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Figure 1: Position overview: With millions of public models, it becomes important to move beyond
individual models and study entire populations (left). The Model Atlas formalizes this shift by
representing models as nodes in a graph, with directed edges denoting weight transformations (e.g.,
fine-tuning). Node size and color, as well as edge color, encode node and edge-level features; light
blue indicates missing or unknown information. The atlas enables a range of applications, including
model forensics, meta-ML research, and model discovery (center). In practice, most edges and
features are unknown. This motivates ML methods that take models as input and infer their properties,
thereby completing the missing atlas regions (right). Zoom in to view edges, best viewed in color.

Abstract

Public model repositories now contain millions of models, yet most remain undoc-
umented and effectively lost: their capabilities, provenance, and constraints cannot
be reliably determined. As a result, the field wastes training time and compute,
propagates hidden biases, faces intellectual-property risks, and misses opportuni-
ties for model reuse and transfer. In this position paper, we advocate charting the
world’s model population in a unified structure we call the Model Atlas: a graph that
captures models, their attributes, and the weight transformations connecting them.
The Model Atlas enables applications in model forensics, meta-ML research, and
model discovery, challenging tasks given today’s unstructured model repositories.
However, because most models lack documentation, large atlas regions remain
uncharted. Addressing this gap motivates new machine learning methods that treat
models themselves as data and infer properties such as functionality, performance,
and lineage directly from their weights. We argue that a scalable path forward is to
bypass the unique parameter symmetries that plague model weights. Charting all
the world’s models will require a community effort, and we hope its broad utility
will rally researchers toward this goal.
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1 Introduction

Many scientific breakthroughs occurred when researchers transitioned from observing individual
samples to studying entire populations. Consider Darwin’s transition from cataloging specimens to
understanding evolution through natural selection acting on populations, or modern medicine’s move
from anecdotal patient outcomes to large-scale clinical trials establishing treatment efficacy. Machine
learning (ML) has mirrored this shift for data, replacing hand-crafted features derived from a few
observations with representations learned from large sample collections. This paradigm has fueled
remarkable progress in many domains like computer vision (CV), natural language processing (NLP),
and audio. However, we argue that the ML community has yet to fully apply this population-level
perspective to its outputs: the models themselves. While we optimize individual models, we have
largely ignored the implicit knowledge embedded across the growing population of trained models.
In this position paper, we advocate for systematically studying entire model populations, and
argue that this requires charting them in a unified structure, the “Model Atlas”. We present a
schematic overview of this position in Fig. 1.

This direction is particularly timely: the num-
ber of publicly available models is growing at
an unprecedented rate. Platforms like Hugging
Face (HF) now host over 1.5 million models,
with more than 100,000 added each month (see
Fig. 2). Yet most models remain poorly docu-
mented and effectively lost: one cannot deter- e i P
mine their capabilities (e.g., evaluations, fail-
ure modes), provenance (e.g., parent models,
training data), or usage constraints (e.g., license,
safety). As a result, the community cannot reli-
ably discover models, attribute credit, reproduce
results, or reuse them with confidence. We therefore need to chart the world’s models, mapping
the machine learning landscape. Concretely, we define the Model Atlas as a graph in which nodes
represent models and directed edges denote weight transformations between them (e.g., fine-tuning,
quantization, merging). Nodes and edges are labeled with attributes such as task performance, training
data, and optimization details. The atlas thus transforms model collections from a flat list of models
to an interconnected ecosystem, enabling a range of applications, e.g., model forensics, meta-ML
research, and model discovery.

Monthly Model Creations

Figure 2: Growth in Hugging Face models: The
number of public models is growing rapidly, but
most remain undocumented and effectively lost.
We advocate for charting them in a Model Atlas.

Model forensics allows us to trace a model’s training trajectory, its origins, the data used, and the
transformations it underwent [4, 20, 21, 43, 61, 63, 64]. This has major implications for intellectual
property, bias estimation, safety, and reproducibility. The atlas also enables intuitive visualizations
of huge model populations, facilitating “meta-ML research” to analyze the evolving ML landscape.
Concretely, we demonstrate that the atlas can reveal structural patterns, emerging trends, and opportu-
nities to transfer knowledge between communities. For instance, in Fig. 3 we present a preliminary
atlas which reveals distinct structural patterns across modalities, Llama-based models [10] have
more diverse and complex training dynamics (e.g., quantization and model merging) than Stable
Diffusion [42]. Finally, with so many models available, we need tools for accurate model discovery
[8, 23, 29, 32, 37, 53, 62, 65] which could reduce training costs, shorten development cycles, and
lower environmental impact. Model discovery requires knowing what each model does and how well
it performs, information that the atlas captures. While related to prior work (e.g., Pal et al. [39]), our
position focuses specifically on the Model Atlas and the methods required to chart it.

Although many models exist, most are undocumented and contain little to no usable metadata. Over
60% of models on HF have no documentation at all [19, 21, 26], and for the remainder, much is
incomplete. This includes many of the platform’s most popular models, which often omit key details
such as training data, performance, or lineage. Moreover, public repositories represent only a fraction
of the global model landscape; private repositories in companies and research labs contain many more
models. Consequently, the Model Atlas remains mostly uncharted, populated by “lost models”, whose
origins, capabilities, and interrelations are largely unknown. Completing the atlas requires inferring
its missing nodes, edges, and their attributes. This motivates a new class of ML problems that
treat models themselves as data. However, learning directly from models presents major challenges:
weights are high-dimensional, exhibit harmful permutation symmetries, and lack established structural
priors. To address this, the emerging field of weight-space learning [11, 39, 44, 45, 47] develops
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Figure 3: The Model Atlas - Stable Diffusion vs. Llama: We visualize the atlas of the top 30% most
downloaded models in the Stable Diffusion (SD) and Llama regions. Node size reflects cumulative
monthly downloads, and color denotes the transformation type relative to the parent model. The atlas
reveals that the Llama region has a more complex structure and a wider diversity of transformation
techniques (e.g., quantization, merging) compared to SD. Zoom in to view edges, best viewed in color.

specialized neural networks that take other models as input and infer their properties. The dominant
approach involves designing equivariant networks, which account for the permutation symmetries of
model weights. While promising, current methods remain computationally expensive and are mostly
limited to small-scale models or simplified settings.

We argue that scaling atlas charting to large, diverse model populations requires rethinking the role
of weight symmetries. Instead of tackling permutation invariance directly, we propose a path that
sidesteps it altogether. By avoiding symmetry constraints, we can leverage standard architectures
and training recipes, enabling more efficient and scalable methods. We highlight concrete scenarios
where this is already feasible, such as probing models for their functional responses or learning on
weights within symmetry-consistent subsets. While these strategies are still in their early stages, they
demonstrate the practicality of symmetry-agnostic approaches. Realizing the full potential of the
Model Atlas will require new research into priors, architectures, and learning methods. We believe
this is both a timely and worthwhile effort that would benefit broad community participation.

2 The Model Atlas

We aim to represent model collections in a way that captures each model’s lineage, creation process,
functional capabilities, performance, and metadata. We therefore propose the Model Atlas, a directed
acyclic graph (DAG) denoted by G = (V, ), where each node v € V represents a model at a specific
point in its training trajectory. Directed edges (u, v) € £ denote a weight transformation from model
u to model v, e.g., fine-tuning or quantization.

Both nodes and edges have associated features. Node features include all the information about a
model, e.g., its weights, functional traits, and metadata. Traits capture the functional and behavioral
properties of a model, such as accuracy, robustness, and fairness. Unlike traits, which reflect learned
behaviors, metadata captures static or descriptive attributes such as creation time and license type.
Edge features capture information about the transformation from parent model « to child model v, e.g.,
optimization parameters, training data, and transformation type (e.g., LoORA [22] or quantization).

This graph contains virtually all information about the model population, including how each model
was created, its relation to other models, and its capabilities and metadata (see Fig. 4 for an overview).
The atlas provides the basis for a wide range of applications that we describe in Sec. 3. However,
as we describe in Sec. 4, the core obstacle is that only a small part of this graph is known; for most
nodes, only a very small portion of the details about their edges, node features, or edge features are
given. To unlock the rich rewards of the Model Atlas, we believe it is paramount to develop new ML
tools for recovering the rest of the graph.
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practice. In Sec. 4 we describe Figure 4: Model Atlas illustration: Each node in the Model Atlas
scalable methods for charting the represents a distinct model state, and each directed edge denotes a

missing regions of the atlas. weight transformation from one model to another. Edge features
encode information about the transformation, node features cap-
3.1 Model forensics ture properties of the model itself.

Neural networks are complex, opaque functions. They do not readily reveal details about their
training data or predecessor models. However, this information is critical, particularly for the creators
of training datasets or upstream models. By charting models within the atlas, we can infer such
provenance relationships. The atlas facilitates this in several ways. First, a directed path between
two models indicates which model is descended from the other. Second, if a model descends from
others, it implicitly inherits their training data. Since edge features include information about the
data used during transformation, the atlas can reveal the full data lineage of a model, an important
capability for intellectual property and compliance. The same ideas also extend to bias estimation. If
an ancestor exhibits a known bias, we can propagate that knowledge downstream. Finally, the atlas
improves reproducibility by recording the exact parameters used to transform one model into another.

3.2 Meta-ML research by visualizing entire model collections

The Model Atlas enables large-scale visualization and analysis of model repositories, a capability we
refer to as “meta-ML research”. By encoding node and edge features into visual attributes, such as
color and size, these visualizations' provide an interpretable overview of structure, model attributes,
and emerging trends across vast model populations. Note that node position is optimized for clarity
[24] and does directly reflect distance between model weights. To demonstrate this, we analyze
Hugging Face (HF), the largest public model repository, which hosts over 1.5 million models, with
more than 100,000 added each month. While HF encourages documentation via Model Cards [34],
over 50% of models lack them entirely. Additionally, fewer than 30% of models specify their parent
model. Using these, we construct an initial atlas and explore recent trends. In Fig. 5, we visualize a
portion of this atlas, comprising over 60,000 models across 28 connected components and more than
65,000 edges. We use this structure to compare development patterns in computer vision (CV) and
natural language processing (NLP). See App. A for further visualizations and analysis. We will make
the Model Atlas used for these visualizations publicly available through an interactive web interface
that allows users to navigate and explore the different models.

Quantization. As shown in Fig. 5, quantization is rare in CV models (fewer than 0.15% of all models
in this pool) compared to NLP. This suggests that vision models have not yet reached the scale where
inference cost necessitates quantization. However, using the atlas we can spot an emerging change
of trend. The presence of a highly downloaded quantized version of Flux [28], one of the largest
generative vision models, indicates that image generation models may have just reached the scale
where quantization is valuable or that quantization is harder to achieve effectively for CV models.(see
zoom-in (A) in Fig. 5). An alternative explanation may be that quantization is harder to achieve
effectively for CV models.

Fine-tuning vs. adapters. Generative and discriminative models exhibit markedly different adaptation
strategies. Most generative models rely on parameter-efficient adapters (e.g., LoRA), whereas

'We use “Gephi” by Bastian et al. [3] to visualize the Model Atlas.
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Figure 5: The Hugging Face Model Atlas: While this is a small subset (63,000 models) of the
documented regions of Hugging Face, it already reveals significant trends. Depth and structure. The
LLM connected component (CC) is deep and complex. It includes almost a third of all models. In
contrast, while Flux is also substantial, its structure is much simpler and more uniform. Quantization.
Zoom-in (A) highlights quantization practices across vision, language, and vision-language (V&L)
models. Vision models barely use quantization, despite Flux containing more parameters (12B) than
Llama (8B). Conversely, quantization is commonplace in LLMs, constituting a large proportion of
models. VLMs demonstrate a balance between these extremes. Adapter and fine-tuning strategies.
A notable distinction exists between discriminative (top) and generative (bottom) vision models.
Discriminative models primarily employ full fine-tuning, while generative models have widely
adopted adapters like LoRA. The evolution of adapter adoption over time is evident: Stable-Diffusion
1.4 (SD) (1) mostly used full fine-tuning, while SD 1.5 (2), SD 2 (3), SD XL (4), and Flux (5)
progressively use more adapters. Interestingly, the atlas reveals that audio models rarely use adapters,
suggesting gaps and opportunities in cross-community knowledge transfer. This inter-community
variation is particularly evident in model merging. LLMs have embraced model merging, with merged
models frequently exceeding the popularity of their parents. This raises interesting questions about
the limited role of merging in vision models. For enhanced visualization, we display the top 30%
most downloaded models. The image is high-resolution, zoom in to view individual nodes and
edges. Best viewed in color.

discriminative models almost exclusively use full fine-tuning (see Fig. 5-top). The Model Atlas not
only highlights this distinction but also reveals how these trends are shifting over time. In earlier
generations, such as SD1.4, only around 50% of models used adapters. In contrast, newer generative
models like Flux [28] and Llama 3 [10] overwhelmingly adopt adapter-based methods, indicating a
broader move toward more efficient fine-tuning (see pins (1)-(5) in Fig. 5).

Merging. Model merging [50, 52, 56, 58, 59] is about 35 times more common in NLP than in CV. On
average, merged NLP models achieve 30% higher influence (measured via descendant downloads;
see App. A) than their non-merged siblings. While this does not imply causation, it suggests that
merging is an underexplored strategy in vision.

3.3 Model discovery

Training new models is time-consuming, expensive, and energy-intensive. Despite this, practitioners
often train or fine-tune a new model for each task. Imagine that instead, one could retrieve a suitable
pre-trained model and use it directly. This would reduce costs, shorten development cycles, and
lower environmental impact. The atlas provides the infrastructure needed for such model discovery.
It enables search based on model capabilities, performance, or transformation history. This goes far
beyond search functionality in existing repositories, which mostly rely on textual search of sparse



documentation. For example, although tens of thousands of models are trained on ImageNet [7],
searching for the class “peacock” among the < 1.5M HF models returns fewer than 100 results. In
contrast, an atlas-based search, leveraging traits and lineage, would yield many more relevant results.

If no existing model fits a given task, the Model Atlas can still assist by helping identify models, or
sets of models, likely to transfer well. Estimating transferability [8, 23, 29, 32, 37, 53, 62, 65] is
computationally expensive, as existing methods typically require evaluating each model on the target
dataset. In contrast, a complete atlas enables graph-based search strategies that reduce the number
of models that must be tested. For example, a branch-and-bound strategy could prune subgraphs
unlikely to yield high transfer performance. Similarly, multi-scale search techniques, akin to binary
search, could accelerate retrieval by narrowing the candidate space efficiently. We believe that a
complete Model Atlas will enable scalable transferability estimation and more effective model reuse.

4 The atlas is incomplete, we need new methods to chart it

4.1 The atlas is incomplete

Despite the abundance of models, most are undocumented, leaving
little usable information. To address this, solutions like Model Cards
[34] were introduced to provide standardized descriptions. While

an important first step, current documentation practices fall short of iyt i
handling the scale and complexity of modern model ecosystems. As

highlighted earlier, over 60% of models on HF lack any model card. |
Worse still, even documented models typically provide only sparse or L
inconsistent information. For instance, fewer than 15% of HF mod- e

els report accuracy, and only 8% include license details (see Fig. 6).

Since this data is self-reported, its quality varies widely. Conse-

quently, recent attempts to summarize documentation automatically ~ Figure 6: Documentation lev-
(e.g., by HF [55]) face fundamental limitations: missing information els in HF: Most models on
cannot be recovered through summarization alone. Overall, current Hugging Face suffer from
practices lack the required coverage, consistency, and adaptability.  poor documentation quality.

This documentation failure has created a vast population of “lost models”, models whose origins,
capabilities, and relationships are largely unknown. This has tangible consequences. Organizations
routinely waste resources re-training models that already exist but are undiscoverable. Moreover,
even failed models contain valuable insights into architecture, data, and optimization; this implicit
knowledge is currently lost, forcing the community to rediscover it. The atlas helps preserve this
implicit knowledge and serves as a tool for knowledge retention.

4.2 Charting the Model Atlas

Although we advocate the Model Atlas as a foundational structure, much of it remains missing.
Completing the atlas requires inferring its missing nodes, edges, and their attributes. This motivates
a new class of ML problems where models (or sets of models) serve as input, and the goal is to
predict properties of the atlas. While ML for images, text, and audio is well-established, learning
directly from model weights is only starting. This presents two key challenges. First, model weights
are high-dimensional, making them computationally difficult to process. Second, neural network
weights exhibit parameter space symmetries [17]. For instance, permuting neurons in hidden layers
of an MLP does not affect the model’s function, but does change the raw weight representation. This
property complicates the development of techniques that generalize across diverse model populations,
as most ML methods do not naturally account for these symmetries.

The emerging field of studying models based on their weights is called Weight-Space Learning
[11, 44, 45, 47, 54]. Research in this area generally falls into 3 categories: i) Learning weight
representations, recovering model functionality and performance [18, 19, 25-27, 30, 35, 36, 41,
43, 68]. ii) Developing generative models for weights, synthesizing of new model parameters
[2, 9, 12, 16, 40, 48, 59]. And iii) Recovering weight trajectories, tracing the evolution of model
parameters over time [4, 5, 20, 21, 57, 60, 61, 63, 64]. Despite promising progress, most work in this
space is limited to synthetic or simplified settings. Current approaches cannot yet handle many of the
subtasks and scale involved in charting real-world model populations.



Table 1: Atlas-based documentation
Avoiding, not embracing equivariance. The dominant ap- imputation: ~ Using atlas structure
proach in weight-space learning is to design equivariant improves prediction of model accu-
networks [27, 30, 31, 35, 36, 41, 51, 66—68] that respect racy and other attributes, compared to
the permutation symmetries of neural weights. This is naively using the majority label. In (b),
an elegant but computationally costly endeavor, requiring we report the prediction accuracy.
specialized adaptations for different layer types (e.g., con-

volutional, self-attention, or state-space). Unfortunately, (2) Metric Imputation Results
standard deep learning architectures are not equivariant Method MSE MAE Corr.
by default, and current solutions remain too expensive for — 5

) P . < Baseline 100.217 8.541 -
wl?b s;:ale nllodel rfeposnorlets.hRather thanfredeveﬁ)pmg.ar S2 Ours ILNN 32.830 3247 0.856
c 1te.c ure classes from scratch, we argue for an alternative S 2 Ours2NN 28720 3235 0.864
path: reformu'latmg tasks to avoid permutation symmetry 5% Ours3-NN 25544 3.147 0877
alt(.)g.ether.. This allqws us to use s.tandard archltecFures and =S QOurs5-NN 23.512 3.093 0.885
training tricks. While not all weight-space learning tasks Basell 95.000 7.500

: : _ 0 aseline . . -
admit such reformulations, many graph-based tasks do. £2 Ours 1NN 30000 3.000 0.860
Graph kNN. One simple approach is to predict properties of é % Ours 22NN 27.000 2.900 0.870
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charted atlas. For example, we used the Mistral-7B con- Ours 5-NN = 22.000 2.700 0.890
nected component (17.5k models, with only 300 labeled on

' (b) Attribute Prediction Accuracy
the Truthful QA (0 shot) (mc2) metric; see App. E for more

details). We estimated performance for each unlabeled Attribute Graph Avg.  Hub Avg.

node by averaging the scores of its k nearest neighbors, pipeline_tag 0.60 0.79 (+0.19)
where distance is defined by path length in the undirected 1ibrary_name 0.81 0.84 (+0.02)
atlas. Tab. la shows that this simple method can predict model_type 0.66 0.81 (+0.15)
model accuracy surprisingly well. Beyond accuracy, the license 0.49 0.85 (+0.35)
atlas can also help infer missing metadata. We use the relation_type 0.61 0.80 (+0.19)

concept of model hubs, defined as sets of sibling leaf nodes

(79% of models belong to some hub). Assuming models in

the same hub are similar, we impute missing attributes using majority voting across labeled nodes. We
tested hub-based predictions on five attributes that are often missing on HF, including: license, model
and inheritance types (see Fig. 6). Compared to global majority baselines, hub-based prediction
significantly improves accuracy, by 35% for license prediction and 19% for both inheritance type and
pipeline tag (Tab. 1b). These methods are simple and scalable, though not always sufficiently precise
and limited by the completeness of the known atlas.

Learning on functional features. Permutation symmetry affects the parameter space, not the function
space. One natural workaround is to represent a model via its responses to predefined inputs. Probing-
based methods [18, 25, 26] select a set of m probes (inputs) x1, . . ., £, and represent the model as
the concatenation of its responses:

o(f) = (f(@1), f(x2), - -, f(wm))

As long as the responses exhibit structure, we can learn downstream tasks using standard architectures
(see Fig. 7-left). Similarly to a good examiner, the key is to know which questions to ask. While
determining the optimal set of probes is an exciting, outstanding challenge, Kahana et al. [25]
showed that even quite native probes performed better than many state-of-the-art methods. The main
limitation of probing methods is their runtime, as computing their representations requires m forward
passes per model, which can become costly at scale.

Learning directly on weights within a connected component. A core motivation of equivariant
architectures is that weights suffer from permutation symmetries. But it turns out that this is not
always the case. A child model keeps mostly the same neuron ordering as its parent model, as
finetuning only changes weights very slightly. Recursively, all models fine-tuned from a foundation
model will typically have the same permutation. More formally, all models within the same connected
component in the Model Atlas have consistent neuron ordering. In such cases, we can apply standard
architectures directly to weights without equivariance (see Fig. 7-right). The outstanding challenge is
to develop architectures able to deal with the extremely high dimension of network weights (millions
to billions). While current architectures [19] use factorized classifiers, taking in a single model layer,
we believe better architectures, that span multiple layers, will be better.
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Working within the same connected component allows for simpler tools, as [21] demonstrated,
computing a node’s nearest neighbors provides a clue to what nodes are connected to it by an edge,
allowing link prediction. Clustering models by their weights also reveals other shared attributes
[15, 21]. We extend this insight by introducing a link prediction process that incorporates real-world
structural priors extracted with the help of meta-ML research using visualization of HF. By analyzing
patterns such as quantization, duplication, temporal upload dynamics, and checkpoint structures,
we develop simple yet effective decision rules that guide edge prediction. These priors allow us to
move beyond generic tree-based heuristics and chart realistic DAGs while significantly improving
the accuracy at a lower computational cost. See App. C for full implementation and results.

5 Open challenges in Model Atlas charting

Charting the full atlas will require new research into priors, architectures, and learning methods. We
now outline key open challenges; see App. B for further discussion.

New visualization methods. In this paper, we visualized the Model Atlas using off-the-shelf graph
layout algorithms [3, 24]. While these are already useful for meta-ML research, they are not designed
for the unique structural and semantic characteristics of Model Atlases. Future visualization methods
could exploit specific structural priors, such as large hubs and near tree-like hierarchies. Additionally,
incorporating node and edge features (e.g., model metadata, weight distance metrics, or performance
estimates) could help position semantically related models closer together. Moreover, most existing
graph layouts also assume static graphs, whereas Model Atlases evolve continuously. Supporting
dynamic insertions of nodes and edges will require new online layout algorithms.

Charting priors and weight-space learning architectures. The approaches highlighted in Sec. 3
exploit specific patterns and priors that allow them to bypass the challenge of weight permutation.
However, given the scale of modern model repositories and the size of individual models, extending
charting efforts to the web scale will likely require new priors and architectures. In particular, future
work may explore downsampling strategies that retain essential semantic information, enabling
efficient processing of large model populations. Most current methods also assume access to model
weights. Extending charting to black-box settings, such as proprietary APIs like ChatGPT or Gemini
[14, 38], will require new techniques based on outputs, activations, or metadata.



Recovering training trajectories. Most current weight-space learning methods focus on node-level
properties such as function or performance. However, recovering edge-level attributes, e.g., optimizer,
data, or learning dynamics, is equally important. Existing methods often assume single-parent
transitions and do not account for more complex scenarios such as model merging or distillation.
Extending charting algorithms to account for multi-parent edges, distillation relationships, and
non-weight-based transformations remains a largely unexplored challenge. More broadly, current
atlases can be viewed as sparse samples of a larger underlying atlas capturing the continuous training
trajectory. In most cases, edges in the atlas represent transitions between model states that may have
occurred through multiple intermediate optimization steps. Recovering this full, fine-grained Model
Atlas, including the intermediate state, presents a compelling and open challenge for future research.

Probe selection methods. Probing-based approaches provide a powerful way to represent models
functionally, but they involve a tradeoff: using too many probes increases runtime, while too few
increases sensitivity to probe choice. To overcome this, we need new methods for selecting a minimal
yet expressive set of probes. This could involve real input probes (e.g., curated data points), requiring
principled selection strategies, or synthetic probes, which call for generative or optimization-based
techniques. Designing robust, task-adaptive probing schemes is an open problem.

6 Alternative view

While we strongly advocate for charting model collections through the Model Atlas, it is important to
acknowledge valid alternative perspectives.

Foundation models may render model collections obsolete. One view is that the rise of increasingly
capable foundation models, such as ChatGPT and Gemini [14, 38], may reduce the relevance
of smaller, task-specific models. If this consolidation continues, some might argue that model
repositories will shrink or become unnecessary, thereby reducing the importance of charting them.
While reasonable, this perspective does not align with current trends. In practice, the number of
public models continues to grow. Moreover, even a small number of dominant models would produce
numerous variants, checkpoints, and fine-tuned descendants. These models would still benefit from
organization, provenance tracking, and comparison, tasks the atlas is ideal for.

Equivariant methods may eventually scale. Our position is that equivariant methods will struggle to
scale to full repositories. A valid alternative view is that given sufficient research effort, the field will
find the right architecture, training tricks, and hyperparameters to make them efficient alternatives.
While this is a different technical approach from the one we advocate, this would not change the
formulation and applications of the atlas, which is the essential part of our position. Furthermore, this
is unlikely to help within connected components where there are no permutation symmetries.

Charting may not require machine learning. A valid argument is that charting the Model Atlas could
be addressed by simply tightening documentation requirements, eliminating the need for new machine
learning methods. Under this approach, model creators would be required to upload all relevant
information alongside the model or embed it directly within the weights file. While such protocols
may eventually be adopted, they are unlikely to capture all the information we might want about a
model. They would also have no effect on the millions of existing models that remain undocumented.
Finally, we draw some parallels with code documentation, which is good practice and encouraged by
all, but is rarely done. We believe forcing model creators to document is doomed to fail.

7 Conclusion

The rapid growth in the number of trained models presents an opportunity to study them collectively
rather than in isolation. The Model Atlas formalizes this perspective by representing models, their
attributes, and the transformations that link them in a unified structure. We have outlined its potential
applications in model forensics, meta-ML research, and model discovery. The central challenge is that
most edges in the graph, as well as the majority of node and edge features, are missing. Addressing
this gap calls for a new class of machine learning methods that treat neural networks as data and
infer meaningful properties from them. We argue that the most promising approaches are those that
sidestep the symmetries inherent in weight space, enabling scalable solutions across diverse model
populations. We hope that the Model Atlas will inspire broader research into understanding and
organizing the global population of models.
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A Additional meta-ML research insights and visualizations

Depth. Fig. 9 shows that NLP models have a wide range of DAG depths, while in CV, nearly all
models have a direct edge to the root foundation model. This suggests that the CV community
puts more focus on new foundation models, while the NLP community often embraces iterative
refinement. As an example, in Fig. 5 the LLM connected component (CC) exhibits significant depth
and complexity, representing almost a third of the models. In contrast, while Flux is also substantial,

its structure is much simpler and more uniform.

Better model impact measurement. There are several ways of mea-
suring the impact of a model. For example, HF uses likes, trends
(based on an undisclosed proprietary algorithm), and downloads.
These metrics are somewhat myopic, as they measure the direct pop-
ularity of models but not the popularity of their descendant models.
In fact, our graph analysis reveals that for 50% of non-leaf nodes,
the total downloads of their descendants exceed their own individ-
ual downloads. This is partially due to the popularity of quantized
child models and to incremental improvement of child models, e.g.,
finetuning or merging. Our analysis further showed that for non-leaf
models, the sum of descendant nodes downloads exceeds those of
the model itself in most cases (often by large margins). This suggests
that simple model download counts underestimate the influence of
the parent model.

We can therefore use the atlas to introduce a new model impact met-
ric: sub_tree_downloads. We calculate this metric by summing
the downloads of the model node and those of all its descendants.
This number describes how many downloads this model causally
affected. It has important applications to intellectual property rights,
as the models and data used to train the target models affected all
of its downstream downloads. It also quantifies the social impact of
the biases of this model.

Restoring removed models. There are legal and commercial reasons
for removing models from repos. Some models have been removed
from the repository over time, affecting the integrity of the model
DAGs. Out of 33, 870 identified source models, 1,612 are missing
due to deletion. A notable case is runwayml/stable-diffusion-vi-5,
which has 3, 038 broken references. To preserve the integrity of the
dependency structure, the missing node was reconstructed and its
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Figure 9: Vision vs. NLP

Node depth: By analyzing
over 314k models, we found
that over 96% of CV models
are situated one node away
from the root, while only 55%
of NLP models have this shal-
low depth. Over 5% of NLP
models have depth of at least
five nodes. This shows that
NLP models are much deeper
than CV models, suggesting
the NLP community embraces
iterative refinement over mov-
ing to the latest foundation
models.

connections manually restored. Using methods such as Horwitz et al. [20] also allows restoration of

the weights.
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Figure 10: Visualizing other node features

Additional visualizations In Fig. 10, we visualize the same atlas regions shown in Fig. 5, but colored
according to different node features, specifically, license type and pipeline tag. In Figs. 8a, 8b, 11a,
11b, 16 and 17, we provide detailed visualizations of individual connected components. Figures have
been compressed to reduce file size.

B Additional open challenges in Model Atlas charting

Meta-ML research. This paper presents a simple example of meta-ML research through structural
and visual analysis of the Model Atlas. However, extracting deeper insights will require more
sophisticated methods. One direction involves visual and interactive exploration, comparing regions
of the atlas by architecture family, task domain, training patterns, or performance metrics. Another
involves training models on the atlas structure itself, for example, using graph neural networks
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(GNNis) to predict missing attributes. Beyond analysis, the Model Atlas can be extended by the
broader community through the addition of new layers of node and edge features. Researchers in
interpretability, for instance, might annotate models with salient neurons or circuits, while robustness
researchers could contribute metrics such as adversarial susceptibility or failure modes. These
enriched features would support downstream meta-ML tasks, enabling comparisons of interpretability
across architectures or correlations between robustness and lineage.

Model charting datasets. As our goal is to scale model charting to real-world scenarios, it is
essential to use datasets drawn directly from real-world repositories. However, most existing dataset
papers [13, 46, 49] and methods that introduce datasets [19-21, 41, 45] rely on training their own
model collections. Curating datasets and benchmarks from models hosted on Hugging Face offers a
convenient and scalable alternative. In fact, using the already-charted Model Atlas, one can assemble
large datasets of in-the-wild models directly from Hugging Face. We include two curated datasets
with this paper for graph-level model attribute prediction and charting tasks (see App. E for details).

C Charting the atlas structure

While the preceding section highlighted the importance of the

Model Atlas, in practice, over 60% of it is unknown. This is
primarily because model uploaders frequently do not provide " . \
parent model information, as illustrated in Fig. 12. Atlas charting Tl e 2

aims to recover the missing edges. Recent methods [21, 61, 63,
64] tackled some aspects of this task, but were not applied to fully
in-the-wild settings. As such, some of their key assumptions (e.g.,
tree-like structures) do not hold in real-world repos. Additionally,
some methods [61] require running each model on multiple inputs,
which is computationally infeasible for millions of models. We

introduce an approach for in-the-wild charting. Figure 12: Documentation level
in Hugging Face

library_name pipeline_tag license
60.0% 40.2% 8.0%

Charting typically begins by measuring pairwise model distances,

which requires a representation for each model as well as a distance function. Common model
representations include: weights [21, 61, 63, 64], activations [61], gradients [63], outputs [26, 32],
metadata [33] or a combination of the above [63]. We represent each model i by its weights w;.
We measure the diQStance between two models using the Euclidean distance of their representations:
Dij = [Jw; — wj]|*.

The core challenge is charting the atlas structure from this distance matrix. While previous approaches
used simple, generic solutions, such as greedy nearest neighbor or minimal directed spanning tree,
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this does not generalize to in-the-wild Model Atlases. The reasons for this include: i) models with
the nearest weight distance are not always connected by an edge, ii) the Model Atlas structure is
generally not a tree. Instead, we propose a set of charting rules motivated by special patterns in model
repos: duplication, quantization near-duplications, checkpoint trajectories, hyperparameter search,
and merging. Identifying and handling these patterns can dramatically improve charting accuracy.

Naive strategy. Our preliminary strategy first
splits models into non-overlapping subsets using

a standard clustering algorithm on the weight %%%%g o8 %o
. . . Q ) N
distance matrix. Previous works [15, 19, 21] 02 e 2
[ &2
showed that each subset corresponds to the 3 o2e% Qo%ggggo
o - 2% ¢ 23%eede
nodes within a single connected component of N ¢ 7)§§gooooooo

the atlas DAG, i.e., we can recover the structure

® 000 O
o 0%rssees *Q0-q
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of each connected component separately. The o> @ O%OO%SQOO
. N . o o
naive strategy first assigns source nodes (this ° c
[ Llama- &

[ ° Llama-

will be elaborated on below), then, at each step, L 3.2-4B-Instruct 3218
it looks for the unassigned node with the shortest
distance to the assigned nodes, and connects the
two with a directed edge. The algorithm stops
when there are no unassigned nodes.

Figure 13: Quantizations are leaves: Our analysis
of over 400,000 documented model relationships
reveals that 99.41% of quantized models are leaf
nodes. This figure shows this for a subset of the
Duplicates and near-duplicates. Real-world Llama-based models. Indeed, quantized models
model repositories contain many duplicates and (magenta) are nearly always leaf nodes, corrobo-
near-duplicates. Exact duplicates occur when rating the statistical finding.

users download a popular base model and re-

upload it without modification. In this, both the original and duplicates have identical distances to all
models. This makes the greedy distance-based algorithm arbitrarily decide between the true parent
and its duplicates, which obviously reduces accuracy. To mitigate this, we identify models with zero
distance as exact duplicates. We retain a single representative instance, designating duplicates as
leaves.

Model quantization compresses models to reduce
memory and storage as well as accelerate their infer- | Duplication Assumption
ence. It transforms a model into a near-duplicate, as
the values of each weight are typically very similar
yet not identical to the original one. This creates a
similar ambiguity to exact duplicate models, as the
distance of the original and quantized model to any other model are almost the same. Moreover,
many models have multiple quantizations, which greatly increases this ambiguity.

Exact duplicates and quantized versions of
models are treated as leaf nodes in the atlas.

To overcome this ambiguity, we identify a pattern of quantization models from real-world atlases. Our
analysis reveals that 99.41% of quantized models on HF are leaf nodes, i.e., they have no child models.
See Fig. 13 for an illustration on the Llama 3.2-1B CC. Intuitively, unquantized models have better
performance than their quantized versions, and practitioners typically use the highest-performing
models for further fine-tuning or merging. Fortunately, detecting quantization is often straightforward.
Quantized models have reduced precision data types (e.g., int8, float16 instead of float32) and fewer
unique weight values. Therefore, we simply identify quantized models and designate them as leaves.

Temporal dynamics for inferring fine struc-
ture. While the weight distance between models | Temporal Dynamics Assumption
is inversely correlated to the likelihood of hav-
ing an edge between them, it does not reveal
the direction of the edge. Previous approaches
predicted edge direction using supervised learn-
ing methods or by unlearned metrics, such as
gradients or weight kurtosis. However, we find
that these methods often do not generalize effec-
tively to real-world model repositories. A key advantage of real-world repositories, unused by prior
works, is the availability of model creation or upload timestamps. We find that the vast majority of
parent models have earlier timestamps than their children, specifically, in the HF model repository,
this occurs for 99.73% of all observed parent-child pairs. We visualize this phenomenon for the

Models with earlier timestamps are assumed
to be topologically higher in the atlas. For
snake patterns, the parent is the closest preceding
model; for fan patterns, it is the earliest model
among the top K weight-based neighbors.
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Llama-3.2-1B CC in Fig. 14. This is a powerful temporal constraint on atlas structure, and in
particular identifies the source nodes as the earliest ones.

Another limitation of the weight distance is that
it may have limited sensitivity in fine-grained
atlas structures. Two common scenarios that
challenge charting methods based on weight
distance are hyperparameter sweeps and check-
point trajectories. In hyperparameter sweeps,
multiple models are trained from a single par-
ent, each with different hyperparameters. Mi-
nor hyperparameter changes can result in sib-
ling models having nearer weight distances to
each other than to their common parent, defy-
ing the nearest neighbor algorithm. Conversely,
checkpoint trajectories represent a sequence
of models saved during a single training run.
In this case, edges should connect consecutive
checkpoints in a chain-like manner, rather than
connecting each checkpoint directly to the ini-
tial model (as in the hyperparameter sweep sce-
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Llama-
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Figure 14: Temporal dynamics indicate edge direc-
tionality: We analyzed over 400,000 documented
model relationships and observed that in 99.73%
of cases, earlier upload times correlate with topo-
logically higher positions in the DAG. Here, we
visualize this trend on a subset of the Llama model
family. Green nodes indicate models where earlier

nario). We term the former pattern a “fan” pat-
tern and the latter a “snake” pattern, illustrated
in Fig. 15, and find that the weight distance
often confuses these two patterns.

upload times align with topological order, while red
nodes represent exceptions to this trend. The source
(in gray) vacuously satisfied this assumption. It is
clear that nearly all nodes satisfy our assumption.

Our key observation is that the temporal model

weight evolution can discriminate between these patterns. In snake patterns, temporal proximity
strongly correlates with weight proximity, due to the sequential evolution. However, this is not the
case in fan patterns, where the closest siblings are not necessarily the closest in time. This leads to
a simple yet effective decision rule. If the weight distance of a model to its K nearest neighbors is
highly correlated to their absolute temporal distance, we classify the pattern as a snake; otherwise, a
fan. Then, we connect the node to one of its nearest neighbors depending on the detected structure.
In snakes, we connect the node to its first nearest neighbor based on weight distance, while in fans,
we connect the node to its oldest nearest neighbor, aiming for the fan’s origin.

Merged models. Prior work assumes that models lie in a di-
rected tree, however, as merged models have multiple parents,
they have more than one incoming edge. This cannot be de-
scribed by trees, but can be described by non-tree DAGs. We
found that many merged models are created using a few pop-
ular libraries, which typically document the parent nodes in the
created model card, hence, the multiple incoming edges are often known. The challenge left is to
chart a DAG instead of a tree. We propose a greedy charting algorithm. We first sort all nodes by
upload times. Then, we process each node in temporal order, predict its parents, and add those edges
to the graph. In the case where the parents are known, we use these edges instead of predicting them.
The algorithm stops where there are no more nodes to process. The runtime complexity is O(n?),
where n is the number of models. It is much faster than [21] (which is typically O(n?)). In practice,
we recover graphs with thousands of nodes in seconds.

Structural Assumption

The atlas structure is a non-tree
directed acyclic graph (DAG).

The most expensive part of the algorithm in terms of compute and storage is the distance matrix
calculation, as it scales with the number of network weights. Therefore, we propose to represent
each model by subsampling the full weight representation to a much smaller number of neurons.
Specifically, we find that keeping just 100 is typically sufficient for significantly speeding up the
runtime while keeping accuracy nearly unchanged.
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Full algorithm. We present the full algorithm
in python-like pseudo code in Alg. 1. The input
is a set of models M, each with weights w, cre-
ation time ¢, known parents P (or P = None),
and whether it is quantized ¢. The algorithm
has 3 hyperparameters: K - the number of
neighbors, K;p, p:h, - thresholds for snake-fan
classification. The output of the algorithm is
the predicted parents for each node m.P. Note
that we can run the algorithm online with a
small modification, by computing the distance
function and kNN as new models arrive. See
App. D for implementation.

C.1 Charting results

Datasets. @ We created an atlas charting
dataset based on the ground truth model
relation found on the “hub-stats™” dataset. It
consists of 3 atlas connected components:
Qwen2.5-0.5B (Qwen), Llama-3.2-1B
(Llama), and Stable-Diffusion-2 (SD).

Fans . _:o°0 Snakes
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L3 ' o 50252 “ | Qwen2.50.58-
%% oty Ogo%o Instruct
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Figure 15: Snake vs. Fan patterns: Snake patterns
often arise from sequential training checkpoints,
while fan patterns typically result from hyperparam-
eter sweeps. In both structures, the model weight
variance is low. However, in snake patterns, the
weight distance has a high correlation with model
upload time, whereas in fan patterns, the correlation
is lower. Note colors are the same as Fig. 13

We also created another attribute prediction dataset. Its task is to predict 6 attributes: accuracy,

pipeline_tag, library_name, model_type,

license, relation_type. The ground truth was

obtained by a combination of model metadata and running an LLM on the model cards. We detail the
dataset creation process in App. E and will publicly release the datasets.

Baselines. We compared a weight-agnostic clas-
sical method and a newer method that depends
on weights. MoTHer [2]] - a recent weight-
dependent method. Importantly, it predicts edge
direction using weight kurtosis and relies on
the structure being a tree. We could not scale
other weight-based methods to operate on our
in-the-wild dataset. We also included the fol-
lowing structure-only baselines: random edge
assignment, majority vote (assigning all nodes
to the parent with the highest out-degree), and
Price’s model [6]. The latter is a preferential
attachment algorithm [1], popular for citation
networks, that assigns edge probabilities based
on node out-degree. It is essentially a probabilis-
tic version of majority vote that allows for new
“hub” formation. Note that all baselines (except
random) assume the structure is a tree, not a
DAG. To accommodate the majority and Price’s
models, we assumed a graph stem with known
edges, containing 10% of the nodes in the con-
nected component. We evaluated all methods by
their accuracy on the remaining 90% of models.

Baseline comparison. We use our method to
chart three atlas connected components. As we

Algorithm 1: Atlas structure recovery (psuedo-
code)

# Input: M = {(w, q, t, P)}, K, K_th, rho_th

# w = weights, t = creation time, P = known parents
M = M.sort(key=m.t) # Sort M by timestamp t

D = compute_distance_matrix (M)

D.diag = inf

for i, m in enumerate(M):
if is_quantized(m.w): # Set quantized model as leaf node
D[i, :] = inf
if m.P: # Use existing parents if available
continue
for j in range(i+1, len(M)): # Deduplication
if D[, j] == O:
D[j, :] = inf
M[j1.P = M[i].P

# Find k-NN

k_ind = argsort(D[:, il)[1:K]

temporal_k_ind = argsort(D[i+1:, il) [1:K]

k_dist = D[k_ind, il

k_times = [M[k].t for k in k_ind]

temporal_k_times = [M[k].t for k in temporal_k_ind]

# Check spread of distances
if k_dist[-1] - k_dist[0] > K_th:
m.P = temporal_k_ind[0]
else:
corr = correlation(k_dist, abs(k_times - m.t))
if corr > rho_th: # Snake
m.P = temporal_k_ind[0]
else: # Fan
m.P = temporal_k_ind[argmin(temporal_k_times)]

can see in Tab. 2, the baselines perform better than random but still poorly. The majority approach
models the graph as depth-1 centered around the root. This obtains low but non-trivial results, as
this model is too simplistic. Price’s model is more powerful and can create a more realistic looking
structure. However, it fails as it is data agnostic and connects the wrong nodes. MoTHer performs

’huggingface.co/datasets/cfahlgreni/hub-stats
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Table 2: Atlas recovery results: Our method out-  Table 3: Subtractive ablation: We remove each
performs the baselines by a significant margin,  of our assumptions individually, indeed, we see

even for in-the-wild models. that each one contributes to our final high recov-
Method Qwen Llama SD ery accuracy.
Method Qwen Llama SD

Random - root  1.77 1.84 0.22 ~Greedy Alg. 734 7898 TFailed
Random 098  0.67  0.75 _ _ Quantization 7057 3659  84.85
Majority 15.03 25.00 36.75 ‘Os — Deduplication 67.85 7528  88.76
Price’s [6] 2.28 5.08 8.50 — Tfemporal Cf)nsistency 75.47  80.13  80.86
MoTHer [21] 3281 1932 5051 Mo Snakes e el e
Ours 78.87 80.44 85.10 Ours 7887 8044 8510

better on some DAGs, but its directional prediction is weaker and it lacks our other priors, resulting
in lower performance.

D Implementation details

To visualize the atlas, we use the open-source software Gephi [3]. We set K = 5 nearest neighbors in
all DAGs and determine the snake correlation threshold (pg,) dynamically for each DAG as the 60th
percentile of all node correlations. The distance spreading correlation threshold (Ky,) is fixed at 0.05.

Additionally, in all our experiments, we use 100 random neurons as model features. For Stable
Diffusion, we select these neurons exclusively from the attention layers, as these layers typically
undergo LoRA fine-tuning. In all DAGs, we allocate 10% of the actual DAG for training and reserve
the remaining 90% as a test set. These hyperparameters are applied consistently across all three tested
DAG structure recovery settings.

E Dataset details

We construct two datasets from the Hugging Face “hub-stats” dataset’: (i) Metadata Imputation and
(i) DAG Recovery. We will make our dataset publicly available on Hugging Face. To process the
data, we first used the base_model attribute to group models into connected components. Since
many models lacked this attribute, we manually inspected the largest 800 connected components and
filled in the missing values. This step helped merge large components with incomplete information
and reduced data noise.

The metadata imputation dataset includes all 1.3 million models. The tasks involve imputing the fol-
lowing attributes: pipeline_tag, library_name, model_type, license, and relation_type,
as well as estimating model evaluation metrics. To obtain the evaluation metrics, we downloaded
model cards and extracted the metrics using deepseek-ai/DeepSeek-R1-Distill-Qwen-7B in a zero-shot
setting on models from mistralai/Mistral-7B-v0.1 CC.

To construct the charting dataset, we created a graph of all models on Hugging Face. Using the
base_model attribute, we established ground truth edges between models that reference each other.
We removed all nodes with no parent or child (i.e., CCs with a single model), reducing the initial 1.3
million models to approximately 400,000 models across different connected components. We defined
sources as nodes with no incoming edges and considered weakly connected components, ensuring
that each CC has a single source node.

To facilitate model downloads, we pruned the CCs by randomly sampling K leaf nodes if a node had
more than K leaf nodes, filtering out the rest. This allowed us to download hundreds rather than tens
of thousands of models. We set K = 3. If a download failed, we removed the model from the ground
truth atlas.

During the download process, quantized model weights required special handling to convert them
back into workable weight files. The conversion was based on the tensor type, which indicates
whether a model has undergone quantization. While reviewing the Hugging Face model cards, we

*https://huggingface.co/datasets/cfahlgreni/hub-stats
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Figure 16: Individual connected components - 5/6

discovered multiple tagging inconsistencies; some models were incorrectly labeled as quantized,
while others were missing the label. We propose using the tensor type as a reliable indicator of
quantization status.
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Figure 17: Individual connected components - 6/6
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