this can be expensive as the
trajectories for complex agentic tasks are often very long. One way to address this is to use a Plan
& Execute (PnE) approach [Yang et al.|[[2023]], Sun et al.|[2024]. PnE takes advantage of the fact
that a task may involve multiple simpler subtasks, and how each subtask is carried out may not be
relevant to the other subtasks. It incorporates a planning step that breaks down the original task t into
a sequence of subtasks t!, ..., t™. Each subtask is then executed by a ReAct-styled executor agent,
optionally with the plan and summaries of previous subtasks’ trajectories provided in the task-specific

prompt q.
3.2 In-Context Learning and Demonstration Selection

In-Context Learning (ICL) is the ability of LLMs to solve unseen tasks by conditioning on a few
task demonstrations. Formally, for traditional NLP tasks, given demonstrations in the form of
input-output pairs {(x;, yi)}f=1 and the test input X, it involves prompting the LLM with the
context ¢ = (X1,¥1,-.-,Xk, Yk, Xest) and letting it generate the output ys. Although using the
same demonstrations for all test inputs allows ICL to work even for tasks lacking any training data,

when a training set T = {(x;, yi)}f\;l is available, performance can be boosted using some form
of demonstration selection [Liu et al.|[2022], Rubin et al.[[2022], |Gupta et al.|[2023][2024]]. Using
the training set as a pool of demonstration candidates, it involves selecting £ < N demonstrations
that, when placed in the context, increase the likelihood of the correct output being generated. Some
approaches for demonstration selection proposed for traditional NLP tasks that we will experiment
with include:

Ranking-based Selection. This involves scoring all the candidates for their relevance with respect
to the test instance and using the top-K candidates as demonstrations. Formally, given the training

set T = {(x, yl)}fil and the test input X, the demonstrations are selected as topk; sim(Xes, X;),
where sim(-) is a similarity metric. Note that the metric operates on only the inputs that proxy as the
retrieval key for the demonstrations. Prior work has explored Cosine Similarity [Liu et al.|[2022]] and
BERTScore-Recall (BSR)|Zhang et al.| [2020], Gupta et al.|[2023]] as metrics, both of which involve
encoding the retrieval key using a dense encoder and using it to identify the closest candidate.

Set Selection. |Gupta et al.| [2023]] showed that ranking-based selection can be sub-optimal for
complex compositional tasks as it may select demonstrations that are individually relevant to the
test input yet fail to provide all the relevant information needed to solve it. Instead, they argue that
demonstrations should be selected as a set such that they cover all the reasoning patterns. They
proposed Set-BSR, a set-extension of BSR, that is submodular and hence greedily optimizable.

4 Automatic Trajectory Annotation

Given the success of demonstration selection for ICL for traditional NLP tasks, in this work, we
explore how to effectively and efficiently leverage it for agentic tasks. However, this requires a pool
of tasks annotated with agent-style solution (as described in § that can serve as demonstrations.
While some agentic benchmarks provide training sets of tasks, most do not provide task solutions in
a form that can be used as demonstrations for the agent; rather, they only provide a final answer or a
checker that can be used to verify solution correctness.

Since manually annotating tasks with solutions is intractable at scale, we propose a simple iterative
algorithm (Algorithm to do this automatically. Given (1) a pool of tasks 7 = {t;} ilil, (2) a solver
S that is used to generate solutions s ~ S(t,D) given a task t and some demonstrations D, and
(3) a checker that verifies solution correctness, the algorithm returns tasks annotated with solutions
T* = {t;,s;}Y,. Further, instead of naively retrying the solver, the algorithm also leverages
currently annotated tasks as demonstrations. This not only improves efficiency in terms of the number
of retries needed but also ensures that more instances are correctly annotated.

*In real-world settings, these could also be obtained from an existing system.



Algorithm 1 Iterative Annotation for Agentic Tasks

Require: Task pool 7; Demonstration selector D; Solver .S; Solution Checker C'; Number of Rounds R

LU+ T > Unannotated tasks
2: T« 0 > Annotated tasks
3: forr =1to Rdo

4 fort € U do

5: D+ D(t,T") > Select demonstrations
6: s+ S(t,D) > Generate solution with demonstrations
7 if C(t,s) then

8: T« T U(t,s) > Add to annotated tasks
9: U+—U-{t} > Remove from unannotated tasks
10: end if
11: end for
12: if U = () then
13: break > All tasks annotated
14: end if
15: end for
16: return 7~ > Annotated tasks

Finally, note that the algorithm, as described above, is agnostic to the kind of solver (and solutions),
e.g., for the ReAct solver, the solutions would be trajectories, i.e. s; = 7;, while for the PnE solver,
they would comprise a plan in the form of a sequence of subtasks and the corresponding trajectories,

Le. sj = {t*;, 7} ;. We will refer to the set of task trajectory annotations for ReAct as Dy, the
plan and subtask trajectory annotations for PnE as Dy, and D, respectively.

5 Demonstrations for Agents

Having annotated a pool of tasks with solutions that can serve as demonstrations, we now discuss
different demonstration granularities, along with how to select them, when to show them, and where
to place them in the prompt.

5.1 Task-level Trajectory Demonstrations

Similar to traditional ICL, a natural way to show demonstrations is in the form of trajectories for
similar tasks from the pool D/, . These task-trajectory pairs are selected from Dy, before execution
and are used in the prompt at every step. Specifically, they are placed in the general prompt p before
the description of the test task t and its execution trace hy. To select these demonstrations, we
experiment with both ranking-based and set-selection methods described in § using the task
statement as the retrieval key. Since, similarly to the tasks explored by Gupta et al.|[2023]], the optimal
demonstrations for agentic tasks would demonstrate all necessary steps, we believe that set-selection

might be more appropriate for agentic tasks as compared to ranking-based selection.

5.2 Fine-grained Demonstrations

As noted in § [3.1] the trajectories for complex agentic tasks can be very long. Thus, using them
as demonstrations may be very expensive, if at all feasible with limited context lengths. Moreover,
the trajectories for even the most similar tasks may have irrelevant steps while not being helpful
for every step of the test task. Finally, LLMs have a recency bias |Liu et al.|[2024], thus a smaller
demonstration, closer to the steps it is relevant for, may be more effective than an entire trajectory
early in the prompt. We explore two ways to achieve this: (1) using trajectories for similar subtasks
with a PnE solver and (2) using snippets of the trajectories relevant to the current step.

5.2.1 Subtask-level Trajectory Demonstrations

One way to use smaller demonstrations is to use the PnE solver instead of § [3.1] that breaks the
original task down to a sequence of subtasks t*, ..., t™ and executes each subtask separately using
a React-style executor. The demonstrations for the PnE executor can be the trajectories of similar

subtasks from the pool D ... This is similar to the trajectory demonstrations from the § in that
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Figure 2: Snippet demonstrations are selected based on the thought at the current step (how) and
only used to predict the next thought-action (when) by placing after the execution trace in the prompt
(where). E.g., the snippets S are selected based on the thought 71 and used to predict r; and as and
SO on.

they are selected prior to subtask execution and included in the general prompt p for every step of the
subtask. However, the selection uses the subtask statement as the retrieval key, and demonstrations
for different subtasks of the current task may be from different tasks. In this way, it allows for a more
fine-grained demonstration to be shown for the limited scope of the subtask.

5.2.2 Step-level Snippet Demonstrations

A major drawback of using a PnE solver is that it introduces a planning step prior to execution,
which may yield inaccurate plans. Moreover, as they are placed early in the prompt, they still don’t
completely address the problem of recency bias. Thus, we experiment with showing small snippets
of trajectories that are relevant to the current step as demonstrations. To identify these snippets, we
use the thought produced at the current step as a retrieval key to find similar thoughts in trajectory
annotations Dy, . A similar thought suggests a similar step, and we can use a snippet of the trajectory
comprising this step as a demonstration. As shown in Fig. [3| the selected snippets are appended
to the prompt after the execution trace hy, which helps account for the recency bias. See Fig.
for an example of a prompt template for showing snippet demonstrations. The snippets selected for
the current step are only shown for predicting a single next step, as they may not be relevant for
subsequent steps, for which we select new snippets anyway. Finally, note that snippet demonstrations
as described above do not require any additional annotations, as they are derived from the trajectory
annotations.

6 Experimental Setup

6.1 AppWorld Benchmark

AppWorlcf] Trivedi et al.|[2024] is a benchmark designed to evaluate an autonomous agent’s ability
to carry out complex user tasks by interacting with 457 APIs associated with 9 simulated apps, viz.
Gmail, Venmo, Spotify, SimpleNote, Splitwise, Amazon, Todoist, Phone, and File System. It provides
a stateful Python interpreter that the agent can use to interact with the various APIs and a Supervisor
app and an ApiDoc app it can use to obtain the information about the user and the various Apps/APIs,
respectively. Note that, although due to cost constraints, we only experiment with AppWorld, its
code-based action space, varying observation sizes, and complex tasks make it the ideal testbed for
our experiments.

The benchmark comprises a total of 244 task templates, or scenarios, each with three variants for
a total of 722 tasks. The tasks are split into a train set (90 tasks), a dev set (57 tasks), and two test
sets: test-normal (Test-N, 168 tasks), which evaluates in-distribution performance, and test-challenge
(Test-C, 417 tasks), containing more complex tasks involving unseen apps. Each task is associated
with a suite of unit tests that check (1) whether only the requisite changes, and no extraneous changes,
were made to the environment state, and (2) if required by the task, the final answer produced matches
the ground truth. A task is considered solved only if all its unit tests pass.

Annotation. To create our demonstration pool, we use the iterative annotation algorithm (Alg. §[I))
to automatically annotate 146 tasks in the combined train and dev sets. As described in § 4] we
sped up the process by using already annotated instances as demonstrations for subsequent iterations.
Specifically, for ReAct, we used one task-trajectory pair as a demonstration, and for PnE, we used 4

3Our use of Appworld is permitted by its license (Apache License 2.0).



task-plan pairs and 3 subtask-trajectory pairs for the planner and executor, respectively. For annotation,
all the demonstrations were selected using Cosine Similarity based on all-mpnet-base-v2 encoder.
Of the 147 tasks, we annotated 141 tasks spanning 48 scenarios with ReAct solutions. With PnE,
we were able to annotate 134 tasks spanning 46 scenarios. The PnE solutions had an average of 6.2
subtasks per task for a total of 833 subtasks.

Evaluation. We evaluate on both the Test-N and Test-C sets. AppWorld recommends two metrics:
(1) Task Goal Completion (TGC), which is the percentage of tasks solved, and (2) Scenario Goal
Completion (SGC), which is the percentage of scenarios for which all three task variants passed.
While TGC measures an agent’s overall performance, SGC measures its robustness across variations
of a task. The reported TGC and SGC are averaged over three runs for the Test-N set and two runs
for the Test-C set. Additionally, to assess whether agents solve tasks reliably, rather than by chance,
we also report Reliable Task Goal Completion (RTGC), the percentage of tasks for which all the runs
succeeded. We also report the average Token Usage during execution of each task as a measure of
efficiency and the average number of Steps taken to complete tasks as a measure of inference costs.
Note that token usage would aggregate the input and output token counts across all steps.

6.2 Methods

As discussed in § ] we explore the following three different types of demonstrations:

Task Trajectory Demonstrations. We experiment with the following selection methods to select
k trajectories: (1) ranking-based selection using Cosine Similarity (COS[k]) and BertScore-Recall
(BSR[k]), and (2) set-selection using SET-BSR[k] |Gupta et al.| [2023]]. Following |Gupta et al.
[2023], for CoS, we use all-mpnet-base-v2 as the encoder, while for BSR and SET-BSR, we
use deberta-base-mnli-v2. We experiment with using upto k = 3 trajectories. As baselines, we
experiment with using the agent zero-shot without any trajectory demonstrations (ZEROSHOT[0]),
and using a single fixed manually written trajectory from Trivedi et al.|[2024]] as demonstration for
every test input (FIXED[1]).

Subtask Trajectory Demonstrations. We use BSR to select subtasks whose trajectories to include in
the executor’s prompt. Additionally, we use four task-plan pairs selected using BSR as demonstrations
for the planner.

Snippet demonstrations. We use BSR for selection of up t(ﬂ k = 2 annotated thoughts based on
the thought at every step of the current task. For each selected thought, we create the snippets using
the step (thought-action-observation triple) corresponding to the selected thought and a subsequent
step if there is one.

6.3 Agent Implementation Details

We use OpenAl’'s GPT-40 (gpt-40-2024-08-06) as the primary LLM both for annotating our
demonstration pool as well as for our ICL experiments. Detailed hyperparameters and prompt
templates for the ReAct solver, PnE planner, and executor are provided in the App. [A] To see if the
annotation obtained from a larger LLM can benefit smaller LLMs and LLMs from different model
families, we also experiment with the smaller GPT-40-mini (gpt-40-mini-2024-07-18) and Llama
3.370B (meta-1lama/Llama-3.3-7@0B-Instruct-Turbo, Touvron et al. [2023]).

7 Results

Trajectory demonstrations boost agent performance. Table[I] shows the results on Test-N for
varying numbers and selection of trajectory demonstrations. First, it is clear from the TGC numbers
(task completion) that even a single manually written trajectory demonstration (FIXED) can greatly
improve agent performance compared to using the agent ZEROSHOT. Moreover, the LLM agent’s
own trajectory annotations are more effective as demonstrations than simplified manually written ones,
even if we select them randomly (RANDOM v/s FIXED). Selecting a relevant trajectory, using any
method CoS or BSR, remains the most effective. Finally, when using more than one trajectory, set-
selection (SETBSR) is more effective than independent ranking-based selection. Overall, SETBSR[2]

*To prevent spurious matches, we filter out thoughts that score less than 0.85.



TGC

Method RGCt SGCt RTGCT Steps| ., _
ZS[0]  33.9+41 155410 167 216 50
FIXED[1] 51.642.1 30.4400 363  14.6 zz
RAND[1] 58.3+4.3 36.3+5.7  36.3 14.8 Wg“‘v"js
Cos[1]  64.9+21 46.4+7s 53.6 13.5 2 ot Usage (in 10009 No
BSR[1] 60.9+27 43.5427 488  13.4
400
RAND[2] 57.9+2.1 35.1x2.7 39.3 13.9 300
Cos[2]  64.9i21 47.6:s2 518 125
BSR[2] 65.5+1.6 512421 542  12.4
SBSR[2] 66.7+16 54.8:21 571 16 [ FE
, B : -] g

Table 1: Impact of different numbers and selec-
tion of trajectory demonstrations on a GPT-40 Re-
Act agent on the Test-N. Even a single manually
written trajectory significantly improves perfor-
mance. Further, gains are obtained using actual
agent trajectories, by selecting the most relevant
trajectories as demonstrations, and by using set-
selection when using multiple trajectories. ZS is
ZEROSHOT, RAND is RANDOM, and SBSR is
SETBSR.

ZEROSHOT[0]  FIXeD[1] BSRI[1] BSR[2] SETBSR[2]

Figure 3: Effect of trajectory and snippet demon-
strations (selected using BSR) on the perfor-
mance in terms of TGC (Top) and inference cost
in terms of token usage per task (Bottom) of
GPT-40 ReAct agents on Test-N. While trajectory
demonstrations are most effective at improving
performance, they do so at a high cost. Snippet
demonstrations are also generally effective but
have a very minimal overhead.

beats ZEROSHOT and FIXED by 30.7 and 15.2 absolute points in TGC, respectively. We also
experimented with using 3 trajectories with but didn’t see any further improvement (65.8 TGC with
SETBSR[3]) likely because of the increased prompt size leading to excessive truncation.

Trajectory demonstrations also make the agent more reliable, robust, and efficient. Trajectory
demonstrations have an even greater impact on RTGC and SGC (e.g. SETBSR[2] improves on
F1XED’s RTGC and SGC by 20.8 and 23.2 absolute points, respectively). This suggests that using
relevant demonstrations is especially effective at making the agent more reliable (across multiple runs
of the same task) and robust (across multiple variants of the task). Further, SETBSR[2] also takes
21% fewer steps than FIXED and 47% fewer steps than ZEROSHOT, implying greater efficiency and
solution speed.

Snippet demonstrations generally improve performance with minimal overhead. Fig. [3|shows
the results for the ReAct solver with and without snippet demonstrations for varying selections of tra-
jectory demonstrations. Despite all their benefits, trajectories are very costly to use as demonstrations,
and using two trajectories instead of one increases the average cost per task by 40%. On the other
hand, snippet demonstrations have very minimal overhead while generally improving performance.
However, since they are not as effective as trajectories, the optimal approach is to use as many
trajectories as possible and then sprinkle a few snippet demonstrations.

Demonstrations help even on out-of-domain tasks. As shown in Fig. #al demonstrations improve
performance even on Test-C, which has more complex tasks involving unseen apps. As expected, the
performance is lower than Test-N. However, although none of the annotations demonstrate the use of
the unseen apps, we see that both trajectory and snippet demonstrations improve performance.

Larger LLMs’ annotations can also improve smaller LLM and agents from other model families.
As shown in Fig. [db] GPT-40’s annotations also work well as demonstrations for the smaller GPT-40-
mini. As before, it’s clear that both trajectory and snippet demonstrations are effective at improving
performance and efficiency. Compared to using the baseline of a FIXED manually-written trajectory,
using SETBSR[2] trajectories with snippet demonstrations improves TGC rate by 14.3 absolute
points while also reducing the number of steps by 40%. Table 4] shows similar improvements with
Llama3.3-70B as well suggesting that the annotations are also beneficial across model families.

Subtask trajectory demonstrations improve PnE solver, but it still underperforms ReAct. Fig.
compares the PnE solver with BSR and SETBSR-selected planner demonstrations and the ReAct
solver for a varying number of trajectory demonstrations. It is clear that subtask trajectories have much
less overhead than task trajectories. Nevertheless, despite adding more trajectory demonstrations for
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(Top) and with a different, smaller LLM (Bot-
tom).

the executor, the PnE solver cannot match the
ReAct solver. This is likely because PnE plans
before any execution, which may lead to inaccu-
rate plans.

With demonstration selection prompted
agents can be competitive with trained agents.
Table [2] compares our GPT-40 ReAct agent
with demonstrations but without any fine-tuning
(NFT) with a variety of supervised finetuning
(SFT), direct preference optimization (DPO), re-
inforcement learning (RL) approaches to train
Qwen-2.5-32B-based agents from |Chen et al.
[2025]]. We provide a brief description of each
approach in App. [Band refer the reader toChenl
et al.|[2025]] for more details. It is clear that with
selected trajectory and snippet demonstrations,
GPT-40 ReAct agent can outperform all but the
best-trained agents.

8 Conclusion

This work studied different design decisions re-
lating to ICL with demonstration selection for
LLM agents. We proposed a novel iterative
annotation algorithm to automatically annotate
training tasks with solutions for use as demon-

Demo Type ®
641 —e— ReAct

PnE[BSR]

631 —s— PnE[SetBSR]

594 L

-\§\§\§§§.

200 250 300 350 400 450
Token Usage (in 1000s)

Figure 5: Comparison of GPT-40 PnE (with
BSR and SETBSR planner demos) and ReAct
solvers with varying number of BSR trajectory
demonstrations on Test-N. As trajectories for
subtasks are much shorter than for entire tasks,
more of the former can be used with a PnE execu-
tor than the latter with ReAct solver. However,
PnE still underperforms ReAct likely because
it attempts to decompose the task prior to any
execution.

Test-N Test-C

Approach

TGC SGC TGC SGC

.. SFT-GT 62 1.8 08 0.
& RFT 479 264 264 114
El 583 36.8 328 17.6
Q DPO-MCTS 57.0 31.8 31.8 13.7
A DMPO 59.0 36.6 363 13.7
PPO 50.8 28.9 26.4 10.5
RLOO 572 357 367 174
1 GRPO 58.0 36.8 39.5 224
X LOOP 713 53.6 45.7 26.6
o Traj[Fixed] 50.6 304 33.6 18.0
£ Traj[SetBSR] 66.7 54.8 38.7 24.8

Traj[SetBSR]+Snippet 66.5 53.6 38.2 234

Table 2: With selected trajectory and snippet
demonstrations, an prompted GPT-40 agent (NFT)
performs competitively with Qwen-2.5-32B-based
agents trained using a variety of approaches span-
ning supervised finetuning (SFT), direct preference
optimization (DPO), and reinforcement learning
(RL). The results for trained agents are taken from
Chen et al| [2025]]. We refer the reader to App.
[B] for a brief description of each approach and to
Chen et al.|[2025]] for more details.

strations. Using these annotations, we showed that trajectory demonstrations can effectively improve
performance, reliability, robustness, and efficiency of LLM agents. Further, since trajectory demon-
strations can have a large overhead in terms of inference costs, we also showed that small snippets
of trajectories can be used as demonstrations at every step to boost performance with a minimal
overhead. Overall, our results suggest that the optimal ICL approach is to use as many trajectory
demonstrations as possible and then sprinkle a few snippets, and that this can yield prompted LLM
agents that are competitive with state-of-the-art trained agents.
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Annotation Evaluation

Hyperparameter

ReAct PnE Executor ReAct PnE Executor
temperature 0.1 0.3 0.1 0.1
top_p 0.5 0.5 0.5 0.5
max_context_length 40000 20000 1000000 1000000
max_steps 50 20 50 50
max_tokens 2000 2000 2000 2000

Table 3: Decoding hyperparameters for Annotation and ICL Evaluation experiments for ReAct solver
and PnE Executor. max_context_length limits the length of the input prompt while max_tokens
limits the length of the output. max_steps is the maximum number of steps for the agent to take.

A Agent Details

Table 3| shows the various hyperparameters used for a ReAct solver and PnE executor when solving a
task or subtask, respectively.

A.1 Prompt Formats

ReAct Solver Fig. [6] shows the format of the task context we use for the ReAct solver. It also
shows the JSON format in which the agent is constrained to generate its reasoning and action. The
hyperparameters used for the ReAct solver are given in Table[3]

PnE Planner The prompt template for the planner is given in Fig. [9] The planner is also constrained
to generate the plan using a JSON format. For the planner, we use temperature 0.1 and top_p 0.5
both during annotation and evaluation.

PnE Executor The PnE executor is similar to the ReAct solver. The format of the task context used
for the PnE executor is given in Fig. [/| A The executor is also constrained to generate its reasoning
and using the same JSON format as the ReAct solver. The hyperparameters used for the PnE executor
are given in Table 3]

Prompt Truncation When the ReAct solver or PnE executor’s prompt exceeds the corresponding
context length limit, we truncated it by first hiding the older and longer observations and then hiding
any remaining older observations.

A.2 Demonstration Templates

The templates used to show the task-trajectory, subtask-trajectory, and snippet demonstrations are

given in Figs. and [12] respectively.

B Trained Baselines

We compare with the following training-based approaches baselines from Chen et al.[[2025]]:

* Ground truth supervised fine-tuning (SFT-GT). SFT on ReAct-style transformation of
gold solutions.

* Rejection sampling fine-tuning (RFT) [Yuan et al., 2023]]. Collects rollouts generated
with the base model and finetunes on successful ones.

* Expert iteration (EI) [Anthony et al., 2017]. Runs multiple smaller iterations of RFT
using the current best model.

* Direct Preference Optimization + MCTS (DPO-MCTS) [Putta et al.,2024]. Collects
preference pairs into a replay buffer using Monte-Carlo Tree Search.

* Proximal Policy Optimization (PPO) [Schulman et al., 2017]. PPO with a learned
advantage estimate.

* REINFORCE leave-one-out (RLOO) [Ahmadian et al., 2024]. On-policy trajectory-level
REINFORCE with leave-one-out advantage estimate.
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Method TGCt+ RTGC?T SGC1T Steps

FIXED[1] 22.6 13.7 8.0 245
BSR[1] 354 28.6 214 16.8
BSR[2] 39.3 32.1 2777 163
SETBSR[2] 38.4 32.7 223 159

Table 4: Results for Llama3.3-70B ReAct agents with trajectory demonstrations on the Test-N set.

* Group relative policy optimization (GRPO) [Shao et al.,[2024]. On-policy PPO with
normalized leave-one-out advantage estimate.

* Leave-one-out PPO (LOOP) [Chen et al., 2025]. Off-policy PPO with unnormalized
leave-one-out advantage estimate.

C Additional Results

We provide additional results for Llama3.3-70B ReAct agents with trajectory demonstrations in Table
M Similar to GPT-40, we see that using multiple demonstrations selected using BSR or SETBSR
significantly improves performance over using a single fixed manually written demonstration.
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I am your supervisor and you are a super-intelligent AI Assistant whose job is to assist with
my day-to-day tasks involving various apps (e.g., amazon.com, gmail, calendar, etc.). To do
this, we will take part in a *multi-turn conversation* with a Python REPL environment that
will let you interact with the apps using their APIs.

At every step of the conversation, you will need to reason about your current progress on the
task and propose the next action in the form of a Python code snippet for the environment to
execute. Your response needs to be in the following JSON format {"thought”: <thought>, "action
": <action>} where <thought> is your reasoning and <action> the Python code snippet (without
any enclosing ~ 7).

The environment will then execute your code and respond with the output. The environment will
maintain state across multiple interactions for the on-going task so that any variables
defined in one step can be used in subsequent steps. Additionally, since you'll be solving a
lot of tasks, it is possible that your reasoning on the current step matches with the
reasoning at some step of a task you have solved before. When this happens, I will provide you
with the relevant snippet of your conversation solving that task. These may be helpful for
your next step.

Here are three key APIs that you can use to get more information about apps and APIs:

# To get a list of apps that are available to you:
print(apis.api_docs.show_app_descriptions())

# To get the list of apis under any app listed above, e.g. amazon
print(apis.api_docs.show_api_descriptions(app_name="'amazon'))

# To get the full input-output specification of a particular api, e.g. amazon app's login api
print(apis.api_docs.show_api_doc(app_name="'amazon', api_name='show_cart'))

<task_trajectory_demonstrations>

Now, here is the actual task you need to solve using a fresh environment.

My name is Joyce Weaver. My personal email is joyce-weav@gmail.com and phone number is
3155673041.
Task: Request $13 publicly on Venmo from my friend, Stacy, with a note, "For yesterday's meal

Here are some key guidelines that you need to follow:

(1) Make sure to produce a *singlex thought and action at every step and correctly format them
as {"thought"”: <thought>, "action": <action>}. In particular,

- the JSON should be valid with any quotes, newlines, etc., properly escaped.

- <action> should be just code without any enclosing backticks (~7).

(2) Always look at API specifications (using apis.api_docs.show_api_doc) before calling an API

(3) Remember you can use the variables in your code in subsequent code blocks.

(4) Remember that the email addresses, access tokens and variables (e.g. amazon_password) in
the example above are not valid anymore. You will be provided a fresh environment to work with
Note, however, that the APIs remain the same so if it's been shown in an example above, you

don't need to look at its specification again.

(5) You can use the "supervisor” app to get information about my accounts and use the "phone"”
app to get information about friends and family.

(6) Many APIs return items in "pages". Make sure to run through all the pages by looping over
“page_index .

(7) If your action produces output that is too long, the environment will truncate it with
‘... [HIDDEN FOR BREVITY] ...' replacing the middle part. E.g., this will happen if you print
a large number of items returned by a search API. In such cases, you should consider using a
more precise query to reduce the number of items returned.

(8) Once you have completed the task, make sure to call apis.supervisor.complete_task(). If
the task asked for some information, return it as the answer argument, i.e., call apis.
supervisor.complete_task(answer=<answer>). Many tasks do not require an answer, so in those
cases, just call apis.supervisor.complete_task() i.e. do not pass any argument.

Figure 6: Task context for the ReAct solver. Each box is a separate message. <task
trajectory_demonstrations is the placeholder for any trajectory demonstrations (see Fig. [T0]
for the corresponding template).
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I am your supervisor and you are a super intelligent AI Assistant whose job is to assist with

my day-to-day tasks involving various apps (e.g., amazon.com, gmail, calendar, etc.). As the
tasks can be complex, I will break them down into a sequence of subtasks that you will need to
carry out one at a time. To do this, you will take part in a *multi-turn conversation* with a
Python REPL environment that will let you interact with the apps using their APIs.

At every step of the conversation, you will need to reason about your current progress on the
subtask and propose the next action in the form of a Python code snippet for the environment
to execute. Your response needs to be in the following JSON format {"thought”: <thought>, "
action”: <action>} where <thought> is your reasoning and <action> the Python code snippet (
without any enclosing ~~7).

Finally, when you have completed the subtask, you will need to say FINISH as action in a
separate response in the same format, i.e., {"thought”: <thought>, "action”: FINISH}

The environment will then execute your code and respond with the output. The environment will
maintain state across multiple interactions for the on-going task so that any variables
defined in one step can be used in subsequent steps. Additionally, when your reasoning for the
current step matches with a task you have solved previously, I will also provide you with the
relevant portion of the conversation that solved that task to help you on subsequent steps
for the current task.

Here are three key APIs that you can use to get more information about apps and APIs:

# To get a list of apps that are available to you:
print(apis.api_docs.show_app_descriptions())

# To get the list of apis under any app listed above, e.g. amazon
print(apis.api_docs.show_api_descriptions(app_name="'amazon"'))

# To get the full input-output specification of a particular api, e.g. amazon app's login api
print(apis.api_docs.show_api_doc(app_name="'amazon', api_name='show_cart'))

‘<subtask,trajectory,demonstrations>

‘Now, here is the actual task you need to solve using a fresh environment.

My name is Joyce Weaver. My personal email is joyce-weav@gmail.com and phone number is
3155673041.
Task: Request $13 publicly on Venmo from my friend, Stacy, with a note, "For yesterday's meal

The above task can be decomposed into the following subtasks that need to be carried out one
by one

1. Login to Venmo and save access token in ~venmo_access_token™ variable.

2. Use the “venmo_access_token™ to search for Stacy in my Venmo contacts and save her user ID
in “stacy_user_id".

3. Use the “venmo_access_token™ to create a payment request to “stacy_user_id~ for $13 with
the note 'For yesterday's meal'. Ensure the request is set to public.

4. Complete task.

Let's start by solving Subtask 1: Login to Venmo and save access token in “venmo_access_token"
variable.

Figure 7: Task context for the PnE executor (contd. in previous Fig. . Each box is a separate message.
<subtask trajectory_demonstrations is the placeholder for any trajectory demonstrations (see
Fig. [[T]for the corresponding template).
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Here are some key guidelines that you need to follow:

(1) Do not worry about the entire task. Focus ONLY on the current subtask and carry it out
carefully and correctly.

(2) Make sure to produce a *singlex thought and action at every step and correctly format them
as {"thought”: <thought>, "action": <action>}. In particular,

- the JSON should be valid with any quotes, newlines, etc., properly escaped.

- <action> should be just code without any enclosing backticks (~77).

(3) When finished with the current subtask, make sure to say FINISH in a SEPARATE response in
the format described above. Also, if it's the last subtask, make sure to call “apis.supervisor
.complete_task()~ with the answer, if any, before finishing.

(4) Always look at API specifications (using apis.api_docs.show_api_doc) before calling an API

(5) Remember you can use the variables in your code in subsequent code blocks.

(6) Remember that the email addresses, access tokens and variables (e.g. amazon_password) in
the example above are not valid anymore. You will be provided a fresh environment to work with
Note, however, that the APIs remain the same so if it's been shown in an example above, you

don't need to look at its specification again.

(7) You can use the "supervisor” app to get information about my accounts and use the "phone"”
app to get information about friends and family.

(8) Many APIs return items in "pages". Make sure to run through all the pages by looping over
“page_index ~.

(9) If your action produces output that is too long, the environment will truncate it with
‘... [HIDDEN FOR BREVITY] ...' replacing the middle part. E.g., this will happen if you print
a large number of items returned by a search API. In such cases, you should consider using a
more precise query to reduce the number of items returned.

Figure 8: Task context for the PnE executor (contd. from previous Fig. [7). Each box is a separate
message. <subtask trajectory_demonstrations is the placeholder for any trajectory demonstra-
tions (see Fig. |'1;1'| for the corresponding template).
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I am your supervisor and you are a super intelligent AI Assistant whose job is to autonomously
perform my day-to-day tasks involving various apps (e.g., spotify, simple_note, etc.).

To do this, you will need to interact with apps using their associated APIs on my behalf.
Here are the apps:
{ app_descriptions }

To help with this, I will provide you with an executor model that will take care of
interacting with the APIs. Your job is to produce a plan on how to solve the task given access
to this executor. You should respond in the following JSON format:

{
"thought": <thought>,
"plan": [
"<subtask_1>",
"<subtask_2>",
"<subtask_n>"
]
3}

Here, <thought> is a brief description of how you plan to solve the task and <subtask_i> is a
description of the ith subtask in your plan.

**Key instructions*x:
(1) Make sure to respond in the JSON format provided above. Don't enclose your response with

(2) Make sure to define all the relevant variables.

(3) Each subtask in the plan should be clear and complete so that it can be executed
independently. E.g. don't use references such as "previous list” or "repeat subtask 1".

(4) When unsure, use more subtasks in the plan rather than fewer subtasks.
(5) The final subtask should be "Complete task.” unless the task requires an answer, in which

case, it should be "Complete task with answer: <answer>" where <answer> is the answer to the
task.

Figure 9: Prompt for the PnE planner. It is followed by a few demonstrative task-plan pairs and the
test task.
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Here is an example of a task and how you can interact with the environment to solve it

My name is Joyce Weaver. My personal email is joyce-weav@gmail.com and phone number is
3155673041.
Task: How many playlists do I have in Spotify?

Lets first find which APIs are available to use in Spotify.
T python
print(apis.api_docs.show_api_descriptions(app_name="'spotify'))

Output:
L
{
"name"”: "login",
"description”: "Login to your account.”
},
{
"name"”: "logout”,
"description”: "Logout from your account.”
e
]

Now that the task is completed, I need to mark the task as complete and return the number of
playlists found.

T python

apis.supervisor.complete_task(answer=num_playlists)

OQutput:

Marked the active task complete.

Figure 10: Template used for trajectory demonstrations. Yellow boxes are user messages or environ-
ment responses, while blue boxes are agent messages (originally in JSON format).
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Here is an example of a subtask and how you can interact with the environment to solve it

My name is Jennifer Powell. My personal email is jepowell@gmail.com and phone number is
4288705164 .

Task: Add a comment, "Thank you!"”, to all the venmo payments I received from my coworkers in
the last 5 days (including today), and like those payments.

The above task can be decomposed into the following subtasks that need to be carried out one
by one

1. Login to Venmo and save access token in “venmo_access_token™ variable.

2. Use the “venmo_access_token™ variable to retrieve a list of coworkers from the Phone app
and save it in “coworker_list".

3. Use the “venmo_access_token™ variable to get all payments received in the last 5 days and
save them in “recent_payments .

4. Filter “recent_payments”™ to find payments from ~coworker_list™ and save them in
coworker_payments ~.

5. For each payment in ~coworker_payments ™, add the comment 'Thank you!' and like the payment
using the “venmo_access_token".

6. Complete task.

Let's start by solving Subtask 1: Login to Venmo and save access token in “venmo_access_token"
variable.

To login to Venmo, I need to find the appropriate API and its specifications. Let's start by
checking the available APIs for the Venmo app.

“ T python

print(apis.api_docs.show_api_descriptions(app_name="'venmo'))

I have successfully logged into Venmo and obtained the access token, which is stored in the
venmo_access_token~ variable. This completes the first subtask.

T python

FINISH

Figure 11: Template used for subtask trajectory demonstrations. Yellow boxes are user messages or
environment responses, while blue boxes are agent messages (originally in JSON format). The main
difference with the task trajectory demonstrations (Fig. is that the agent is additionally provided
the plan and a summary of code used to solve previous subtasks.

Your reasoning (thought) in the previous step is similar to your reasoning solving some other
tasks. Providing you with the relevant snippets of your conversation solving those tasks as
they may be helpful for your next step. Each snippet comprises the task statement along with
the thought, the action taken, and the output for the matching step as well as the following
step (if there is one).

# Snippet 1:
Matching Step:
Thought: {thought}
Action:

T python

{action}

OQutput:

{output}
Following Step:
Action:

T python
{action}

OQutput:

{output}

# Snippet 2:

Figure 12: Template used for showing snippet demonstrations. This is a single message appended
after to all the messages.
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