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Abstract

A key design constraint when implementing Monte
Carlo and variational inference algorithms is that
it must be possible to cheaply and exactly evaluate
the marginal densities of proposal distributions and
variational families. This takes many interesting
proposals off the table, such as those based on in-
volved simulations or stochastic optimization. This
paper broadens the design space, by presenting a
framework for applying Monte Carlo and varia-
tional inference algorithms when proposal densi-
ties cannot be exactly evaluated. Our framework,
recursive auxiliary-variable inference (RAVI), in-
stead approximates the necessary densities using
meta-inference: an additional layer of Monte Carlo
or variational inference, that targets the proposal,
rather than the model. RAVI generalizes and uni-
fies several existing methods for inference with
expressive approximating families, which we show
correspond to specific choices of meta-inference
algorithm, and provides new theory for analyzing
their bias and variance. We illustrate RAVI’s design
framework and theorems by using them to analyze
and improve upon Salimans et al. [35]’s Markov
Chain Variational Inference, and to design a novel
sampler for Dirichlet process mixtures, achieving
state-of-the-art results on a standard benchmark
dataset from astronomy and on a challenging data-
cleaning task with Medicare hospital data.

1 INTRODUCTION

Monte Carlo and variational inference algorithms are the
workhorses of modern probabilistic inference, a fundamen-
tal problem with applications in many disciplines [25]. A
key challenge in applying these algorithms is the design of
proposal distributions (in VI, variational families), which

can greatly affect their performance [5]. A good proposal
should incorporate any knowledge the practitioner might
have about the shape of the posterior; however, this goal
is often in tension with the requirement that a proposal’s
marginal density be analytically tractable, in order to com-
pute importance weights, MCMC acceptance probabilities,
or gradient updates for VI. The challenge is that proposal
distributions that are simple enough to admit exact density
evaluators may not be flexible enough to solve real-world
posterior inference problems.

In this paper, we present a new framework, called Recursive
Auxiliary-Variable Inference (RAVI), for incorporating more
complex proposals, without exact marginal density evalua-
tors, into standard Monte Carlo and VI algorithms. The key
idea is to approximate the proposal densities using meta-
inference [8]: an additional layer of Monte Carlo or varia-
tional inference targeting the proposal, rather than the model.
RAVI generalizes and unifies several existing methods for
inference with expressive proposals [35, 33, 38], which we
show correspond to specific choices of meta-inference algo-
rithm (see Appendix B for 10 examples).

Contributions. Our key contributions are:

• the RAVI framework, including new recursive algo-
rithms for IS, VI, SMC, and MH using proposals with-
out exact marginal density evaluators (Sections 2 & 3);

• theorems characterizing the impact of RAVI’s esti-
mated densities on inference quality (sampler variance,
or tightness of variational bounds) (Section 4); and

• two extended examples of RAVI’s application to algo-
rithm design and analysis: (1) a novel variant of Sali-
mans et al. [35]’s Markov Chain Variational Inference
(MCVI) algorithm that, unlike vanilla MCVI, scales
to handle proposals incorporating long MCMC chains;
and (2) a novel sampler for Dirichlet process mixtures
that uses a randomized agglomerative clustering algo-
rithm as a proposal, outperforming strong baselines
on a standard benchmark from astronomy [14] and a
challenging Medicare data cleaning problem [23, 19].
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Monte Carlo or variational
inference algorithm

Distributions that no longer need
fast exact density evaluators

Example applications

Importance Sampling [17]
(Alg. 1, Appendix B.1)

proposal q(x; y) Nested IS [27] (Appendix B.6), Agglomer-
ative Monte Carlo (Section 5, RAVI strat-
egy 2), Annealed IS [29] (Appendix B.5)

Particle Filtering [11] (Ap-
pendix B.3)

initial proposal q0(x0; y0), step propos-
als qt(xi | xt−1, yt)

Nested SMC [27] (Appendix B.6),
SMC2 [7] (Appendix B.7)

Del-Moral SMC [10] (Ap-
pendix B.3)

initial proposal q0(x0), forward ker-
nels Kt(xt | xt−1), reverse kernels
Lt(xt−1 | xt), targets π̃t(x)

Black-Box Variational Infer-
ence [32] (Alg. 3)

variational family qθ(x; y) IWAE [4] (Appendix B.2), MCVI [35]
(Section 2, Appendix B.9), Variational
SMC [28] (Appendix B.4)

Amortized Variational Infer-
ence [18] (Alg. 4)

variational family qθ(x; y) Amortized Rejection Sampling [26] (Ap-
pendix B.8)

Metropolis-Hastings (Alg. 5) transition proposal q(x′;x) pseudo-marginal ratio MH [2]
Hierarchical Variational Infer-
ence [33]

variational family qθ(z, x; y), reverse
proposal rθ(z;x, y)

Importance-Weighted HVI [38], RAVI-
MCVI (Sections 2 and 5, RAVI strategy 1)

Table 1: RAVI generalizes many algorithms for Monte Carlo and variational inference, by allowing practitioners to choose
proposals, variational families, and intermediate targets for which exact density evaluators are not available. In the “example
applications” column, we list both novel examples of algorithms that exploit this degree of freedom (e.g., the Agglomerative
Monte Carlo algorithm we develop in Section 5), and algorithms from the literature that — as we show in Appendix B —
can be viewed as instances of simpler algorithms, but with certain sophisticated proposals whose density RAVI estimates.

2 RECURSIVE AUXILIARY-VARIABLE
INFERENCE

In this section, we introduce the RAVI framework in the
context of a running example: we incorporate a chain of
MCMC steps into a proposal, so that it can more accu-
rately approximate a posterior distribution. Our approach
generalizes Salimans et al. [35]’s Markov Chain Variational
Inference (MCVI) algorithm, and fixes a flaw that prevents
it from scaling to longer MCMC chains.

An expressive proposal based on MCMC. Let p(x, y) be
a latent-variable model and y an observation. Suppose we
wish to approximate p(x | y) using an expressive proposal
q(x), that generates an initial location x0 from a simple para-
metric distribution q0, then iterates M steps of an MCMC
kernel T :1

q(x) =

∫
q0(x0)

(
M∏
i=1

T (xi−1 → xi)

)
δxM (x)dx0:M .

Even when q0 is a poor approximation to p(x | y), q(x) may
1Why incorporate M MCMC steps into a proposal q, rather

than simply running MCMC? Several reasons: (1) if we use q
as an importance sampling proposal, the importance weights are
unbiased estimates of the marginal likelihood p(y), which we
can use to evaluate our model; (2) if we use q as a variational
family, we can optimize the ELBO to learn parameters of the initial
proposal or the MCMC transition kernel; and (3) if we generate
many importance sampling particles using q, their importance
weights can in theory correct for the bias of finite-sample MCMC.

be close to the posterior, if M is sufficiently high. However,
because the density q(x) cannot be efficiently evaluated,
we cannot use q(x) as a proposal within importance sam-
pling (we have no way to evaluate the importance weight
p(x,y)
q(x) ), nor as a variational family in VI (we cannot estimate

the ELBO L = Ex∼q[log p(x,y)
q(x) ] or its gradient, making it

impossible to learn p’s or q’s parameters).

Approximating proposal densities with meta-inference.
RAVI’s goal is to enable inference even when we cannot
compute the marginal densities of our proposals and varia-
tional families exactly. To apply RAVI, we must specify not
just the proposal itself but also a meta-inference algorithm,
bundled with the proposal into an inference strategy:

Definition. An inference strategy S targeting π specifies:

• a posterior approximation S.q(x) ≈ π(x)2 that either
has an efficient density evaluator, or is the marginal dis-
tribution of a joint distribution with a tractable density,
i.e. S.q(x) =

∫
S.q(r, x)dr, and,

• if S.q’s marginal density cannot be efficiently eval-
uated, a meta-inference strategy S.M, assigning to
each value of x an inference strategy S.M(x) target-
ing S.q(r | x).

2To simplify the exposition, we assume that if an inference
strategy S targets π, then the approximation S.q is mutually ab-
solutely continuous with π, i.e. the measure-zero events under π
are exactly the same as those under S.q. This requirement can be
relaxed somewhat; see Appendix C.
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Figure 1: Structure of a RAVI inference strategy S targeting
the posterior p(x | y) of a latent-variable model. The pro-
posal S.q(x) =

∫
S.q(r, x)dr has an intractable marginal

density, so the strategy also specifies a meta-inference strat-
egy S.M that targets S.q(r | x). Nesting continues until
the q approximation at some layer has a tractable density, at
which point no further meta-inference is needed.

Figure 1 illustrates the recursive structure of an inference
strategy. The key novelty is the inclusion of meta-inference,
in the form of meta-posterior approximations: additional
proposals that the user specifies for inferring auxiliary vari-
ables introduced by existing proposal distributions. In our
running example, we take S.q(x) to be our MCMC-based
posterior approximation: it lacks a tractable density, but is
the marginal of a tractable joint density S.q(x0:M , x) over
entire MCMC traces. A meta-posterior approximation, then,
is a probability distribution S.M(x).q(x0:M ) that approx-
imates the meta-posterior S.q(x0:M | x): the distribution
over traces of the MCMC chain, given the final location x.

The meta-posterior approximations enable RAVI to estimate
the intractable marginal density of the top-level posterior
approximation, to compute weights and gradients:

In Monte Carlo: If S.q(x) =
∫
S.q(r, x)dr is intended for

use as a Monte Carlo proposal, RAVI uses meta-inference to
obtain an unbiased estimate of 1

S.q(x) (Algorithm 2), which
is then multiplied by p(x, y) to estimate the importance
weight p(x,y)

S.q(x) . This process relies on the harmonic mean
identity [31], that for any meta-posterior approximation h,

ES.q(r|x)

[
h(r)

S.q(r, x)

]
=

1

S.q(x)
E
[

h(r)

S.q(r | x)

]
=

1

S.q(x)
.

(Harmonic mean estimators are infamous for having poten-
tially infinite variance, but only when h is set to a broad
prior; we give a general analysis of the variance of RAVI’s
importance weights in Section 4.)

In Variational Inference: If S.q(x) =
∫
S.q(r, x)dr is in-

tended as a variational family, then RAVI uses the meta-
posterior approximation to formulate an upper bound on
logS.q(x): for any meta-posterior approximation h(r),

logS.q(x) ≤ U(x) := ES.q(r|x)[logS.q(r, x)− log h(r)].

This follows from Jensen’s inequality, and the harmonic
mean identity from above. With this upper bound in hand,
we formulate a surrogate ELBOLS = ES.q(x)[log p(x, y)−
U(x)] ≤ L, which we can tractably estimate and optimize
via stochastic gradient descent (Algorithm 3).

In Section 3, we show how similar estimators can be built up
recursively when the meta-posterior approximations them-
selves have intractable marginal densities.

A meta-inference strategy that recovers the MCVI ob-
jective [35]. In our running example, where the auxiliary
randomness r is a trace x0:M of locations visited by MCMC,
one option for meta-inference is to learn neurally parame-
terized reverse Markov kernels Ri(xi+1 → xi), and apply
them in sequence to infer a plausible trace of MCMC steps
leading to the final location x:

S.M(x).q(x0:M ) = δx(xM )

M−1∏
i=0

Ri(xi+1 → xi).

This approximation to S.q(x0:M | x) has a tractable den-
sity, and so completely specifies the meta-inference strategy
S.M; there is no need to specify a meta-meta-inference
strategy. Given S, RAVI optimizes the surrogate objective
LS = Ex∼S.q[log p(x, y)− US.M(x)], where

US.M(x) = Ex0:M∼S.q(x0:M |x)

[
log

S.q(x0:M , x)

S.M(x).q(x0:M )

]
.

For the above choice of S.M, the RAVI objective LS ex-
actly coincides with the Markov Chain Variational Inference
(MCVI) objective of Salimans et al. [35]. In fact, RAVI uni-
fies and generalizes many existing methods; 10 examples
are collected in Appendix B.

Analyzing MCVI within the RAVI framework. Framing
MCVI as a RAVI algorithm lets us analyze it using general
theory about RAVI objectives. For example, the relative
tightness of the bound LS is controlled by the quality of
meta-inference:

L−LS = ES.q(x)[KL(S.q(x0:M | x)||S.M(x).q(x0:M ))].

We can use this characterization to analyze the MCVI ob-
jective’s behavior as M grows, i.e., as MCMC steps are
added. Informally, as the MCMC chain begins to mix, the
marginal distribution S.q(x) over the final location of the
chain should grow closer to the posterior p(x | y), tightening
the (intractable) ELBO L. Unfortunately, the meta-inference
gap L − LS grows with M , unless each kernel Ri exactly



RAVI Inference Strategy 1: RAVI-MCVI
Posterior Approx. rmcvi(M,K).q()

Target of inference : latent variable x
Auxiliary variables :MCMC trace x0:M

1 x0 ∼ q0
2 for i ∈ 1, . . . ,M do
3 xi ∼ T (xi−1 → ·)
4 return xM

Meta-Posterior Approx. rmcvi(M,K).M(x).q()
Target of inference :MCMC trace x0:M

Auxiliary variables :SMC particles x1:K
0:M , ancestor indices a0, a

1:K
1:M

1 for k ∈ 1, . . . , K do
2 (xkM , w

k
M , tk)← (x, qm(x), [x])

3 for i ∈M − 1, . . . , 0 do
4 for k ∈ 1, . . . , K do
5 aki+1 ∼ Discrete(w1:K

i+1)

6 xki ∼ Ri(x
aki+1
i+1 → ·) // MCVI backward kernel

7 wki ←
qi(x

k
i )T (xi→x

aki+1
i+1

)

qi+1(x
ak
i+1
i+1

)Ri(x
ak
i+1
i+1

→xk
i

)

8 tk ← [xki , t
aki+1
k . . . ]

9 a0 ∼ Discrete(w1:K
0 )

10 return ta0

Meta-Meta-Posterior Approx. rmcvi(M,K).M(x).M(x0:M ).q()
Target of inference :SMC particles x1:K

0:M , ancestor indices a0, a
1:K
1:M

Auxiliary variables :None
1 for i ∈ 0, . . . ,M do

bi ∼ Uniform(1, K)
2 for k ∈ 1, . . . , K do
3 (xkM , w

k
M )← (x, qm(x)])

4 for i ∈M − 1, . . . , 0 do
5 for k ∈ 1, . . . , K do
6 if k = bi then
7 (aki+1, x

k
i )← (bi+1, xi)

8 else
9 aki+1 ∼ Discrete(w1:K

i+1)

10 xki ∼ Ri(x
aki+1
i+1 → ·)

11 wki ←
qi(x

k
i )T (xi→x

aki+1
i+1

)

qi+1(x
ak
i+1
i+1

)Ri(x
ak
i+1
i+1

→xk
i

)

12 a0 ← b0

13 return (a0, a
1:K
1:M , x

1:K
0:M )

captures the local posterior S.q(xi | xi+1). (This can be
seen as an instance of the well-known degeneracy problem
of sequential importance sampling [13, Proposition 1].) As
MCMC converges, the rate of improvement in L slows, and
the meta-inference penalty for increasing the chain’s length
eventually outweighs the benefit of improving the posterior
approximation S.q. The red curves in Figure 3 show this
phenomenon playing out on two toy targets: we see that LS
does become tighter as more MCMC steps are added, but
only to a point, before the bound begins to loosen.

Resolving the issue with improved meta-inference. RAVI
clarifies that the variational bound loosens with increasing
M due to poor meta-inference: as the MCMC chain grows
longer, error in the learned backward kernels accumulates.
This analysis also points to a solution: use a meta-inference
strategy S.M that can scale to longer MCMC histories.

A standard approach to resolving the degeneracy problem
when inferring sequences of latent variables is sequential
Monte Carlo (SMC) [10]. SMC tracks K hypotheses about
a latent sequence, periodically weighting the hypotheses
and resampling, to clone promising particles and cull poor

ones. Using RAVI, we can use SMC for meta-inference:
we choose S.M(x).q(x0:M ) to generate a collection of K
possible backward MCMC trajectories, using SMC, before
selecting one to return. This meta-posterior approximation
is shown in RAVI Inference Strategy 1.

This algorithm does not itself have a tractable marginal
density: computing S.M(x).q(x0:M ) would require large
sums over the resampling variables and intractable integrals
over the particle collection. But this is where RAVI’s re-
cursive structure comes into play: a meta-inference strat-
egy may use an intractable meta-posterior approxima-
tion, so long as we attach a meta-meta-inference strategy
S.M(x).M(x0:M ).q(a0, a

1:K
1:M , x

1:K
0:M ). In this case meta-

meta-inference must infer the auxiliary variables of SMC
(ancestor variables and unchosen trajectories), given the
final chosen trajectory x0:M . For this we can use the condi-
tional SMC algorithm [1], which runs SMC, with the same
auxiliary variables, but constrained to ensure that one of
the K particles traces the observed trajectory x0:M . Be-
cause cSMC introduces no new auxiliary variables, it has
a tractable density, and there is no need to specify a fourth
layer of meta-inference. The full tower of posterior approxi-
mations is given in RAVI Inference Strategy 1.

In Section 5, we compare MCVI to rmcvi, for different K
and M . Figure 3 shows that meta-inference error is greatly
reduced by using SMC, so that the variational bound LS
continues to tighten as the MCMC chain grows longer.

Using the inference strategy within a Monte Carlo al-
gorithm, to estimate marginal likelihoods from MCMC
results. Our inference strategy S can also be used as pro-
posal within Monte Carlo algorithms, such as importance
sampling. In the context of our example, where S.q incor-
porates M steps of a Markov chain, this allows us to assign
an importance weight to each run of the Markov chain. The
weight is an unbiased estimate of the marginal likelihood
p(y) of the model; thus, we can view the algorithm as a way
to derive marginal likelihood estimates from MCMC runs,
a task of long-standing interest in the Monte Carlo com-
munity [29]. In Section 5, we show that in some settings
MCVI compares favorably a standard algorithm for the task,
annealed importance sampling (AIS) [29].

3 ALGORITHMS

In this section, we present algorithms for using RAVI infer-
ence strategies within Monte Carlo and variational inference
algorithms, as proposals and variational families.

RAVI for Importance Sampling and SMC. In importance
sampling and SMC algorithms, proposals q are used to (1)
generate proposed values x ∼ q, and (2) compute impor-
tance weights p(x)

q(x) . But in both IS and SMC, it suffices to

produce unbiased estimates of p(x)
q(x) [6]. RAVI exploits this



Recursive Monte Carlo Estimation

Algorithm 1: RAVI Importance Sampling (IMPORTANCE)
Input: unnormalized target π̃(x) = Zπ(x)
Input: inference strategy S
Output: (x, Ẑ) properly weighted for π(x), s.t. E[Ẑ] = Z

1 if S.q has a tractable marginal density then
2 x ∼ S.q
3 w ← 1

S.q(x)

4 else if S.q(x) =
∫
S.q(r, x)dr then

5 (r, x) ∼ S.q
6 w ← HME(S.q(· | x), r,S.M(x))

7 return (x,wπ̃(x))

Algorithm 2: RAVI Harmonic Mean Estimation (HME)
Input: unnormalized target π̃(x) = Zπ(x)
Input: exact sample x ∼ π
Input: inference strategy S
Output: unbiased estimate Ž−1 of Z−1

1 if S.q has a tractable marginal density then
2 w ← S.q(x)

3 else if S.q(x) =
∫
S.q(r, x)dr then

4 (r, w)← IMPORTANCE(S.q(·, x),S.M(x))

5 return w/π̃(x)

Recursive Variational Objectives and Gradient Estimation
Algorithm 3: RAVI ELBO and gradient estimator (ELBO∇)
Input: model p(x, y)
Input: data y
Input: inference strategy S
Output: unbiased estimates of L(p, y,S) and of∇θL(p, y,S)

1 if S.q has a tractable marginal density then
2 x ∼ S.q
3 (Û , ∇̂θ)← (logS.q(x),∇θ logS.q(x) · (1 + logS.q(x)))
4 g← ∇θ logS.q(x)

5 else if S.q(x) =
∫
S.q(r, x)dr then

6 (r, x) ∼ S.q
7 (Û , ∇̂θ,g)← EUBO∇(S.q, x, r,S.M(x))

8 L̂← log p(x, y)− Û
9 ∇̂θ

′
← ∇θ log p(x, y) + g log p(x, y)− ∇̂θ.

10 return (L̂, ∇̂θ
′
)

Algorithm 4: RAVI EUBO and gradient estimator (EUBO∇)
Input: model p(x, y)
Input: data y
Input: exact sample x ∼ p(x | y)
Input: inference strategy S
Output: unbiased estimates of U(p, y,S) and∇θU(p, y,S)
Output: quantity g (see Thm. 2)

1 if S.q has a tractable marginal density then
2 (L̂, ∇̂θ)← (logS.q(x),∇θ logS.q(x))

3 else if S.q(x) =
∫
S.q(r, x)dr then

4 (L̂, ∇̂θ)← ELBO∇(S.q, x,S.M(x))

5 Û ← log p(x, y)− L̂
6 g← ∇θ log p(x, y)

7 ∇̂θ
′
← ∇θ log p(x, y) + g · Û − ∇̂θ

8 return (Û , ∇̂θ
′
,g)

MCMC

Algorithm 5: RAVI Metropolis-Hastings
Input: model π̃(x) = Z

∫
π(r, x)dr

Input: proposal q(x′;x) =
∫
q(s, x′;x)ds

Input: family S(x) of inference strategies targeting π(r | x)
Input: familyM(x, x′) of inference strategies targeting

q(s | x′;x)
Input: initial position x and estimate Ẑx of π̃(x)
Output: next position x′ and estimate Ẑx′ of π̃(x′)

1 (s, x′) ∼ q(s, x′;x)
2 wx′ ← HME(q(·, x′;x), s,M(x, x′))
3 (_, wx)← IMPORTANCE(q(· | x;x′),M(x′, x))

4 (_, Ẑx′)← IMPORTANCE(π(· | x′),S(x′))
5 u ∼ Uniform(0, 1)

6 if u < min(1,
Ẑx′
Ẑx
wx′wx) then

7 return (x′, Ẑx′)

8 else
9 return (x, Ẑx)

degree of freedom to generate proper importance weights
even when q(x) is intractable. Suppose π̃ = Zπ is an unnor-
malized target density, and S is a RAVI inference strategy
targeting π. Algorithm 1 simulates x ∼ S.q and computes
an unbiased estimate Ẑ of π̃(x)

S.q(x) :

Theorem 1. Let π̃(x) = Zπ(x) be an unnormalized target
density, and S an inference strategy targeting π(x). Then:

• IMPORTANCE(S, π̃) generates (x, Ẑ) with x ∼ S.q
and E[Ẑ | x] = Z π(x)

S.q(x) . Furthermore, the uncondi-

tional expectation E[Ẑ(π̃,S)] = Z.

• When x ∼ π, HME(S, x, π̃) generates Ž with
E[Ž−1] = Z−1.

When S.q has a tractable marginal density, Algorithm 1
computes an exact importance weight. Otherwise, it calls Al-
gorithm 2, which uses the meta-inference strategy S.M(x)
to estimate 1

S.q(x) . The proof of Theorem 1 is by induction
on the level of nesting in the strategy (see Appendix A).

RAVI for MCMC. When models or proposals (or both)
in a Metropolis-Hastings sampler do not have tractable
closed-form densities, RAVI inference strategies enable
computation of MH acceptance probabilities (Algorithm 5).
Intuitively, to compute the usual Metropolis-Hastings ac-
ceptance probability α = π̃(x′)q(x;x′)

π̃(x)q(x′;x) , Algorithm 5 esti-
mates the necessary proposal densities, using HME for the
forward proposal density that appears in the denomina-
tor, and IMPORTANCE for the backward proposal density
that appears in the numerator. If necessary, it also uses
IMPORTANCE to estimate the new model density π̃(x′).



We show the algorithm implements a stationary kernel for
π in Appendix A.5.

RAVI for Variational Inference. Let pθ(x, y) be a latent-
variable generative model with parameters θ, and Sθ(y) is a
family of strategies targeting pθ(x | y). Given a dataset y,
variational inference can be applied to maximize (a lower
bound on) log pθ(y), and also to optimize parameters of the
posterior approximations in Sθ, to bring them closer (in KL
divergence) to their targets. Let

L(p, y,S) := E[log Ẑ(p(·, y),S)] ≤ log p(y)

and U(p, y,S) := E[log Ž(p(·, y),S)] ≥ log p(y),

where Ẑ(π̃,S) is the estimate returned by IMPORTANCE
(Alg. 1) on S and unnormalized target π̃, and Ž(π̃,S) is
the inverse of the weight returned from HME (Alg. 2) when
run with unnormalized target π̃, inference strategy S, and
an exact sample x ∼ π. Because Ẑ is an unbiased estimate
of pθ(y), and Ž−1 is an unbiased estimate of pθ(y)

−1, we
have by Jensen’s inequality that L(p, y,S) and U(p, y,S)
are lower and upper bounds (respectively) on log pθ(y). As
such, we can fit the model parameters θ to data y by mini-
mizing U(p, y,S) or maximizing L(p, y,S).

Recursive stochastic gradient estimation. ELBO∇ (Alg. 3)
is a procedure for estimating L(p, y,S) and its gradient
∇θL(p, y,S) with respect to the parameters θ of the model
and the strategy. When (x, y) ∼ p(x, y), EUBO∇ (Alg. 4)
estimates U(p, y,S) and the gradient ∇θEy∼p[U(p, y,S)].
These procedures employ score function estimation of gra-
dients, but it is straightforward to incorporate baselines
within each procedure to reduce variance. Depending on
S, the reparametrization trick may also be applicable (Ap-
pendix E).

Theorem 2. Given a model pθ(x, y) and an inference
strategy Sθ targeting pθ(x | y), Alg. 3 yields unbiased
estimates of L(p, y,S) and of ∇θL(p, y,S). Furthermore,
when (x, y) ∼ pθ, Alg. 4 yields (i) Û such that E[Û | y] =

U(p, y,S), (ii) ∇̂θ such that E[∇̂θ] = ∇θEy∼p[U(p, y,S)],
and (iii) a value g such that for any function R that
does not depend on θ, E[g · R(y)] = ∇θEy∼pθ [R(y)] if
∇θEy∼pθ [R(y)] is defined.

In Section 4, we show the tightness of the variational bounds
L and U is given by sums of KL divergences between poste-
rior approximations in Sθ and their targets. Thus, optimizing
these bounds improves the posterior approximations, either
encouraging mass-capturing or mode-seeking behavior.

4 THEORETICAL ANALYSIS

We now present theorems characterizing the quality of RAVI
inference: Thm. 3 concerns the variance of weights in a
Monte Carlo sampler, and Thm. 4 the tightness of variational
bounds. In both cases, error is related to each approximation

in the RAVI strategy’s divergence to its target posterior.

Sampler variance in Monte Carlo. Let π̃ = Zπ be an
unnormalized target density, and S an inference strategy tar-
geting π. As in Section 3, we write Ẑ(π̃,S) for the weight
returned by IMPORTANCE, and VarẐ(π,S) for the relative

variance of the estimator, Var( Ẑ(π̃,S)
Z ), which does not de-

pend onZ (and therefore is a function of π, not π̃). Similarly,
we write Ž(π̃,S) for the reciprocal of the weight returned
by HME, run with an input x ∼ π. VarŽ(π,S) is its relative
variance, Var( Z

Ž(π̃,S)
).

Theorem 3. Consider an unnormalized target distribution
π̃(x) = Zπ(x) and an inference strategy S targeting π(x).
Then the relative variances of the estimators Ẑ(π̃,S) and
Ž(π̃,S) are given by the following recursive equations:

VarẐ(π,S) = χ2(π||S.q) +

Ex∼S.q
[(

π(x)2

S.q(x)2

)
· VarŽ(S.q(· | x),S.M(x))

]
VarŽ(π,S) = χ2(S.q||π)+

Ex∼π
[(
S.q(x)2

π(x)2

)
· VarẐ(S.q(· | x),S.M(x))

]
When S.q is tractable, the second term of each sum is 0.

Tightness of variational bounds. In VI, the tightness of the
variational bounds L and U can be characterized as a sum of
a KL divergence and a term measuring meta-inference error.
The random variables L̂ and Û returned by ELBO∇θ and
EUBO∇θ, respectively, are unbiased estimators ofL(p, y,S)
and U(p, y,S), and so can also be viewed as biased estima-
tors of log p(y). Writing their bias as BiasL(p, y,S) (and
similarly for U), we have:

Theorem 4. Consider a joint distribution p(x, y) and an
inference strategy S targeting p(x | y). Then the following
equations give the bias of L̂ and Û as estimators of log p(y):

BiasL(p, y,S) = − KL(S.q||p(· | y))

− Ex∼S.q[BiasU (S.q, x,S.M(x))]

BiasU (p, y,S) = KL(p(· | y)||S.q)
− Ex∼p(·|y)[BiasL(S.q, x,S.M(x))]

where the second term in each equation is 0 when S.q has a
tractable marginal density.

Maximizing L, or minimizing U , also minimizes these KL
divergences. In particular, maximizingL(p, y,S) minimizes
a ‘mode-seeking’ KL from S.q to the posterior, whereas
minimizing Ey∼p[U(p, y,S)], e.g. by following the gradi-
ents of Alg. 4, implements amortized variational inference,
and encourages S.q to cover the mass of the posterior.

Inference and Meta-Inference. In both Theorems 3 and 4,
the first term of the sum is a divergence between S.q(x), the
intractable posterior approximation, and the actual target
posterior p(x | y). The other term measures the expected
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Figure 2: Illustrations of the proposals S.q used in each
experiment. In each case, S.q makes a sequence of auxiliary
choices before returning a final proposal (the clustering Π,
or the location x). Sequential Monte Carlo meta-inference
is used to marginalize the sequence of auxiliary variables
introduced by the inference process (the merges mvi in
agglom, and the locations xi in rmcvi).

Inference Meta-
inference

Meta-meta-inference

agglom Discrete:
3.0 ×
101928

Discrete:∏1000
n=|Π|

n(n−1)
2

Discrete: (K − 1) ·
(
∏1000
n=|Π|

n(n−1)
2

) ·
(1000− |Π|)(K − 1)!

rmcvi Continuous:
1

Continuous:
M

Continuous: (K−1)·M ,
Discrete: M(K − 1)!

Table 2: Dimensionality of the continuous latent space, and
cardinality of the discrete latent space, over which each
layer’s inference problem is defined. K is the number of
SMC particles used for meta-inference (maximum 50 for
rmcvi, 5 for agglom). In rmcvi, M is the number of
MCMC steps (maximum 100 in our experiments).

quality of meta-inference. Thus the overall error of a RAVI
algorithm can be understood as decomposing cleanly into
(1) the mismatch between the posterior and the intractable
proposal, and (2) the error introduced by meta-inference.

5 EXPERIMENTS

5.1 IMPROVING MCVI

In Section 2, we developed a variant of Salimans et al. [35]’s
MCVI algorithm that used SMC for meta-inference. In Fig-
ure 3, we compare vanilla MCVI to the RAVI variant, with
varying K (number of particles used for meta-inference)
and M (number of MCMC steps in the variational family).

Experimental details.3 For the MCMC kernel T , we
use Langevin ascent with step size 0.015. For the

3Code is available: https://github.com/probcomp/ravi-uai-2022

meta-inference proposals Ri(xi+1 → xi), we use
N (xi; fµ(xi+1, i), e

flog σ(xi+1,i)), where f is a 4-layer MLP,
the step number i is encoded as a one-hot vector, and f out-
puts the mean µ and log standard deviation log σ for a con-
ditionally Gaussian proposal. The same f is used for each
experiment, and is trained on forward rollouts of MCMC
(equivalent to using Alg. 3 on rmcviwithK = 1). The uni-
modal model is Gaussian with σ = 0.2, and the multimodal
model is a mixture of 3 Gaussians with standard deviations
0.2, 0.3, and 2.0. The distributions qi used for importance
weighting during sequential Monte Carlo meta-inference
are Gaussians with learned µ and σ.

Results. Figure 3 plots the gap log p(y) − L for each al-
gorithm’s variational bound L. By Theorem 4 this gap
is the sum of two terms: KL(S.q||p(x | y)) and the ex-
pected meta-inference divergence Ex∼S.q[KL(S.q(x0:M |
x)||S.M(x).q(x0:M ))]. The first term is constant across
the algorithms, since they all use the same MCMC-based
posterior approximation, so the plots primarily illustrate
differences in the quality of meta-inference. MCVI’s meta-
inference steadily worsens as the chain’s length grows, and
after 15-25 steps, the meta-inference cost of adding new
steps outweighs the benefits to Smcvi.q, causing the bound
L to loosen. Our variant, with SMC meta-inference, does
not suffer the same penalty, and continues to improve as
more steps are added. As discussed in Section 2, the same in-
ference strategy (rmcvi) can be used within an importance
sampler to derive unbiased marginal likelihood estimates
from MCMC runs. The right-hand plot in Figure 3 shows
that this technique can yield accurate estimates with less
computation than AIS [29], at least on simple targets. (To
fairly account for the computational cost of meta-inference,
in the RAVI algorithm we multiply M by K when plotting
the total number of MCMC steps.) Because the variance
of AIS is bounded below by sums of divergences between
subsequent pairs of intermediate target distributions, the
MCMC chain must be long enough to support a very fine
annealing schedule, without large jumps. By contrast, RAVI-
MCVI requires only that the marginal distribution of the
chain be a good approximation to the posterior, and that
SMC meta-inference is sufficiently accurate. For some prob-
lems, this may be less expensive than the long chain required
by AIS.

5.2 AGGLOMERATIVE CLUSTERING FOR
DIRICHLET PROCESS MIXTURES

A promising application of RAVI is to transform heuristic
randomized algorithms into unbiased and consistent Monte
Carlo estimators, by using them as proposal distributions. In
this section, we design a RAVI inference strategy for clus-
tering in Dirichlet process mixtures, based on a randomized
agglomerative clustering algorithm (Inference Strategy 2).

Datasets and Models. We test our algorithm on three clus-



Figure 3: Improving Markov Chain Variational Inference with RAVI. Left and Middle: On unimodal and multimodal targets,
MCVI begins to degrade after 15-25 steps of MCMC. RAVI-MCVI with sufficiently many particles continues to improve
as more MCMC steps are added. Right: When MCMC converges quickly to a reasonable approximation of the posterior,
RAVI-MCVI can give more accurate estimates of marginal likelihoods than standard techniques such as AIS. The x axis of
this plot counts total MCMC steps simulated, whether as part of inference or meta-inference; for RAVI-MCVI(K), this is
KM , where M is the length of the forward Markov chain and K is the number of SMC particles used for meta-inference.

RAVI Inference Strategy 2: Agglomerative Clustering
Posterior Approx. agglom(X,K).q()

Target of inference :partition Π of datasetX
Auxiliary variables :merge sequence mv1:|X|−|Π|

1 Π← {{x} | x ∈ X} // Initial partition
2 for l ∈ 1, . . . , |X| do
3 for unordered pair {i, j} of clusters in Π do
4 w{i,j} ← π((Π \ {i, j}) ∪ {i ∪ j})
5 wstop = π(Π)
6 All← {stop} ∪ {{i, j} | i, j ∈ Π}
7 mvl ∼ Discrete({m⇒ wm | m ∈ All})
8 if mvl = stop then break
9 Π← (Π \ mvl) ∪ (∪mvl) // Perform the merge

10 return Π

Meta-Posterior Approx. agglom(X,K).M(Π).q()
Target of inference :merge sequence mv1:|X|−|Π|

Auxiliary variables :particles mv1:K
1:|X|−|Π|, ancestors a1:K

1:|X|−|Π|

1 for k ∈ 1, . . . , K do Πk0 , trk ← {{x} | x ∈ X}, []
2 for l ∈ 1, . . . , |X| − |Π| do
3 for k ∈ 1, . . . , K do
4 for unordered pair {i, j} in Πkl−1 do
5 w{i,j} ← π((Πkl−1 \ {i, j}) ∪ {i ∪ j})
6 wstop = π(Πkl−1)

7 All← {stop} ∪ {{i, j} | i, j ∈ Πkl−1}
8 Ok← {{i, j} ∈ All | ∃c ∈ Π.i ∪ j ⊆ c}
9 mvl ∼ Discrete({m⇒ wm | m ∈ Ok})

10 Πkl−1 ← (Πkl−1 \ mvl) ∪ (∪mvl)
11 trk ← [trk . . . ,mvl]

12 Wk
l ←

∑
m∈Ok wm∑
m∈All wm

13 for k ∈ 1, . . . , K do
14 akl ∼ Discrete(W 1:K

l ) // resampling step

15 Πkl , trk ← Π
akl
l−1, tr

ak
l

16 return [tr1 . . . , stop]

Meta-Meta-Posterior agglom(X,K).M(Π).M(mv1:|X|−|Π|).q()
// Conditional SMC (omitted for space, but

similar to that of rmcvi)

tering problems. The first is a synthetic 1D dataset sampled
from a Dirichlet process (DP) mixture prior. The second is
a standard benchmark dataset of galaxy velocities [14, 8],
which we model using a DP mixture with Gaussian likeli-
hoods and α = 1. The last is a data-cleaning task, correcting
typos in 1k strings from Medicare records [23]. We adapt
the generative model of Lew et al. [19]. Using an English
character-level bigram model H(s) = h(s1)

∏|s|
i=2 h(si |

si−1), we model the data {yi} with a DP prior:

G ∼ DP (H,α = 1.0), xi | G ∼ G, yi | xi ∼ f(· | xi)

Here, the likelihood f(yi | xi) models typos. We set f to be

f(yi | xi) ∝

{
1[xi = yi] (xi, yi) 6∈ L × L
NegBin(τ(xi,yi);d |s|5 e,0.9)

(5.09|s|)τ(xi,yi)
(xi, yi) ∈ L × L

,

where τ(xi, yi) is the Damerau-Levenshtein edit distance
between xi and yi, and L is the set of all observed strings
{y | ∃i. y = yi}.4 We perform inference in a collapsed
version of the model, with the xi marginalized out:

Π ∼ CRP (n = N,α = 1.0)

yI | Π ∼ F (yI).

Here Π is a partition, I ranges over the components of Π
(each of which is a subset of data indices), and F (yI) =∑

x∈L h(x)
∏
i∈I f(yi | x) is the marginal likelihood of yI

as a sequence of noisy observations of a latent string.

Baseline. We compare to an SMC baseline, inspired by
PClean’s inference [19], that targets a sequence of posteri-
ors, where the tth posterior incorporates the first t datapoints.
The SMC proposal is locally optimal, assigning the newest
datapoint to an existing component I with probability pro-
portional to |I|

t+α−1 · F (yI ∪ {yt}), or to a new component
with probability proportional to α

t+α−1 ·F ({yt}). We do not
compare to a Gibbs sampling baseline, as Gibbs sampling
does not yield marginal likelihood estimates, but do perform
a Gibbs rejuvenation sweep every 20 iterations of SMC.

RAVI algorithm. We apply Algorithm 1 to the inference
strategy agglom (Inference Strategy 2). The strategy is
based on a randomized agglomerative clustering algorithm:
each datapoint begins in its own cluster (L1), and we repeat-
edly choose to either merge two clusters (L9) or stop and
propose the current partition (L8). The sequence of merge
decisions mv1, . . . ,mv|X|−|Π| are the auxiliary variables of

4We assume that the data L includes at least one example of
every clean string. When xi ∈ L, we model a negative-binomially
distributed number of typos, where the number of trials depends
on the length of the string.



L̂
Gaussian likelihood [8], synthetic data

SMC + adapted proposals −125.09± 0.38
RAVI agglomerative clustering −125.97± 1.62

Gaussian likelihood [8], Galaxy data [14]
SMC + adapted proposals −426.20± 1.26
RAVI agglomerative clustering −423.03± 0.94

PClean typos likelihood [19], Hospital data [23]
SMC + adpated proposals −40, 239± 1, 532
RAVI agglomerative clustering −13, 851.0± 0.01

Table 3: RAVI agglomerative clustering vs. SMC baseline.

our proposal distribution; the final output is the proposed
clustering Π. Our meta-inference agglom(X,K).M(Π).q
infers the sequence of merges from the observed clustering
Π, using K-particle SMC with proposals that mimic the
forward process but choose only from a restricted set Ok of
possible merges (L8), to avoid making any choices that dis-
agree with Π. SMC introduces additional auxiliary variables,
so we also include a conditional SMC meta-meta-posterior
approximation (not shown, but nearly identical to rmcvi’s).

Results. Table 3 shows average log marginal likelihood es-
timates; higher is better. On synthetic Gaussian data, the
algorithms perform comparably. On the galaxy data, RAVI
agglomerative clustering finds modes that SMC misses, lead-
ing to a 3-nat improvement in the average log marginal
likelihood. In the Medicare data example, SMC misses the
ground-truth clustering and hypothesizes many unlikely ty-
pos to explain the data. The RAVI agglomerative cluster-
ing is less greedy, considering O(N2) possible merges at
each step, rather than O(N). As such, it is able to find the
ground truth clustering, correctly identifying all typos (un-
like PClean [19], which achieves only 90% accuracy on this
dataset) and reporting a log marginal likelihood thousands
of nats higher than the SMC algorithm.

6 RELATED WORK AND DISCUSSION

Related work. RAVI builds on and generalizes recent work
from both the Monte Carlo and variational inference liter-
atures. For example, Salimans et al. [35] and Ranganath
et al. [33] showed how auxiliary variables could be used to
construct and optimize variational bounds for specific fami-
lies of expressive variational approximations. Sobolev and
Vetrov [38] presented tighter bounds in a more general set-
ting. RAVI is a further generalization, in two directions: first,
we show that these bounds arise from particular choices of
meta-inference strategy, and can be tightened by improving
meta-inference; and second, we extend the results to the
Monte Carlo setting, enabling learned variational families
to be used as IS, SMC, or MH proposals. We also provide
general theorems about the variance of RAVI samplers and
the bias of RAVI variational bounds, which can be applied
to analyze both new and existing algorithms.

RAVI is also related to other compositional or unifying
frameworks for thinking about broad classes of inference
algorithms [21, 44, 37, 36, 22, 9, 39, 30, 43, 3, 40, 15, 16],
some of which involve recursive constructions [27, 10, 12].

However, to our knowledge, RAVI’s inference strategies
are novel. For example, although RAVI and Nested IS
(NIS) [27] are both approaches to inference with ‘intractable
proposals,’ NIS approximately samples a proposal distribu-
tion with a tractable (unnormalized) density, whereas RAVI
approximates the density of a proposal that can be simulated
tractably, but whose marginal density (even unnormalized)
is intractable. As another example, Domke and Sheldon
[12]’s framework of estimator-coupling pairs constructs
variational bounds and marginal likelihood estimators re-
cursively, but unlike in RAVI, the posterior approximations
cannot be used to formulate objectives for amortized VI or
as components of Metropolis-Hastings proposals.

Finally, researchers have used meta-inference to construct
bounds on KL divergences [8] and other information-
theoretic quantities [34]. In Appendix D, we show how
to apply such bounds in the general RAVI setting.

Outlook and Limitations. RAVI expands the design space
for Monte Carlo and variational inference. It gives unifying
correctness proofs for over a dozen methods from the liter-
ature, and novel theorems that characterize their behavior.
Experiments show that RAVI helps to design algorithms that
significantly improve accuracy over previously introduced
Monte Carlo and variational inference methods. However,
some difficulties remain. For example, the gradient estima-
tors we present (Algs. 3 and 4) have high variance for some
strategies S; in Appendix E, we give estimators that exploit
the reparameterization trick, but they only help when the
proposals in S can be reparameterized, which is not the case,
e.g., for SMC. In these cases, RAVI can still be used to de-
rive objectives for optimization, but practitioners will need
other ways of reducing the variance of gradient estimates;
many results from the literature [24, 41] should apply.

Another difficulty is that RAVI algorithms can be complex to
implement. We are exploring an automated implementation
based on probabilistic programming languages [9, 42]: if
the posterior and meta-posterior approximations in a RAVI
strategy S are given as probabilistic programs, we can pro-
vide Algs. 1-5 as higher-order functions, which automate the
necessary densities, gradients, and MCMC acceptance prob-
abilities. This could be viewed as a generalization of existing
PPL support for programmable inference [21, 22, 9, 20].
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Mehrdad Ghadiri, Atılım Güneş Baydin, Bradley
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