
Split, Unlearn, Merge:
Leveraging Data Attributes for More Effective Unlearning in LLMs

Swanand Ravindra Kadhe 1 Farhan Ahmed 1 Dennis Wei 1 Nathalie Baracaldo 1 Inkit Padhi 1

Abstract
Large language models (LLMs) have shown to
pose social and ethical risks such as generating
toxic language or facilitating malicious use of
hazardous knowledge. Machine unlearning is a
promising approach to improve LLM safety by
directly removing harmful behaviors and knowl-
edge. In this paper, we propose “SPlit, UNlearn,
MerGE” (SPUNGE), a framework that can be used
with any unlearning method to amplify its effec-
tiveness. SPUNGE leverages data attributes dur-
ing unlearning by splitting unlearning data into
subsets based on specific attribute values, unlearn-
ing each subset separately, and merging the un-
learned models. We empirically demonstrate that
SPUNGE significantly improves the performance
of two recent unlearning methods on state-of-the-
art LLMs while maintaining their general capabil-
ities on standard academic benchmarks.

1. Introduction
The rapid improvement and increasing adoption of large
language models (LLMs) has been accompanied by their
downsides, notably their potential harmful behaviors (Wei-
dinger et al., 2022). LLMs are known to generate harmful
content such as toxic, offensive, or hateful language (Sheng
et al., 2019; Gehman et al., 2020). LLMs also contain haz-
ardous knowledge of sensitive topics such as biosecurity
and cybersecurity, which can be (mis)used to empower mali-
cious actors (Sandbrink, 2023; Fang et al., 2024). A widely
adopted way to safeguard against harmful or objectionable
responses is to align LLMs via fine-tuning (Ouyang et al.,
2022; Bai et al., 2022; Korbak et al., 2023; Glaese et al.,
2022). However, current approaches such as reinforcement
learning with human feedback (RLHF) are computationally
expensive and have shown to be vulnerable to adversarial or
jailbreak attacks where adversarial prompts break through
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Figure 1. An Overview of the SPlit, UNlearn, then merGE
(SPUNGE) Framework. SPUNGE splits the unlearning dataset into
subsets based on selected attribute values, unlearns each subset
separately, and then merges the unlearned models.

alignment and re-invoke harmful responses (Wei et al., 2023;
Zou et al., 2023; Carlini et al., 2023). Even subsequent be-
nign fine-tuning can degrade alignment (Qi et al., 2024).

In parallel, machine unlearning has emerged as a promis-
ing paradigm for more targeted and efficient sociotechnical
harm reduction. It has been shown that unlearning can re-
duce toxicity and other harmful responses (Ilharco et al.,
2023; Zhang et al., 2023; Yao et al., 2024) and erase haz-
ardous scientific knowledge (Li et al., 2024). Unlearning
can be considered a complementary safety tool to alignment
techniques and can be used before or after alignment (Liu
et al., 2024a). Prior work on unlearning in LLMs has fo-
cused on developing efficient unlearning methods, without
taking into account characteristics of unlearning data (Xu
et al., 2023b; Liu et al., 2024a) (see Sec. 2).

In this work, we demonstrate that leveraging attributes in the
unlearning data can significantly improve the effectiveness
of unlearning. We propose a simple yet effective framework,
SPUNGE: “SPlit, UNlearn, then merGE” which operates in
three steps (see Figure 1): (i) the unlearning data is split into
subsets based on the values of a selected attribute; (ii) each
subset is separately used to unlearn a subtype of the unde-
sired behavior, resulting in multiple unlearned LLMs; (iii)
the unlearned LLMs are merged to obtain the final unlearned
LLM. SPUNGE can be used with any unlearning method to
potentially improve its effectiveness without impacting the
LLM’s general performance for other tasks.
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Our Contributions:

• We propose the SPUNGE framework that can improve
the effectiveness of any unlearning method by lever-
aging attributes associated with the unlearning data.
These metadata have been previously ignored.

• We evaluate SPUNGE for two unlearning scenarios:
undesired behavior (toxicity and hate speech), and haz-
ardous scientific knowledge (biosecurity and cyberse-
curity). We empirically demonstrate that SPUNGE sig-
nificantly improves the performance of two recent un-
learning methods on state-of-the-art LLMs (LLAMA2-
7B and ZEPHYR-7B-BETA).

• SPUNGE boosts the performance of existing unlearning
techniques by up to 32% in reducing the percentage
of toxic text generated on ToxiGen (Hartvigsen et al.,
2022), by 11.8% in removing hazardous biosecurity
knowledge, and by 4% in removing hazardous cyberse-
curity knowledge measured on the WMDP benchmark
(Li et al., 2024). At the same time, SPUNGE main-
tains general capabilities of the LLMs, measured on 10
standard academic benchmarks.

2. Related Work
Machine Unlearning: The notion of machine unlearning
was first introduced by Cao & Yang (2015) motivated by
the right-to-be-forgotten and focused on removing specific
training samples. Since then, there have been a number of
works that have focused on removing specific training data
samples via unlearning (Bourtoule et al., 2021; Graves et al.,
2020; Izzo et al., 2021; Ginart et al., 2019; Golatkar et al.,
2020a;b; Thudi et al., 2021).

Unlearning for LLMs has started to gain recent attention re-
sulting in works in data unlearning (Jang et al., 2023; Wang
et al., 2023; Kassem et al., 2023; Maini et al., 2024; Zhang
et al., 2024), concept unlearning (Eldan & Russinovich,
2023), behavior unlearning (Lu et al., 2022; Yao et al., 2024;
Liu et al., 2024b), knowledge unlearning (Li et al., 2024).
Recent surveys have shown additional methods where un-
learning has been applied (Nguyen et al., 2022; Xu et al.,
2023a; Liu et al., 2024a). Prior works have mainly focused
on designing unlearning methods, evaluation metrics, and
benchmarks. However, they do not take into account at-
tributes of data used for unlearning. Our proposed SPUNGE
leverages data attributes to fortify the performance of any
unlearning method.

Toxicity Reduction in LLMs: Early works in reducing toxi-
city in language models (Krause et al., 2021; Liu et al., 2021;
Dathathri et al., 2020) have focused on small to moderated
sized models and restrict to explicit toxicity. Detoxifica-
tion techniques primarily employ controlled text generation

Algorithm 1 SPUNGE Framework
Input: Initial model parameters θinit, Unlearning dataset
D, Attribute with values a1, . . . , an, Processing pipeline
proc, Unlearning method U , Merging methodM
Output: Unlearned model θu

for t = 1 to n do
Select subset associated with data attribute value at as
Dt = {x ∈ D | attr(x) = at}

Process subset for unlearning
Du

t = {proc(x) | x ∈ Dt}
Perform unlearning θut ← U(θinit, D

u
t )

end for
Perform merging θu ←M(θu1 , . . . , θ

u
n)

methods, which incurs heavy inference overhead and it is
difficult to measure model performance on benchmark tasks.
Machine unlearning provides an alternative for mitigating
toxicity in LLMs (Ilharco et al., 2023; Zhang et al., 2023;
Lu et al., 2022).

3. SPUNGE Framework
The proposed SPUNGE framework is illustrated in Figure 1
and in Algorithm 1. We focus on unlearning behaviors or
bodies of knowledge (as opposed to smaller, discrete units
of information) from a given LLM with parameters θinit; this
is represented by a dataset D consisting of examples of the
undesired behavior or knowledge. We consider scenarios in
which the dataset can be partitioned into subsets correspond-
ing to different values a1, . . . , an of an attribute a in the
data which can often be identified. In the case of toxicity,
for example, the attribute could be the demographic group
(e.g., women, Muslims) targeted by the toxic text.

Given a dataset and attribute as described above, the
SPUNGE framework consists of the following steps: (1)
Split the dataset into subsets Dt for t = 1, . . . , n based on
the attribute. (2) Perform unlearning separately on each sub-
set Dt, all starting from the given LLM, θinit, and yielding
n different unlearned LLMs, θut . (3) Merge the unlearned
LLMs into a single final unlearned LLM, θu.

SPUNGE can be instantiated with any unlearning method
U(θinit, D

u
t ) and merging method M(θu1 , . . . , θ

u
n), where

the unlearning method updates model parameters from θinit
to θut using data subset Du

t , and the merging method com-
bines these independent parameters θu1 , . . . , θ

u
n into one θu.

See Section 3.1 for details.

It is frequently the case for unlearning samples to have as-
sociated attributes. SPUNGE can be applied to a variety of
attributes. For this reason, in Algorithm 1, we consider a
function attr(·) that can output the value of a given at-
tribute for a data sample. In practice, such a function can
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be implemented by using data annotations or appropriate
classifiers (e.g., a domain classifier). Similarly, we general-
ize any processing required by the unlearning method with
function proc(·). This processing function abstracts steps
such as selecting representative samples with undesirable
behavior or knowledge; it can also augment the unlearning
set with samples of desirable behavior or knowledge to be
retained.

Note that unlearning for each component model θut is per-
formed on the subset Dt of the original data. Therefore,
when D1, . . . , Dn are the partition of the unlearning data D,
the total number of gradient steps in SPUNGE is the same
as applying the unlearning method U on the entire data D
without using SPUNGE. Additional computation for using
SPUNGE on top of an unlearning method U comes from the
merging step, and model merging methods are computation-
ally efficient (Matena & Raffel, 2022; Choshen et al., 2022;
Yadav et al., 2023).

3.1. Instantiating SPUNGE

We describe the specific unlearning and merging methods
used in this work in the following.

Unlearning via Task Vector Negation (TVN) (Ilharco et al.,
2023; Zhang et al., 2023): This method uses the notion of
task vector arithmetic for unlearning (Ilharco et al., 2023).
Let θinit ∈ Rd denote the initial model weights and θft ∈ Rd

the corresponding weights after fine-tuning the model on
unlearning dataset D. The task vector used for unlearning
is computed as τ = θft − θinit. TVN obtains the unlearned
model as θu = θinit − λτ where λ ≥ 0 is a scaling parame-
ter. Following Zhang et al. (2023), we employ Parameter-
Efficient Fine-Tuning (PEFT) instead of full fine-tuning and
compute the task vector using Parameter Efficient Modules
(PEMs). In our experiments, we use a state-of-the-art PEFT
method, LoRA (Hu et al., 2022), and perform negation using
LoRA modules with λ = 1.

Representation Misdirection Unlearning (RMU) (Li et al.,
2024): This method randomizes model activations on un-
learning data while preserving model activations on data
to be kept. Specifically, RMU uses a two-part loss func-
tion: (1) a forget loss to bring the model activations on
unlearning data close to a scaled uniform random vector,
and (2) a retain loss to preserve model activations on data
to be retained. Here, let D denote the unlearning dataset
and D′ denote the retain set (containing samples with desir-
able behavior or knowledge). Let fθ(·) and fθinit(·) denote
the hidden states of the model being unlearned and the ini-
tial model, respectively, at some layer ℓ. Then, the forget
loss is Lu = Exu∼D

[
1

|xu|
∑

token t∈xu
∥fθ(t)− c · u∥22

]
,

where u is a random unit vector with entries sam-
pled independently, and uniformly at random from [0, 1),

and c is a hyperparameter. The retain loss is Lr =

Exr∼D′

[
1

|xr|
∑

token t∈xr
∥fθ(t)− fθinit(t)∥

2
2

]
. The model

parameters are updated to minimize the combined loss
L = Lu + αLr, where α > 0 is a hyperparameter. See
Algorithm 2 in Appendix B.1 for additional details.

TIES-Merging (Yadav et al., 2023): This method allows
one to merge multiple model parameters using task vector
arithmetic. Given a set of model weights θu1 , . . . , θ

u
n along

with the initial weights θinit, TIES-Merging computes a task
vector for each model as τt = θut − θinit. Then, it operates
in three steps: (i) trim each task vector by selecting the
parameters with largest magnitudes, (ii) resolve sign con-
flicts by creating an aggregate elected sign vector, and (iii)
average only the parameters whose signs are the same as the
aggregated elected sign. See Algorithm 2 in Appendix B.1
for additional details.

4. Unlearning Toxicity and Hate Speech
4.1. Experimental Setup

We focus on reducing toxicity and hate speech generated by
LLMs. We consider a similar experimental setup to Touvron
et al. (2023); Mukherjee et al. (2023).

Benchmarks: To evaluate the amount of toxicity and hate
speech in model generations, we use the ToxiGen bench-
mark (Hartvigsen et al., 2022). ToxiGen is designed to
measure implicit toxicity and hate speech across 13 demo-
graphic groups (e.g., African Americans, women, Mexicans,
etc.). We prompt the model for completions, with toxic
and benign examples from the (annotated) test subset of
ToxiGen. Following Touvron et al. (2023), to measure the
toxicity of the model completions, we use a RoBERTA
model fine-tuned on ToxiGen (Hartvigsen et al., 2022). We
use greedy decoding and compute the percentage of com-
pletions that are deemed toxic by the classifier.

In conjuction to measuring the toxicity after unlearning, we
also assess how unlearning impacts the fluency of the model.
Similar to Liu et al. (2021); Lu et al. (2022), we measure the
fluency of the outputs by computing their perplexity with an
independent, larger model, LLAMA2-13B.

To measure the general capability of the model, we consider
10 standard academic benchmarks, including all 6 bench-
marks from the Open LLM Leaderboard (Beeching et al.,
2023). See Appendix A for the list of benchmarks. We
perform evaluations using the Language Model Evaluation
Harness framework (Gao et al., 2023).

Unlearning Dataset: We used the annotated training subset
of ToxiGen consisting of of 8,960 samples of both benign
and toxic examples across 13 demographic groups.
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4.2. SPUNGE Leveraging Demographic Information

We instantiate SPUNGE using the demographic information
in the unlearning set as attributes. We use the ToxiGen
subset for unlearning which contains, for each prompt, the
target demographic group and the toxicity level evaluated
by human annotators. While ToxiGen encompasses 13 de-
mographic groups, for our experiments, we choose the fol-
lowing 5 representative demographic groups: Nationality
(Mexican), Gender and Sex (Women), Religion (Muslim),
Sexual Orientation (LGBTQ), and Health Condition (Physi-
cal Disability).

SPUNGE first splits the unlearning set into 5 subsets –
D1, . . . , D5 – each associated with one of the above 5 demo-
graphic groups. Next, from each set Dt, we select a subset
of samples for which the toxicity level ≥ 3. This yields five
unlearning subsets Du

1 , . . . , D
u
5 . SPUNGE then performs

unlearning on the base model θinit with each Du
t to obtain

θu1 , . . . , θ
u
5 . Finally, we use TIES-merging (Section 3.1) to

merge the five unlearned models.

Experimental Results: We perform unlearning on two
state-of-the-art models, ZEPHYR-7B-BETA (Tunstall et al.,
2023) and LLAMA2-7B (Touvron et al., 2023). We consider
RMU and TVN (Section 3.1) as the unlearning methods and
instantiate SPUNGE with each. Table 1 shows results for the
two LLMs and two unlearning methods. The most relevant
comparisons are between an unlearning method (RMU or
TVN) and its SPUNGE-enhanced version. With ZEPHYR-
7B-BETA, SPUNGE boosts the performance of both RMU
and TVN. Specifically, SPUNGE reduces the toxicity per-
centage of RMU by 32% (from 14.61 to 9.89) and of TVN by
31% (from 5.65 to 3.88), while maintaining the fluency of
generations as measured by the perplexity computed with
LLAMA-13B. Notably, SPUNGE maintains general capa-
bilities of the model as measured by the average accuracy
on the benchmarks. Similarly, for LLAMA2-7B, SPUNGE
reduces the toxicity percentage of TVN by 30% (from 4.26
to 2.96) while maintaining the average accuracy on bench-
marks within 1% of the base model1. We present exper-
iment details and the accuracy results on benchmarks in
Appendix B.1. In Appendix B.2, we compare the toxicity
percentage for each demographic and show that SPUNGE
strengthens the baseline methods.

4.3. SPUNGE Leveraging Type of Toxicity

We consider the goal of unlearning implicit as well as ex-
plicit toxicity from LLMs. Explicit toxicity is a conventional
form of toxicity containing profanity, slurs, swearwords,

1We have so far been unable to obtain satisfactory results with
RMU for LLAMA2-7B, since we found it tricky to tune RMU’s
hyperparameters for LLAMA2-7B and Li et al. (2024) did not
provide guidance on this. For RMU with ZEPHYR-7B-BETA, we
use the hyperparameters from Li et al. (2024).

Table 1. Evaluation of toxicity unlearning on ToxiGen. Toxicity
is the percentage of toxic generations, PPL is the perplexity of
generations measured with LLAMA2-13B, and Average Acc. is
the average performance on 10 benchmarks (Appendices A and B).
SPUNGE is configured to leverage demographic information.

MODEL TOXIGEN AVERAGE
+ METHOD TOXICITY (↓) PPL (↓) ACC. (↑)
ZEPHYR-7B-BETA 20.48 7.62 65.72
+ RMU 14.61 8.05 65.92
+ SPUNGE-RMU 9.89 8.03 65.97
+ TVN 5.65 8.36 65.67
+ SPUNGE-TVN 3.88 8.66 65.53

LLAMA2-7B 15.95 5.97 56.29
+ TVN 4.26 8.42 56.35
+ SPUNGE-TVN 2.96 7.88 55.72

Table 2. Evaluation of toxicity unlearning on ToxiGen and Re-
alToxicityPrompts (RTP). We consider LLAMA2-7B with TVN.
Toxicity is the percentage of toxic generations and Average Acc.
is the average performance on the 10 benchmarks (Appendices A
and B). SPUNGE is configured to leverage type of toxicity: implicit
versus explicit toxicity.

MODEL TOXICITY AVERAGE
+ METHOD TOXIGEN (↓) RTP (↓) ACC. (↑)
LLAMA2-7B 15.95 6.40 56.29
+ TVN 8.42 3.17 56.14
+ SPUNGE-TVN 4.81 1.97 55.23

and offensive language. On the other hand, implicit toxicity
does not include such terms in contrast to explicit toxicity
and can even be positive in sentiment (Hartvigsen et al.,
2022). Examples of implicit toxicity include stereotyping
and microaggressions. The ToxiGen dataset (Hartvigsen
et al., 2022) is focused on implicit and subtly toxic sam-
ples. There are datasets that contains samples with explicit
toxicity such as Civil Comments (Borkan et al., 2019).

As a baseline we perform unlearning on LLAMA2-7B with
TVN using a dataset consisting of samples with implicit
as well as explicit toxicity. To represent implicit toxicity,
we take samples from the (annotated) train set of ToxiGen
with human toxicity level of 5 (highest level). To represent
explicit toxicity, we take samples from Civil Comments
with severe toxicity score greater than 0.35. We use the
same hyperparameters from Section 4.2.

For comparison, we instantiate SPUNGE to leverage type
of toxicity. Specifically, we separate the unlearning set
into two subsets: examples with implicit toxicity (D1) and
examples with explicit toxicity (D2). We separately unlearn
the two subsets, and then merge the unlearning models with
TIES-merging.
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Experimental Results: Table 2 compares TVN and its
SPUNGE-enhanced version. In addition to computing toxic-
ity on the ToxiGen test set (which contains implicitly toxic
and benign samples), we also compute toxicity on Real Tox-
icity Prompts (RTP) (Gehman et al., 2020) (which contains
explicitly toxic and benign samples). We see that SPUNGE
amplifies the performance of TVN on both ToxiGen and RTP,
while maintaining the performance on benchmark tasks. We
present experiment details and the accuracy results on bench-
mark tasks in Appendix B.1.

5. Unlearning Hazardous Knowledge
5.1. Experimental Setup

We focus on reducing the model’s ability to answer ques-
tions about hazardous knowledge (e.g., cultivating virus)
while maintaining the ability to answer questions about non-
hazardous knowledge (e.g., properties of fungi). We follow
the experimental setup of Li et al. (2024).

Benchmarks: To evaluate hazardous knowledge removal,
we use the Weapons of Mass Destruction Proxy (WMDP)
benchmark (Li et al., 2024) which consists of 3,668 multiple-
choice questions on biosecurity (WMDP-Bio), cybersecu-
rity (WMDP-Cyber), and chemistry (WMDP-Chem). To
evaluate general-knowledge question answering, we use
the Massive Multitask Language Understanding (MMLU)
benchmark (Hendrycks et al., 2021). Similar to Li et al.
(2024), we conduct unlearning experiments only on the
challenging subsets WMDP-Bio and WMDP-Cyber. We
again evaluate using the Language Model Evaluation Har-
ness framework (Gao et al., 2023).

Unlearning Dataset: For unlearning, we use the bio cor-
pora and cyber corpora collected by Li et al. (2024) and
released publicly. The bio corpora consist of a selected sub-
set of PubMed papers that are related to the topics appearing
in WMDP-Bio questions. The cyber corpora consist of pas-
sages scraped from GitHub via keyword search on topics
related to WMDP-Cyber questions.

Baseline: We consider RMU (Section 3.1) as the baseline
unlearning method. RMU has been shown to be superior to
several unlearning methods for hazardous knowledge un-
learning (Li et al., 2024). In our preliminary experiments,
TVN (Section 3.1) was not able to successfully unlearn haz-
ardous knowledge while retaining general performance.

5.2. SPUNGE Leveraging Scientific Domains

We instantiate SPUNGE to leverage the scientific domain
attribute in the unlearning set. As mentioned in the previous
section, the unlearning dataset is a combination of bio and
cyber corpora. We split the data by domain to separate bio
corpora (D1) and cyber corpora (D2). SPUNGE performs un-

Table 3. Evaluation of hazardous knowledge unlearning on
WMDP. SPUNGE strengthens the performance of RMU, while pre-
serving general capabilities of the model.

MODEL WMDP-BIO WMDP-CYBER MMLU
+ METHOD (↓) (↓) (↑)
ZEPHYR-7B-BETA 63.55 43.63 58.15
+ RMU 31.26 27.62 56.48
+ SPUNGE-RMU 27.57 26.47 55.83

learning separately on each of them to obtain two unlearned
LLMs: one with biosecurity hazardous knowledge removed
θu1 and the other with cybersecurity hazardous knowledge
removed θu2 . SPUNGE then merges θu1 and θu2 using TIES-
merging (Section 3.1). Note that, in contrast to SPUNGE,
RMU (and other baselines) in Li et al. (2024) use the bio
and cyber corpora together during unlearning – in particular,
RMU alternates between one batch from the bio corpora and
one from the cyber corpora during unlearning.

Experimental Results: Table 3 shows that SPUNGE forti-
fies the performance of RMU in removing hazardous knowl-
edge while maintaining general-knowledge capabilities. In
particular, SPUNGE reduces WMDP-Bio accuracy by 11.8%
(from 31.26 to 27.57) and WMDP-Cyber accuracy by 4%
(from 27.62 to 26.47), while maintaining MMLU accuracy
within 1% of RMU. See Appendix B.1 for experiment details
and the accuracy results on benchmarks.

6. Conclusion
We presented SPUNGE, a novel unlearning framework that
takes advantage of attributes associated with the data to be
unlearned. SPUNGE can be instantiated with any unlearn-
ing method to boost its performance. SPUNGE leverages
attributes using a split-unlearn-then-merge approach. We
considered two unlearning scenarios: unlearning undesir-
able behavior (i.e., toxicity) and hazardous knowledge (i.e.,
biosecurity and cybersecurity). Through our experiments,
we demonstrated that SPUNGE significantly improves the
effectiveness of two state-of-the-art unlearning methods on
two state-of-the-art LLMs. Interesting future works would
explore using SPUNGE for data unlearning (e.g., copyrighted
or licensed data).
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A. Benchmarks Used for Evaluation
We use the following 10 benchmarks for evaluating the
general capability of models. We use all six benchmarks
from the Open LLM Leaderboard (Beeching et al., 2023).
We use the same few-shot prompting evaluation method
used by the Open LLM Leaderboard and select the same
number of shots as prescribed for each benchmark. For the
remaining four benchmarks, we choose those commonly in
literature and perform 5-shot prompting for each.

• AI2 Reasoning Challenge (ARC-Challenge and ARC-
Easy) (Clark et al., 2018) (25-shot)

• HellaSwag (Zellers et al., 2019) (10-shot)

• MMLU (Hendrycks et al., 2021) (5-shot)

• TruthfulQA (Lin et al., 2022) (0-shot)

• Winogrande (Sakaguchi et al., 2021) (5-shot)

• GSM8K (Cobbe et al., 2021) (5-shot)

• MathQA (Amini et al., 2019) (5-shot)

• PIQA (Bisk et al., 2019) (5-shot)

• PubMedQA (Jin et al., 2019) (5-shot)

B. Experimental Results: Details and
Additional Results

B.1. Experiment Details

SPUNGE with RMU and TIES: Algorithm 2 presents the
instantiation of SPUNGE with RMU and TIES.

RMU with ZEPHYR-7B-BETA: We use the hyperparame-
ters from Li et al. (2024). In particular, we use c = 6.5
and α = 1200. We use the Adam optimizer with a learn-
ing rate of 5 × 10−5 and a batch size of 150. We select
layer 7 to perform the unlearning loss and layers 5, 6, and
7 to update gradients. When performing separate unlearn-
ing with SPUNGE, the unlearning subsets are substantially
smaller. Thus, we perform training for 2 epochs with early
stopping if the cosine similarity between the activations of
the unlearned model and the initial model drops below 0.5.

TVN with ZEPHYR-7B-BETA: We set the LoRA rank to
16, α associated with LoRA to 16, LoRA dropout to 0.01,
and the target modules as the default modules in the Hug-
gingFace PEFT library. We use the Adam optimizer with a
learning rate of 2×10−5 and a cosine learning rate schedule
to train for 1 epoch. When performing separate unlearn-
ing with SPUNGE, the unlearning subsets are substantially
smaller. Thus, we perform training with a learning rate of
1× 10−4 for 1 epoch.

TVN with LLAMA2-7B: We set the LoRA rank to 64, α
associated with LoRA to 64, LoRA dropout to 0.01, and the
target modules as key, value, query, up, down, and
gate projections. We use the Adam optimizer with a learn-
ing rate of 1× 10−4 and a cosine learning rate scheduling.

Performance on Academic Benchmarks: We present the
performance on 10 academic benchmarks (Appendix A) in
Tables 4, 5, 6, and 7.

B.2. Toxicity per Demographic Group

We analyze the percentage of toxic generations for each
demographic group. We focus on the same 5 demographic
groups used during unlearning: Nationality (Mexican), Gen-
der and Sex (Women), Religion (Muslim), Sexual Orienta-
tion (LGBTQ), and Health Condition (Physical Disability).
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Algorithm 2 SPUNGE Framework Instantiated with RMU (Li et al., 2024) and TIES-Merging (Yadav et al., 2023)
Input: Initial model parameters θinit, Dataset D for unlearning, Retain dataset Dr (as needed by RMU), Data attributes
a1, . . . , an, Parameters for RMU c, α, Parameters for TIES-merging λ, k
Output: Unlearned model θu
for t = 1 to n do

Select subset associated with data attribute at as Dt = {x ∈ D | attr(x) = at}
Process subset for unlearning Du

t = {proc(x) | x ∈ Dt}
Perform unlearning θui ← RMU(θinit, D

u
t , D

r, c, α)
end for
Perform merging θu ← TIES(θu1 , . . . , θ

u
n, θinit, λ)

Function RMU(θ,Du, Dr, c, α)
Sample unit vector u with entries drawn independently, and uniformly at random from [0, 1)
for data points xu ∼ Du, xr ∼ Dr do

Set Lu = 1
L

∑
t∈xu

∥fθ(t)− c · u∥22, where xu contains L tokens
Set Lr = 1

L

∑
t∈xr
∥fθ(t)− fθinit(t)∥

2
2, where xr contains L tokens

Update parameters θ using L = Lu + α · Lr

end for
return θ

Function TIES(θ1, . . . , θn, θinit, λ, k)
for t = 1 to n do

Create task vector τt = θut − θinit
Sparsify the task vector to keep only largest k elements to obtain τ̂t
Collect signs for components γ̂t ← sign(τ̂t)
Collect magnitudes for components µ̂← |τ̂t|

end for
Elect final signs as γu ← sign (

∑n
t=1 τ̂t)

for p = 1 to d do
Ap = {t ∈ [n] | γ̂p

t = γp}
τpu = 1

|Ap|
∑

t∈Ap τ̂
p
t

end for
θu ← θinit + λτu
return θu

Table 4. Accuracy of the benchmarks for the ZEPHYR-7B-BETA

model and the models after performing unlearning on ToxiGen.

BENCHMARK ZEPHYR-7B-BETA RMU SPUNGE

ARC-C (↑) 63.90 63.31 63.65
ARC-E (↑) 84.89 84.93 84.89
HELLASWAG (↑) 84.21 84.16 84.14
MMLU (↑) 59.75 59.82 59.73
WINOGRANDE (↑) 77.42 78.13 77.82
GSM8K (↑) 34.42 34.64 34.87
MATHQA (↑) 38.05 37.82 38.35
PIQA (↑) 82.69 82.91 82.75
PUBMEDQA (↑) 76.80 77.00 76.60
TRUTHFULQA (↑) 55.12 56.52 56.92

AVERAGE (↑) 65.72 65.92 65.97

Table 5. Accuracy on the benchmarks for the ZEPHYR-7B-BETA

model and the models after performing unlearning on ToxiGen.

BENCHMARK ZEPHYR-7B-BETA TVN SPUNGE

ARC-C (↑) 63.90 64.50 63.73
ARC-E (↑) 84.89 83.96 83.37
HELLASWAG (↑) 84.21 84.41 84.28
MMLU (↑) 59.75 58.14 58.52
WINOGRANDE (↑) 77.42 78.05 77.82
GSM8K (↑) 34.42 34.79 33.43
MATHQA (↑) 38.05 36.88 36.71
PIQA (↑) 82.69 8226 82.42
PUBMEDQA (↑) 76.80 76.60 77.00
TRUTHFULQA (↑) 55.12 57.20 58.01

AVERAGE (↑) 65.72 65.67 65.52
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In Figures 2, 3, and 4, we present radar plots for toxicity
percentage per demographic group. The plots show results
for the base model, a baseline unlearning, and SPUNGE used
with the baseline. SPUNGE reduces the toxicity for every
demographic group for LLAMA2-7B (Figure 2) whereas for
ZEPHYR-7B-BETA, SPUNGE cuts down toxicity percentage
for most demographic groups (Figures 3 and 4).

Table 6. Accuracy on the benchmarks for the LLAMA2-7B model
and the models after performing unlearning on ToxiGen.

BENCHMARK LLAMA2-7B TVN SPUNGE

ARC-C (↑) 53.32 53.32 52.04
ARC-E (↑) 81.48 81. 64 81.69
HELLASWAG (↑) 78.57 77.44 74.39
MMLU (↑) 45.99 44.74 44.22
WINOGRANDE (↑) 72.45 73.71 74.11
GSM8K (↑) 15.01 8.11 9.47
MATHQA (↑) 29.41 29.31 29.14
PIQA (↑) 79.37 79.97 79.65
PUBMEDQA (↑) 68.40 71.00 69.80
TRUTHFULQA (↑) 38.97 44.34 42.72

AVERAGE (↑) 56.29 56.35 55.72

Table 7. Accuracy on the benchmarks for the LLAMA2-7B model
and the models after performing unlearning on Civil Comments
and ToxiGen.

BENCHMARK LLAMA2-7B RMU SPUNGE

ARC-C (↑) 53.32 53.75 53.24
ARC-E (↑) 81.48 81.35 79.33
HELLASWAG (↑) 78.57 78.41 77.82
MMLU (↑) 45.99 44.32 44.16
WINOGRANDE (↑) 72.45 73.16 73.16
GSM8K (↑) 15.01 11.44 4.16
MATHQA (↑) 29.41 29.34 29.41
PIQA (↑) 79.37 79.05 79.65
PUBMEDQA (↑) 68.40 70.20 70.20
TRUTHFULQA (↑) 38.97 40.40 41.23

AVERAGE (↑) 56.29 56.14 55.23

Figure 2. Toxicity scores per demographic group on ToxiGen test
set for the LLAMA2-7B base model, after unlearning with TVN,
and after unlearning with SPUNGE used with TVN.

Figure 3. Toxicity scores per demographic group on ToxiGen test
set for the ZEPHYR-7B-BETA base model, after unlearning with
RMU, and after unlearning with SPUNGE used with RMU.

Figure 4. Toxicity scores per demographic group on ToxiGen test
set for the ZEPHYR-7B-BETA base model, after unlearning with
TVN, and after unlearning with SPUNGE used with TVN.
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