

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CURATION LEAKS: MEMBERSHIP INFERENCE ATTACKS AGAINST DATA CURATION FOR MACHINE LEARNING

Anonymous authors

Paper under double-blind review

ABSTRACT

In machine learning, data curation is used to select the most valuable data for improving both model accuracy and computational efficiency. Recently, curation has also been explored as a solution for private machine learning: rather than training directly on sensitive data, which is known to leak information through model predictions, the private data is used only to guide the selection of useful public data. The resulting model is then trained solely on curated public data. It is tempting to assume that such a model is privacy-preserving because it has never seen the private data. Yet, we show that without further protection curation pipelines can still leak private information. Specifically, we introduce novel attacks against popular curation methods, targeting every major step: the computation of curation scores, the selection of the curated subset, and the final trained model. We demonstrate that each stage reveals information about the private dataset, and that even models trained exclusively on curated public data leak membership information about the private data that guided curation. These findings highlight the inherent privacy risks in data curation that were previously overlooked, and suggest that (1) in the context of curation, privacy analysis must extend beyond the training procedure to include the data selection process, and (2) true privacy-preserving curation will require new methods with formal privacy guarantees.

1 INTRODUCTION

Data curation has become an important part of modern machine learning (ML) pipelines (Maini et al., 2024; Wu et al., 2024), offering a principled way to select high-value data in order to maximize model performance and computational efficiency. By filtering out noisy, low-quality, or redundant samples (Gadre et al., 2023; Li et al., 2024a; Gu et al., 2025; Thrush et al., 2025), curation allows to train on the most informative points, thus improving generalization and resource utilization.

This paradigm is also particularly appealing for sensitive domains, such as finance or healthcare, where the available training datasets are usually limited, which hinders the training of powerful ML models. In these settings, curation offers a key advantage: it enables model developers to leverage publicly available data pools and select a subset from these that is most relevant to their target application. Typically, the small in-domain target dataset, which represents the actual distribution of interest, or the downstream data the model is expected to perform well on, is used to guide this selection. Various techniques have been proposed to perform such guidance: for example, identifying public samples that are most similar to the target data in feature space (Gadre et al., 2023; Yu et al., 2024), scoring public samples based on how much they improve accuracy on the target set (Thrush et al., 2025), or maximizing a data attribution or influence metric (Park et al., 2023; Engstrom et al., 2024). The curated public dataset is finally used to train an ML model that outperforms models trained on *all* public data or achieves similar results with greater computational efficiency on target domain tasks. Importantly, the resulting model is never directly exposed to the target dataset.

Due to these advantages, curation is widely used in practice. Curated datasets are routinely released to the public (Penedo et al., 2023; Li et al., 2024b; Penedo et al., 2024), and in some cases, even the intermediate quality scores are made available (Computer, 2023). Furthermore, there exists a growing market of data curation as a service, where datasets, scores, and subsets are exchanged between organizations (DatalogyAI; Snorkel; ScaleAI). Yet, the privacy risks for the target data under such practices are, to date, not well understood. Therefore, in this paper, we provide the first systematic

study of privacy risks in curation pipelines. Therefore, we carry out custom membership inference attacks (Shokri et al., 2017; Carlini et al., 2022a) on data points from the target set at every stage of the pipeline, and demonstrate that each step can leak private information.

Concretely, we design and evaluate attacks against 1) the curation methods’ released scores, 2) the selected public subsets, and 3) the final trained model, as shown in Figure 1. To attack curation scores, we employ Likelihood Ratio Attack (LiRA) (Carlini et al., 2022a) and a custom attack based on a voting scheme. We show that image embedding-based curation that relies on a nearest-neighbor mechanism creates high vulnerability for samples with non-zero influence, while TRAK’s averaging provides better protection but remains vulnerable for small datasets. To attack the curated public subset, we adapt LiRA to the binary setting, where the adversary only knows if a sample was picked by the curation or not. Additionally, we design a custom attack that iteratively performs the membership inference using the deterministic behaviour of the curation mechanism. Finally, to attack the trained model, we insert samples \mathcal{F} into the pool whose curation score is highly influenced by a particular target, and which imprint a measurable signal in the model if trained on. The addition of such samples represents a realistic setup where the public pool data is often scraped from the internet and prior work has shown that it is possible to introduce targetly manipulated data points into ML model training pipelines this way (Carlini et al., 2024). Because our attacks succeed with only a small number of inserted samples, they hold the potential to pose a risk in real-world curation settings where public data is reused. Overall, our findings highlight that curation-guided approaches can still leak privacy, and that careful analysis and new safeguards are needed to ensure robust data protection.

To summarize, we make the following main contributions:

1. We present the first comprehensive privacy analysis of data curation pipelines, highlighting that curation leaks private information at each step: the scores, curation sets, and the final model.
2. We design custom membership attacks for each curation step, showing that both curation scores and curated datasets leak membership information without pipeline modifications.
3. We show that even end-to-end attacks on the final model can leak target data information by inserting only a small number of crafted samples into public datasets.
4. Our empirical evaluation on six datasets and two curation methods shows that, while TRAK is more robust than image-based curation, it remains highly vulnerable for small datasets, the very scenario motivating curation in sensitive domains.

2 BACKGROUND AND RELATED WORK

Data Attribution. The influence of training samples on the behaviour of a trained ML model on some target data point is determined via data attribution methods. The *DataModels* approach (Ilyas et al., 2022) trains many models on different training data subsets and then fits an influence estimator. TRAK (Park et al., 2023) peforms data attribution using closed-form influence functions for Logistic Regression. To make that applicable to deep learning, they formulate the model training as a logistic regression on gradients of a trained model. With that approach, TRAK is more efficient than DataModels, but still requires training in the order of ~ 20 models and another backward pass for each on the full training set. Ilyas & Engstrom (2025) introduce an alternative which requires training just one model, but requires a full backward pass on the entire training dataset for each target sample. By selecting those training samples with the highest positive attribution scores, data attribution methods can serve as methods for data curation (Engstrom et al., 2024).

Data Curation. The goal of data curation is to select the most valuable data for training. Gadre et al. (2023) introduce *DataComp*, an ML challenge of obtaining the highest accuracy just by modifying the training data. They also developed image-based filtering for selecting appropriate images based on



Figure 1: **We attack private data \mathcal{T} used to curate a public dataset \mathcal{D} .** We show that the scores s , top-scoring subsets $\tilde{\mathcal{D}}$ and even trained models M leak membership information.

semantic similarity. Thrush et al. (2025) propose attributing training data performance to target utility by computing correlations on the loss of the training data and the target utility. Notably, this allows computing correlations for data that the models have not been trained on, sparing the computationally expensive setup that *e.g.*, TRAK- or DataModels-based curation requires.

In this work, we focus on two representative curation methods, namely image embedding-based curation (Gadre et al., 2023) and TRAK (Park et al., 2023). In both cases, we have a public dataset $\mathcal{D} = \{x_i\}_{i=1}^N$ and a private dataset $\mathcal{T} = \{t_i\}_{i=1}^n$. We call *curating* \mathcal{D} for \mathcal{T} when we try to obtain a subset $\tilde{\mathcal{D}} \subseteq \mathcal{D}$ s.t. the performance and/or compute efficiency for utility on \mathcal{T} is improved by training on $\tilde{\mathcal{D}}$ instead of the full \mathcal{D} .

Image Embedding-based Curation. Image embedding-based curation assigns scores based on the cosine similarity of image-embeddings. For each image x_i in the public curation pool \mathcal{D} , the score is the maximum similarity to a sample t_j in the private target set \mathcal{T} , *i.e.*, $s(x_i) = \max_{j \in \mathcal{N}} \cos(\phi(x_i), \phi(t_j))$ where $\phi(\cdot)$ is the embedding function.

TRAK. TRAK computes attribution scores via projected gradients to identify influential pool samples. Following Engstrom et al. (2024), in this work, we compute our scores as the *average attribution score* on \mathcal{T} , *i.e.*, $s(x_i) = \frac{1}{n} \sum_j^n \Phi_i^T G_j$ where $G_{\mathcal{T}}$ are the gradients of \mathcal{T} . Φ are the TRAK features. We obtain them from the gradients X of \mathcal{D} as $\Phi = X(X^T X)^{-1} Q$. Q are the scaling factors, determined as the gradient of model output to loss.

Assessing Privacy Risks in ML. The de facto standard for assessing the privacy risks in ML systems is to rely on Membership Inference Attacks (MIAs) (Shokri et al., 2017; Carlini et al., 2022a). A popular attack to perform membership inference is LiRA (Carlini et al., 2022a), which we build upon in this work to assess the privacy risks in data curation pipelines. It trains *shadow models* on various subsets of the target data and then fits distributions to the observed behaviour of the models with a target vs. those without a target. Then, to attack a model, it compares the likelihoods of the observed behaviour under the distribution of the target being in the training vs. being not in the training data. The ratio of these likelihoods serves as the membership score. In this work, we rely on adaptions of LiRA, but instead of training shadow models, we perform curation on random subsets of the target data to obtain *shadow sets*, *i.e.*, the curation results for the random subsets. We then select high-signal measurements similar to Jagielski et al. (2023), *i.e.*, those that differ most significantly for a specific target, and compute the membership inference scores as the log-likelihood ratios.

3 ATTACKING DATA CURATION PIPELINES

In this section, we explore privacy leakage from the different stages of data curation pipelines outlined in Figure 1. [We start off by outlining the threat model and adversary goal and capabilities in Section 3.1](#). Then, we attack three progressively harder threat models: (1) continuous curation scores (Section 3.2), (2) binary selection masks (Section 3.3), and (3) final trained models (Section 3.4). [Finally, we summarize our attacks in Section 3.5](#).

3.1 THREAT MODEL

Adversary Goal. Our attacks infer membership in the *private target set* $\mathcal{T}_{\text{sel}} \subseteq \mathcal{T}$ used for curation, *i.e.*, for a given target t whether $t \in \mathcal{T}_{\text{sel}}$. A target sample t can influence the curation scores s , and through that, subsequently, the curated public dataset $\tilde{\mathcal{D}}$ and, finally, the model \mathcal{M} trained on $\tilde{\mathcal{D}}$. Unlike in classical MIA (Shokri et al., 2017; Carlini et al., 2022a) t is never part of the training data of the model \mathcal{M} directly, *i.e.*, $\tilde{\mathcal{D}} \cap \mathcal{T} = \emptyset$.

Adversary Capabilities and Knowledge. Across all pipeline stages, we assume the following **adversary knowledge**: (1) The full public pool \mathcal{D} . Since such pools are often web-scale dataset from the internet, we assume the adversary can obtain it as well. (2) The target dataset \mathcal{T} . This follows standard assumptions in MIAs (Shokri et al., 2017) where the adversary knows the target samples whose membership they want to infer. (3) The curation algorithm used (*e.g.*, Image-based or TRAK). Curation methods are often open-source or disclosed in model documentation. For **adversary capabilities** we assume the adversary can observe only the outcome of the respective curation stage, *i.e.*, the scores s or the selection mask m or (through black-box query access) the

Attack Surface	Goal	Knowledge	Capabilities	Observations
Scores (Section 3.2)			Passive observation	Scores $s \in \mathbb{R}^{ \mathcal{D} }$
Subset (Section 3.3)	Infer	Public pool \mathcal{D} , target set \mathcal{T} ,	Passive observation	Selection $m \in \{0, 1\}^{ \mathcal{D} }$
Final Model (Section 3.4)	$\mathcal{T}_{\text{Sel.}} \subseteq \mathcal{T}$	curation algorithm	Inject fingerprinted samples \mathcal{F} into \mathcal{D}	Trained model \mathcal{M} (black-box query access) before curation

Table 1: **Threat model summary.** All adversaries aim to infer membership in the private curation target set $\mathcal{T}_{\text{Sel.}}$ (*not* training-set membership). Scores provide fine-grained ranking information, subsets reveal only binary selection, and final models require active poisoning with detectable fingerprints.

trained model \mathcal{M} . Only for the attacks on the final models we assume that a small part of the public pool can be poisoned, as Carlini et al. (2024) have shown to be realistic. Table 1 summarizes this.

3.2 SCORE-BASED ATTACKS

Adapting LiRA. To assess privacy leakage from curation scores, we adapt LiRA (Carlini et al., 2022a) for curation setups. Concretely, we sample m different random subsets from the target dataset \mathcal{T} and perform curation based on each of them. **Each target is in exactly half of the random subsets, ensuring an unbiased estimate of the in/out distributions.** The resulting *shadow sets* $\{s_i \in \mathbb{R}^N\}_{j=1}^m$ with $N = |\mathcal{D}|$ of curation scores take the role of the shadow models in the original LiRA (see Appendix B.1 for details). For each shadow set, we have the ground truth information on which of the data points from the target dataset was a member. With $N \approx 12.8\text{M}$ pool samples, most measurements are noise. Following Jagielski et al. (2023), we select only the single most informative public sample per target:

$$k^* = \arg \max_{k \in [N]} \left| \mathbb{E}_{j:t \in \mathcal{T}_j} [s_j^{(k)}] - \mathbb{E}_{j:t \notin \mathcal{T}_j} [s_j^{(k)}] \right|. \quad (1)$$

Custom Voting (Image-based). Image-based curation’s deterministic nearest-neighbor structure ($s(x) = \max_t \cos(\phi(x), \phi(t))$) enables reverse-engineering: for each public sample, identify which target $t^* = \arg \min_t |s(x) - \text{sim}(\phi(x), \phi(t))|$ was responsible, increment $v_{\text{vote}}(t^*)$ (positive evidence), and decrement votes for all t where $\text{sim}(\phi(x), \phi(t)) > s(x)$ (negative evidence—if t were present, $s(x)$ would be higher).

Least Squares (TRAK). TRAK-based curation computes scores as $s(x) = \frac{1}{|\mathcal{T}|} \sum_t \Phi(x)^\top G_t$. We can reformulate membership inference as a linear problem. We denote $m \in \{0, 1/|\mathcal{T}|\}^{|\mathcal{T}|}$ the masked mean operator. To recover membership signals, we then solve

$$\underset{m \in \mathbb{R}^n}{\text{minimize}} \quad \|\Phi(x)^\top G_t m - s\|_2^2. \quad (2)$$

The membership scores are then the optimal weights $v_{\text{lstsq}} = m$. We further detail this in Appendix B.4.2. Over both curation method, the **final LiRA membership inference score** for each target sample is then computed as

$$v_{\text{LiRA}}(t) = \log(p(s_{k^*(t)} | \mathcal{N}(\mu_{in}, \sigma_{in}^2))) - \log(p(s_{k^*(t)} | \mathcal{N}(\mu_{out}, \sigma_{out}^2))), \quad (3)$$

where $s_{k^*(t)}$ is the score of the public sample we identified as described above. For **Image-based Curation** the voting-based attack scores are the number votes v_{vote} . We empirically compare both attacks and find our custom attack outperforms LiRA.

3.3 SUBSET SELECTION ATTACKS

Assessing the privacy risks of the curated public subset is significantly more challenging than attacking the curation scores. This is because the scores yield a fine-grained ranking of the public samples whereas the curated dataset itself can be considered as a binary mask that only indicates for each public data point in the pool \mathcal{D} whether it was included into the curated set $\tilde{\mathcal{D}}$.

Once again, we adapt LiRA. While the original LiRA is designed to operate on continuous output logits, we need our attack to operate on *binary* selection observations. In line with the setup presented in the previous section, we again sample m different random subsets from the target dataset \mathcal{T} to obtain our *shadow sets* $\{s_i \in \mathbb{R}^N\}_{j=1}^m$ which we binarize to top- k masks $\{\bar{s}_i \in \{0, 1\}^N\}_{j=1}^m$ to represent which samples from the public pool were chosen by the curation.

In a naïve setup, we directly model these binary shadow set outcomes using Bernoulli distributions. For each $t \in \mathcal{T}$ we compute $\mu_{in} \in \mathbb{R}^N$ as the average of s_i for every $t \in \mathcal{T}_i$ and $\mu_{out} \in \mathbb{R}^N$ where $t \notin \mathcal{T}_i$. These are the frequencies of public samples being in the top set depending on whether t was part of the curation target. We again filter for each target t the pool sample x_t that is most indicative of t 's presence, *i.e.*, shows the highest difference between $\mu_{in,t}$ and $\mu_{out,t}$. When computing the membership inference scores for the private subset, we only look at whether x_t is present or not and compute the membership score as the log-likelihood ratio for the Bernoulli distribution

$$v_{\text{Binary LiRA}}(t) \log \left(\frac{P(x_v | \mu_{in,t})}{P(x_v | \mu_{out,t})} \right) = \log \left(\frac{\mu_{in,t}^{x_v} (1 - \mu_{in,t})^{1-x_v}}{\mu_{out,t}^{x_v} (1 - \mu_{out,t})^{1-x_v}} \right). \quad (4)$$

Soft Binarization. Shadow sets contain continuous scores before binarization. Rather than discarding this, we apply sigmoid transformation $\tilde{s} = \sigma_{\pi_k}(s_i) = 1/(1 + \exp(-\gamma \cdot (s_i - \pi_k)/\tau))$ to preserve boundary proximity information. This helps when samples cluster near threshold (CIFAR-10) but not when clearly separated (RESISC45).

Iterative Membership Inference Attack (Image-based). We use curation as an oracle during the attack: given hypothesis $\tilde{\mathcal{T}}_i$, we curate the public pool \mathcal{D} and compare our result $\tilde{\mathcal{D}}_i$ with $\tilde{\mathcal{D}}$. Overweighted samples (*i.e.*, $x \in \tilde{\mathcal{D}}_i$ but $x \notin \tilde{\mathcal{D}}$) suggest wrong targets; underweighted samples (*i.e.*, $x \in \tilde{\mathcal{D}}$ but $x \notin \tilde{\mathcal{D}}_i$) suggest missing targets. We iteratively refine the hypothesis $\tilde{\mathcal{T}}_i$ until convergence.

Voting-based Membership Inference Initialize $\tilde{\mathcal{T}}_0 = \{\emptyset\}$ and a vote accumulator $v_{\text{Iterative}}(t) = 0$ for each $t \in \mathcal{T}$. At iteration i :

$$\tilde{\mathcal{D}}_i = \text{Curate}(\mathcal{D}, \tilde{\mathcal{T}}_i) \quad (5)$$

$$\mathcal{O}_i = \{x \in \tilde{\mathcal{D}}_i : x \notin \tilde{\mathcal{D}}\} \quad (\text{overweighted samples}) \quad (6)$$

$$\mathcal{U}_i = \{x \in \tilde{\mathcal{D}} : x \notin \tilde{\mathcal{D}}_i\} \quad (\text{underweighted samples}) \quad (7)$$

Update votes for each target $t \in \tilde{\mathcal{T}}_i$:

$$v_{\text{Iterative}}(t) \leftarrow v_{\text{Iterative}}(t) - \mathbb{1}[t = \arg \max_{t' \in \tilde{\mathcal{T}}_i} \text{sim}(\phi(x), \phi(t'))], \quad \forall x \in \mathcal{O}_i \quad (8)$$

$$v_{\text{Iterative}}(t) \leftarrow v_{\text{Iterative}}(t) + \mathbb{1}[t = \arg \max_{t' \in \tilde{\mathcal{T}}_i} \text{sim}(\phi(x), \phi(t'))], \quad \forall x \in \mathcal{U}_i \quad (9)$$

Keep targets with a positive sum of votes

$$\tilde{\mathcal{T}}_{i+1} = \{t \in \tilde{\mathcal{T}}_i : v_{\text{Iterative}}(t) \geq 0\}. \quad (10)$$

Iterate until $J(\tilde{\mathcal{D}}_i, \tilde{\mathcal{D}}) \geq \theta$ or early stopping criteria are met, where $J(\cdot, \cdot)$ denotes Jaccard similarity.

The process converges when it finds a set $\tilde{\mathcal{T}}_i$ producing a selection pattern matching the target's, though multiple solutions may exist due to the many-to-one mapping between targets and selected samples. The votes $v_{\text{Iterative}}(t_i)$ for each target $t_i \in \tilde{\mathcal{T}}_i$ are then the membership inference scores

For **TRAK-based Curation**, we use the original membership scores output by LiRA directly. We therefore have membership inference scores $v_{\text{Binary LiRA}}$ from the binarized LiRA, $v_{\text{Sig Binary LiRA}}$ from binarized LiRA fitted with smoothed shadow sets and the iteratively computed votes $v_{\text{Iterative}}$ from the custom attack. We empirically compare these attacks.

3.4 FINAL MODELS ATTACK

Finally, we assess privacy leakage of the target data from the final model \mathcal{M} trained purely on the curated public data. This represents the highest threat as such end-to-end attack could actually be instantiated against exposed models that are trained based on curated data.

270

271

272

273

274

275

276

277

278

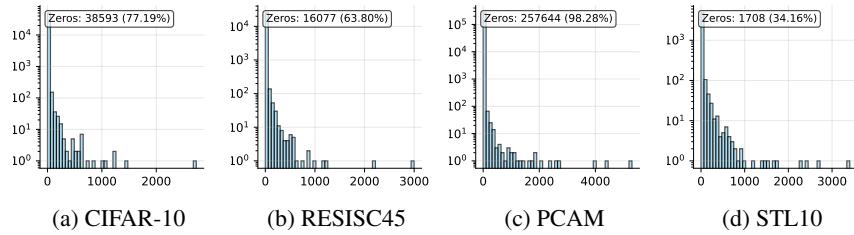


Figure 2: **Influence sparsity in Image-based curation.** Distribution of how many public samples have each target as their nearest neighbor. The concentration at zero demonstrates that most targets have no direct influence on curation scores, necessitating our fingerprinting approach.

To successfully extract membership information in this end-to-end setup, we rely on inserting a few modified samples \mathcal{F} into the large curation pool. This is a realistic setup, as shown by Carlini et al. (2024), who have shown various practical ways of putting adversarial examples into web-scale training data. Samples in \mathcal{F} must satisfy two critical requirements:

1. **Selective triggering:** Each sample must be selected during curation if and only if a specific target $t \in \mathcal{T}$ is present in the private target set. This requires crafting samples whose curation scores are sensitive to individual targets rather than the aggregate properties of \mathcal{T} .
2. **Detectable fingerprint:** Selected samples must imprint a measurable signal, which we call a *fingerprint*, in the trained model \mathcal{M} that the adversary can later detect to infer membership.

In **Image-Based Curation**, selection from the pool depends solely on image embeddings. Hence, we can modify text captions arbitrarily without affecting curation scores. Being able to arbitrarily modify captions has been shown sufficient for imprinting a measurable signal in trained models (Carlini & Terzis, 2022). However, achieving selective triggering remains challenging due to the sparse influence structure of nearest-neighbor selection. As illustrated in Figure 2, in the unmodified setup, most target samples have zero influence on public sample scores under nearest-neighbor curation. Specifically, 77.19% (CIFAR-10), 63.80% (RESISC45), and 98.28% (PCAM) of target samples are not the nearest neighbor for any public sample. This sparsity creates both a challenge (most targets are unattakable by default) and an opportunity (influenced samples have a strong membership signal).

To overcome influence sparsity, we inject fingerprinted samples \mathcal{F} into the public pool. We construct candidates for candidates for \mathcal{F} from images in \mathcal{D} paired with semantically unrelated captions to the target data (e.g., a fingerprint for CIFAR10 “ratatouille”). We find that including captions from the target dataset prevents the fingerprint from being detectable, as the final model will pick these captions more often over unrelated captions. For each candidate fingerprint f and target t_i , we compute a correspondence score balancing two objectives:

$$\text{score}(f, t_i) = \underbrace{\alpha \cdot \text{sim}(\phi(f), \phi(t_i))}_{\text{attraction to } t} + \underbrace{(1 - \alpha) \cdot \left(1 - \max_{t' \in \mathcal{T} \setminus \{t_i\}} \text{sim}(\phi(f), \phi(t'))\right)}_{\text{repulsion from other targets}} \quad (11)$$

where $\alpha \in [0, 1]$ trades off between proximity to the intended target and separation from samples in the target set. Our attack inserts as fingerprints $\mathcal{F} = \{\arg \max_{f \in \mathcal{D}} \text{score}(f, t_i) | t_i \in \mathcal{T}\}$, i.e., the highest-scoring sample for each target. This mapping is not unique, so $|\mathcal{F}| \leq |\mathcal{T}|$.

Computationally Tractable End-to-End Attacks. Figure 10 in Appendix C.2 shows that including such a fingerprinted sample has a measurable effect on the final model. The results show that the fingerprint detection can be performed reliably: For a fixed number of 5 fingerprint samples, there is a constant signal for dataset sizes up to 1,000,000 (the maximum we evaluated), at which point the poisoning rate is 0.0005%. As training large models from scratch for every membership inference experiment is computationally intractable, we once establish the signal and from now on assume that the adversary can measure whether $f \in \tilde{\mathcal{D}}$. Therefore, we build our attacks on measurements of fingerprinted samples in $\tilde{\mathcal{D}}$.

We compute membership scores as follows. Let p_0^f denote the baseline percentile rank of fingerprinted sample f when scored against the full target set \mathcal{T} . The adversary does not know the selection

324 **Algorithm 1** TRAK Membership Inference via Fingerprint Detection

325 **Require:** Pool data X , target gradients Y , fingerprints \mathcal{F} , threshold assumption ρ

326 **Ensure:** Membership scores for each target

327 1: $G_\lambda^{-1} \leftarrow (X^\top X + \lambda I)^{-1}$ ▷ Cholesky decomposition

328 2: $\mu \leftarrow \mathbb{E}[Y]$, $\Sigma \leftarrow \text{Cov}[Y]$ ▷ Target statistics

329 3: $S \leftarrow \mathcal{F}G_\lambda^{-1}Y^\top$ ▷ Signal matrix

330 4: $\nu_i \leftarrow \sqrt{f_i^\top G_\lambda^{-1} \Sigma G_\lambda^{-1} f_i}$ for all i ▷ Noise scales

331 5: Initialize $\text{score}_j \leftarrow 0$ for all targets

332 6: **for** each target $j \in [n]$ **do**

333 7: $i^*(j) \leftarrow \arg \max_i |S_{ij}| / \nu_i$ ▷ Best fingerprint

334 8: Compute z_{H_0}, z_{H_1} via Sherman-Morrison

335 9: $p_{H_0}, p_{H_1} \leftarrow$ percentile ranks of z_{H_0}, z_{H_1}

336 10: $\text{confidence}_j \leftarrow |\text{clip}(p_{H_1}, \rho, 100) - \text{clip}(p_{H_0}, \rho, 100)|$

337 11: **end for**

338 12: **for** each observed fingerprint $f_i \in \tilde{\mathcal{D}}$ **do**

339 13: **for** each target j where $i^*(j) = i$ **do**

340 14: **if** $p_{H_1} > \rho \wedge p_{H_0} \leq \rho$ **then** ▷ Fingerprint crosses threshold

341 15: $\text{score}_j \leftarrow \text{score}_j + \text{confidence}_j$

342 16: **end if**

343 17: **end for**

344 18: **end for**

345 19: **return** $\{\text{score}_j\}_{j=1}^n$

347 threshold τ but can conservatively assume they will pick from the top 50% of the pool. We model the
 348 probability of selecting f without its corresponding target as:

$$350 \quad P_0(f) = \frac{1}{1 + \exp(-(p_0^f - \tau)/\sigma)}, \quad (12)$$

352 where σ controls the transition sharpness. For each fingerprinted sample we measure to be in $\tilde{\mathcal{D}}$ we
 353 set the membership inference score of the corresponding target(s)¹ to the *surprise* of the measurement
 354 of that sample under H_0 divided by the number of targets that share that fingerprint (see Algorithms 4
 355 and 5 for details)

$$356 \quad v_{\text{E2E Img.}}(t_i) = \frac{1[\text{ selected}] - P(\text{ selected} \mid P_0(f))}{n_{\text{sharing}}(f)}. \quad (13)$$

359 For **TRAK-based Curation**, we face the challenge that it relies on a gradient-based scoring
 360 mechanism. Unlike Image-based curation, TRAK explicitly penalizes mislabeled or semantically
 361 inconsistent samples through this gradient alignment scoring (Park et al., 2023), rendering our
 362 previous caption manipulation approach ineffective. However, we discover that TRAK scores
 363 remain stable when captions are augmented with semantically orthogonal information. Specifically,
 364 appending unrelated concepts to otherwise correct captions (e.g., transforming “an image of an
 365 airplane” to “an image of an airplane and ratatouille”) preserves high TRAK scores while enabling
 366 detectable model changes. As demonstrated in Figure 11, such augmented samples imprint measurable
 367 signals in the trained model despite minimal impact on curation scores. This phenomenon occurs
 368 because TRAK primarily evaluates gradient alignment along task-relevant dimensions. Orthogonal
 369 semantic additions contribute negligible projection onto these principal gradient directions, leaving
 370 scores largely unchanged while still influencing the final model through training.

371 We construct a candidate set $\mathcal{C} = \{c_1, \dots, c_M\}$ that we will consider as fingerprints by copying
 372 target samples from \mathcal{T} and augmenting their captions with orthogonal signals. For each candidate c_i
 373 and target y_j , we quantify the membership signal through the influence matrix S and, to account for
 374 interference from other targets, noise scales ν_i :

$$375 \quad S = \mathcal{C}G_\lambda^{-1}Y^\top \in \mathbb{R}^{M \times n}, \quad \nu_i = \sqrt{c_i^\top G_\lambda^{-1} \Sigma G_\lambda^{-1} c_i}, \quad (14)$$

376 ¹Target(s) in plural, as the mapping is not necessarily unique.

378 where $G_\lambda = X^\top X + \lambda I$ is the regularized Gram matrix of the public pool and Y contains target
 379 gradients. Entry S_{ij} measures how target t_j 's inclusion affects fingerprint f_i 's score. $\Sigma = \text{cov}(Y)$
 380 captures target gradient variability. The signal-to-noise ratio $|S_{ij}|/\nu_i$ identifies fingerprints most
 381 sensitive to specific targets. We construct the final fingerprinting set $\mathcal{F} = \{\arg \max_i |S_{ij}|/\nu_i \mid j \in\}$
 382 $\{1, \dots, n\}\}$, *i.e.*, with the highest SNR sample for each target.

383 For each fingerprint we compute its expected score under two hypotheses: H_0 : Target j absent
 384 from victim's private set, H_1 : Target j present in victim's private set. Using the Sherman-Morrison
 385 formula (Hager, 1989), which enables efficient rank-one updates to matrix inverses, we compute these
 386 scores and their percentile ranks relative to the public pool distribution. The membership evidence is
 387 quantified by the percentile shift:

$$388 \text{confidence}_j = |\text{percentile}_{H_1}(f_{i^*(j)}) - \text{percentile}_{H_0}(f_{i^*(j)})|. \quad (15)$$

389 Since the adversary cannot observe the percentiles during the attack but only the presence of fin-
 390 gerprinted samples, we ideally want samples that *cross the selection threshold* ρ if and only if the
 391 corresponding target is included. Since the adversary does not know ρ , we conservatively assume it to
 392 be 0.5, *i.e.*, that the training data will only be picked from the better half. Using this assumption, the
 393 percentiles are are clipped to [50, 100], s.t. changes in the lower percentiles do not affect confidence.

394 The membership inference score for target t_j is determined by whether its corresponding fingerprint
 395 $f_{i^*(j)}$ appears in $\tilde{\mathcal{D}}$. If the fingerprint is selected when it would not have been without target t_j ,
 396 (crossing the selection threshold), we set the membership score to the confidence value confidence_j ,
 397 which represents the strength of the membership signal, so

$$398 v_{\text{E2E Trak}}(t_j) = \begin{cases} \text{confidence}_j & \text{if } f_{i^*(j)} \in \tilde{\mathcal{D}} \\ 0 & \text{otherwise} \end{cases}. \quad (16)$$

401 Algorithm 1 provides the complete attack procedure.

402 3.5 SUMMARY OF ATTACKS

404 We developed **8 attacks** across the three pipeline stages. Our **Score-Based Attacks (Section 3.2)** infer
 405 membership information from the curation scores. The **(1) LiRA**-based attack adapts likelihood ratio
 406 tests by running shadow curation processes and comparing score distributions between member and
 407 non-member scenarios for both Image-based and TRAK-based methods. **(2) Voting Scheme** exploits
 408 Image-based curation by reverse-engineering nearest-neighbor relationships through voting across
 409 shadow model predictions. **(3) Least Squares** and **(4) Orthogonal Matching Pursuit** solve linear
 410 systems that relate TRAK-based curation scores to private dataset membership. Our **Subset Selection**
 411 **Attacks (Section 3.3)** target the binary selection decisions made by curation. **(5) Binary LiRA**
 412 adapts the likelihood ratio framework to binary subset selection by modeling selection probabilities
 413 as Bernoulli distributions and comparing likelihoods under member versus non-member hypotheses.
 414 **(6) Iterative Voting Scheme** iteratively refines a hypothesis of the target set by running curation on
 415 candidate sets and adjusting the hypothesis until the resulting selection matches that of the target
 416 set. Finally, our **End-to-End Model Attacks (Section 3.4)** exploit the downstream model trained on
 417 curated data. **(7) Fingerprinting (Image-based)** uses mislabeled captions as fingerprints, selecting
 418 them via correspondence scoring to ensure they appear only when specific private examples are
 419 present in curation. **(8) Fingerprinting (TRAK)** employs benign captions with added orthogonal
 420 information as fingerprints, selecting them based on signal-to-noise ratio and threshold crossing
 421 detection to maximize their differential presence across shadow scenarios.

422 4 EVALUATION

424 **Experimental Setup.** We evaluate our attacks using CommonPool (small) (Gadre et al., 2023) as the
 425 public dataset \mathcal{D} , containing 12.8M samples. We evaluate across six diverse target datasets spanning
 426 natural images, medical imaging, and satellite imagery to cover a wide range of curation setups:
 427 CIFAR-10/100 (Krizhevsky, 2009), STL-10 (Coates et al., 2011), RESISC45 (Cheng et al., 2017),
 428 PatchCamelyon (Veeling et al., 2018), and Food101 (Bossard et al., 2014). For end-to-end attacks,
 429 we train models following *DataComp* small-scale (see Appendix C for full details). We obtain image
 430 embeddings from OpenAI's CLIP ViT-L/14 model (Radford et al., 2021). Gradients for TRAK are
 431 obtained from a model trained on the full pool dataset \mathcal{D} using contrastive training as in Gadre et al.
 432 (2023). For LiRA attacks, we use 256 shadow sets per configuration (see Appendix C for details).

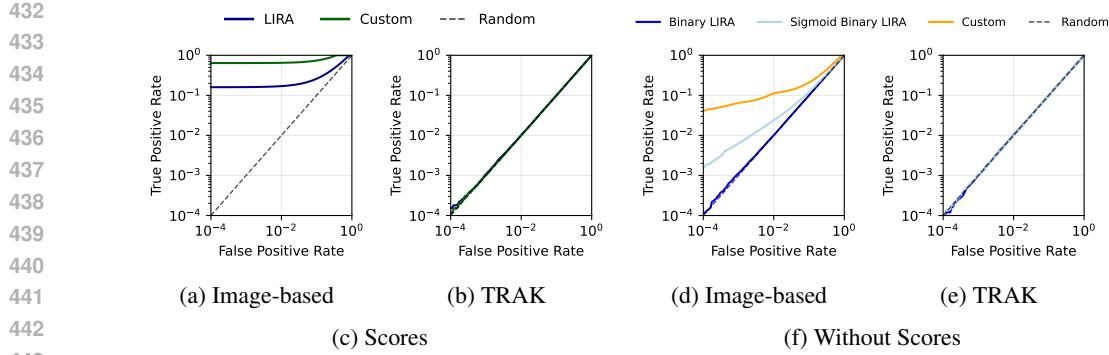


Figure 3: **Attack success for curation scores and subsets.** Image-based curation’s nearest-neighbor mechanism is highly vulnerable, while TRAK’s gradient averaging shows almost no leakage.

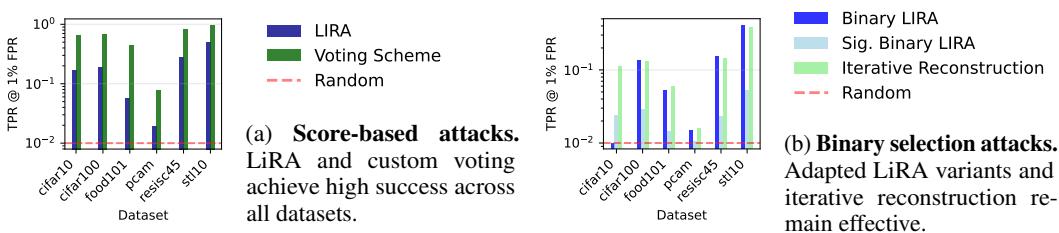


Figure 4: **Attack success correlates with influence patterns from Figure 2.** Cross-dataset comparison shows TPR at 1% FPR inversely correlates with the percentage of zero-influence targets.

4.1 ATTACK PERFORMANCE ON CURATION SCORES

Image-based curation exhibits high attack success rates. The dataset-specific variations in attack success for Image-based curation align with our analysis from Figure 2, namely that datasets with higher influence concentration (fewer targets affecting many public samples) exhibit greater vulnerability. This holds regardless the underlying data type—satellite imagery (RESISC45) with less zero-influence samples is more attackable and medical images (PatchCamelyon) with more zero-influence samples is less attackable than CIFAR10. In contrast, TRAK demonstrates natural protection through its averaging mechanism, giving near-random attack performance ($AUC \approx 0.5$) as individual target contributions become diluted through aggregation and dimensionality reduction.

4.2 ATTACK PERFORMANCE ON BINARY SELECTIONS

Even when restricted to observing only binary selection patterns, Image-based curation remains vulnerable to membership inference attacks (Section 4). Our iterative reconstruction algorithm successfully recovers the private target set for all samples with non-zero influence, though the large fraction of zero-influence samples provides natural protection for the remaining targets. This success generalizes over various datasets (Figure 4b).

4.3 END-TO-END ATTACKS ON TRAINED MODELS

The end-to-end attack depends significantly on the target dataset size, so we evaluate TPR at 1% FPR for different target dataset sizes $|\mathcal{T}|$ and various datasets in Figure 5. We show that Image-based curation leads to moderate information leakage across all target dataset sizes, with TPR values up to 21.4% at 1% FPR for RESISC45 at $|\mathcal{T}| = 100$. Targets with non-zero influence are exposed at every target size, creating a bimodal privacy distribution where most samples remain protected while a subset faces significant exposure. TRAK exhibits a different behavior, demonstrating a strong decrease in attack success with growing $|\mathcal{T}|$. This size-dependent vulnerability suggests TRAK may be suitable for large-scale applications but poses significant risks for small, sensitive datasets.

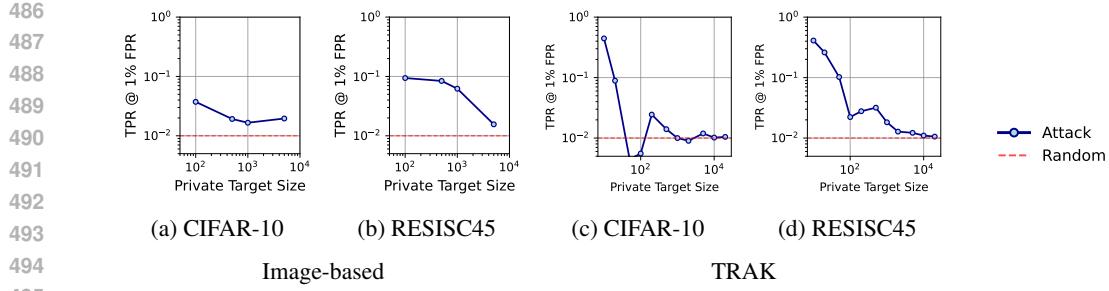


Figure 5: **End-to-end membership inference success.** Image-based curation shows consistent partial leakage, while TRAK exhibits size-dependent vulnerability.

4.4 ABLATIONS

We perform further ablations on various aspects of our curation setups and analyze their impact on the attack success. We conduct these ablations on attacks against scores, which yield the strongest leakage signal and thus provide the clearest insights into the factors affecting membership inference success. First, we analyze the impact of **the number of dimensions** used for Image-based embeddings and TRAK-based gradient projections. Our results in Figure 37 suggest that for Image-based curation, there is a sweet spot, with the highest leakage at 128 dimensions. TRAK requires enough dimensions ($\geq 1,024$), below which the attack success drops. Additionally, we show how **target dataset size** impacts attack success. Our results in Figure 32 suggest differences across datasets: *e.g.*, attack success against STL-10 remains near constant while for CIFAR-10, we observe that the success drops as the target dataset size grows. Finally, Figure 36 shows that the **number of shadow models for LiRA** has a varying effect on improving the attack success on different datasets for Image-based curation: *e.g.*, double the number of shadow models from 128 to 256 for CIFAR-10 increases AUC by 10% while for PCAM only for 1%. For TRAK, we do not observe any improvement in attack success when adding more shadow models. We present the full results over all ablations in Appendix E.

5 MITIGATING PRIVACY LEAKAGE

To mitigate privacy leakage, we adapt curation methods to yield (ϵ, δ) -Differential Privacy (DP) guarantees via the Gaussian mechanism (Dwork et al., 2006a;b). For **DP Image-based curation** we compute the distance to the DP mean instead of the nearest neighbor of the target dataset. For **DP TRAK-based curation** we privatize the mean gradient computation, similar to Abadi et al. (2016). Appendix D.1 details the algorithms. Figure 6 shows the attack success on the curation scores for our private adaptations. We note that for Image-based curation, replacing the nearest neighbor scores with a mean (without DP) already drops the TPR at 1% FPR from 98.4% to 1.6%. For TRAK-based curation, as we use averaged gradients to perform curation, stricter guarantees are required to reduce the attack success. Appendix D.2 shows that **removing the most vulnerable samples** does not prevent leakage, exhibiting a *privacy onion effect* (Carlini et al., 2022b) for Image-based curation.

6 DISCUSSION AND CONCLUSION

Our work demonstrates that data curation pipelines can leak membership information about the target datasets, exposing privacy risks at every stage, from curation scores and curated subset to the final trained model. Image-based nearest-neighbor methods are particularly vulnerable, and even state-of-the-art approaches like TRAK expose privacy risks for small target sets. Our discovered risks become practically relevant when adversaries can introduce manipulated samples in the curation pool, which is the case when the pool is simply crawled from the internet. This highlights that, as curation becomes central to ML, we need novel curation methods with dedicated safeguards, such as DP, to reduce potential leakage throughout the entire data curation pipeline.

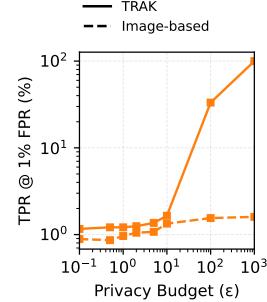


Figure 6: **Attack success versus ϵ for CIFAR-10 ($|\mathcal{T}| = 1000$).**

540 ETHICS STATEMENT
541542 Our work demonstrates privacy vulnerabilities in data curation methods. We conduct this research to
543 identify and quantify these issues before they can be exploited maliciously, enabling the development
544 of privacy-preserving methods. Our attacks require specific capabilities like injecting target-specific
545 and modified samples into public datasets, which limit their immediate applicability and provide time
546 to implement countermeasures.
547548 REPRODUCIBILITY STATEMENT
549550 Reproducing our results is possible from the information provided, and we support reproduction
551 through the release of all our attack implementations in the supplemental code, as well as providing
552 more detail on the algorithms in the appendix. What hinders reproduction is the computational cost
553 associated with running curation and training algorithms on dataset sizes that are relevant to the
554 topic of data curation. We argue that this is a) to some extent unavoidable and b) our introduction of
555 suitable proxy metrics that eliminate the need to train models improves reproducibility significantly.
556557 REFERENCES
558

559 Martin Abadi, Andy Chu, Ian Goodfellow, H. Brendan McMahan, Ilya Mironov, Kunal Talwar, and
560 Li Zhang. Deep Learning with Differential Privacy. In *Proceedings of the 2016 ACM SIGSAC
561 Conference on Computer and Communications Security*, pp. 308–318, Vienna Austria, 2016. ACM.
562 ISBN 978-1-4503-4139-4. doi: 10.1145/2976749.2978318. URL <https://dl.acm.org/doi/10.1145/2976749.2978318>.

564 Meenatchi Sundaram Muthu Selva Annamalai, Borja Balle, Emiliano De Cristofaro, and Jamie
565 Hayes. To Shuffle or not to Shuffle: Auditing DP-SGD with Shuffling, 2024. URL <https://arxiv.org/abs/2411.10614>.
566

568 Kyriakos Axiotis and Maxim Sviridenko. Iterative hard thresholding with adaptive regularization:
569 Sparser solutions without sacrificing runtime. In Kamalika Chaudhuri, Stefanie Jegelka, Le Song,
570 Csaba Szepesvári, Gang Niu, and Sivan Sabato (eds.), *International Conference on Machine
571 Learning, ICML 2022, 17-23 July 2022, Baltimore, Maryland, USA*, volume 162 of *Proceedings
572 of Machine Learning Research*, pp. 1175–1197. PMLR, 2022. URL <https://proceedings.mlr.press/v162/axiotis22a.html>.
573

574 Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101 – Mining Discriminative
575 Components with Random Forests. In David Fleet, Tomas Pajdla, Bernt Schiele, and Tinne
576 Tuytelaars (eds.), *Computer Vision – ECCV 2014*, pp. 446–461, Cham, 2014. Springer International
577 Publishing. ISBN 978-3-319-10599-4. doi: 10.1007/978-3-319-10599-4_29.
578

579 Nicholas Carlini and Andreas Terzis. Poisoning and backdooring contrastive learning. In *The Tenth In-
580 ternational Conference on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022.*
581 OpenReview.net, 2022. URL <https://openreview.net/forum?id=iC4UHbQ01Mp>.
582

583 Nicholas Carlini, Steve Chien, Milad Nasr, Shuang Song, Andreas Terzis, and Florian Tramèr. Mem-
584 bership inference attacks from first principles. In *43rd IEEE Symposium on Security and Privacy,
585 SP 2022, San Francisco, CA, USA, May 22-26, 2022*, pp. 1897–1914. IEEE, 2022a. doi: 10.1109/
586 SP46214.2022.9833649. URL <https://doi.org/10.1109/SP46214.2022.9833649>.
587

588 Nicholas Carlini, Matthew Jagielski, Chiyuan Zhang, Nicolas Papernot, Andreas Terzis, and Florian
589 Tramer. The privacy onion effect: Memorization is relative. *Advances in Neural Information
590 Processing Systems*, 35:13263–13276, 2022b.
591

592 Nicholas Carlini, Matthew Jagielski, Christopher A. Choquette-Choo, Daniel Paleka, Will Pearce,
593 Hyrum Anderson, Andreas Terzis, Kurt Thomas, and Florian Tramèr. Poisoning Web-Scale
594 Training Datasets is Practical. In *2024 IEEE Symposium on Security and Privacy (SP)*, pp. 407–
595 425, 2024. doi: 10.1109/SP54263.2024.00179. URL <https://ieeexplore.ieee.org/abstract/document/10646610>. ISSN: 2375-1207.
596

594 Gong Cheng, Junwei Han, and Xiaoqiang Lu. Remote sensing image scene classification: Benchmark
 595 and state of the art. *Proceedings of the IEEE*, 2017. doi: 10.1109/JPROC.2017.2675998.

596

597 Mehdi Cherti and Romain Beaumont. Clip benchmark, 2025. URL <https://doi.org/10.5281/zenodo.15403103>.

598

599 Adam Coates, Andrew Ng, and Honglak Lee. An Analysis of Single-Layer Networks in Unsuper-
 600 vised Feature Learning. In *Proceedings of the Fourteenth International Conference on Artificial*
 601 *Intelligence and Statistics*, pp. 215–223. JMLR Workshop and Conference Proceedings, 2011.
 602 URL <https://proceedings.mlr.press/v15/coates11a.html>. ISSN: 1938-7228.

603

604 Together Computer. RedPajama: an open dataset for training large language models, October 2023.
 605 URL <https://github.com/togethercomputer/RedPajama-Data>.

606

607 DatalogyAI. DatalogyAI: Train Better Models, Faster and Smaller. URL <https://www.datologyai.com>.

608

609 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 610 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 611 and Neil Houlsby. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale,
 612 June 2021. URL <http://arxiv.org/abs/2010.11929>. arXiv:2010.11929 [cs].

613

614 Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our
 615 Data, Ourselves: Privacy Via Distributed Noise Generation. In Serge Vaudenay (ed.), *Advances*
 616 in *Cryptology - EUROCRYPT 2006*, pp. 486–503, Berlin, Heidelberg, 2006a. Springer. ISBN
 978-3-540-34547-3. doi: 10.1007/11761679_29.

617

618 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating Noise to Sensitivity in
 619 Private Data Analysis. In Shai Halevi and Tal Rabin (eds.), *Theory of Cryptography*, Lecture Notes
 620 in Computer Science, pp. 265–284, Berlin, Heidelberg, 2006b. Springer. ISBN 978-3-540-32732-5.
 621 doi: 10.1007/11681878_14.

622

623 Logan Engstrom, Axel Feldmann, and Aleksander Madry. Dsdm: Model-aware dataset selection
 624 with datamodels. In *Forty-first International Conference on Machine Learning, ICML 2024,*
 625 *Vienna, Austria, July 21-27, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=GC8HkKeH8s>.

626

627 Samir Yitzhak Gadre, Gabriel Ilharco, Alex Fang, Jonathan Hayase, Georgios Smyrnis, Thao
 628 Nguyen, Ryan Marten, Mitchell Wortsman, Dhruba Ghosh, Jieyu Zhang, Eyal Orgad,
 629 Rahim Entezari, Giannis Daras, Sarah M. Pratt, Vivek Ramanujan, Yonatan Bitton, Kalyani
 630 Marathe, Stephen Mussmann, Richard Vencu, Mehdi Cherti, Ranjay Krishna, Pang Wei
 631 Koh, Olga Saukh, Alexander J. Ratner, Shuran Song, Hannaneh Hajishirzi, Ali Farhadi,
 632 Romain Beaumont, Sewoong Oh, Alex Dimakis, Jenia Jitsev, Yair Carmon, Vaishaal Shankar,
 633 and Ludwig Schmidt. Datacomp: In search of the next generation of multimodal datasets.
 634 In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey
 635 Levine (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference*
 636 *on Neural Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA,*
 637 *December 10 - 16, 2023*. URL http://papers.nips.cc/paper_files/paper/2023/hash/56332d41d55ad7ad8024aac625881be7-Abstract-Datasets_and_Benchmarks.html.

638

639 Xin Gu, Gautam Kamath, and Zhiwei Steven Wu. Choosing public datasets for private machine
 640 learning via gradient subspace distance. In *IEEE Conference on Secure and Trustworthy Machine*
 641 *Learning, SATML 2025, Copenhagen, Denmark, April 9-11, 2025*, pp. 879–900. IEEE, 2025. doi:
 642 10.1109/SATML64287.2025.00054. URL <https://doi.org/10.1109/SATML64287.2025.00054>.

643

644 William W. Hager. Updating the Inverse of a Matrix. *SIAM Review*, 31(2):221–239, 1989. ISSN
 645 0036-1445. doi: 10.1137/1031049. URL <https://pubs.siam.org/doi/10.1137/1031049>. Publisher: Society for Industrial and Applied Mathematics.

646

647 Andrew Ilyas and Logan Engstrom. MAGIC: Near-Optimal Data Attribution for Deep Learning,
 648 2025. URL <https://arxiv.org/abs/2504.16430>.

648 Andrew Ilyas, Sung Min Park, Logan Engstrom, Guillaume Leclerc, and Aleksander Madry. Data-
 649 models: Predicting Predictions from Training Data, 2022. URL <https://arxiv.org/abs/2202.00622>.
 650

651 Matthew Jagielski, Milad Nasr, Katherine Lee, Christopher A. Choquette-Choo, Nicholas Carlini,
 652 and Florian Tramèr. Students parrot their teachers: Membership inference on model distillation.
 653 In Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
 654 (eds.), *Advances in Neural Information Processing Systems 36: Annual Conference on Neural
 655 Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
 656 16, 2023*, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/8b07d224a643b02e7571e083578a86d2-Abstract-Conference.html.
 657

658 Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images. 2009.
 659

660 Jeffrey Li, Alex Fang, Georgios Smyrnis, Maor Ivgi, Matt Jordan, Samir Yitzhak Gadre, Hritik
 661 Bansal, Etrash Guha, Sedrick Scott Keh, Kushal Arora, Saurabh Garg, Rui Xin, Niklas Muennighoff,
 662 Reinhard Heckel, Jean Mercat, Mayee F. Chen, Suchin Gururangan, Mitchell Wortsman, Alon
 663 Albalak, Yonatan Bitton, Marianna Nezhurina, Amro Abbas, Cheng-Yu Hsieh, Dhruba Ghosh,
 664 Josh Gardner, Maciej Kilian, Hanlin Zhang, Rulin Shao, Sarah M. Pratt, Sunny Sanyal, Gabriel
 665 Ilharco, Giannis Daras, Kalyani Marathe, Aaron Gokaslan, Jieyu Zhang, Khyathi Raghavi Chandu,
 666 Thao Nguyen, Igor Vasiljevic, Sham M. Kakade, Shuran Song, Sujay Sanghavi, Fartash Faghri,
 667 Sewoong Oh, Luke Zettlemoyer, Kyle Lo, Alaaeldin El-Nouby, Hadi Pouransari, Alexander
 668 Toshev, Stephanie Wang, Dirk Groeneveld, Luca Soldaini, Pang Wei Koh, Jenia Jitsev, Thomas
 669 Kollar, Alex Dimakis, Yair Carmon, Achal Dave, Ludwig Schmidt, and Vaishaal Shankar.
 670 Datacomp-lm: In search of the next generation of training sets for language models. In Amir
 671 Globersons, Lester Mackey, Danielle Belgrave, Angela Fan, Ulrich Paquet, Jakub M. Tomczak, and
 672 Cheng Zhang (eds.), *Advances in Neural Information Processing Systems 38: Annual Conference
 673 on Neural Information Processing Systems 2024, NeurIPS 2024, Vancouver, BC, Canada, De-
 674 cember 10 - 15, 2024*, 2024a. URL http://papers.nips.cc/paper_files/paper/2024/hash/19e4ea30dded58259665db375885e412-Abstract-Datasets_and_Benchmarks_Track.html.
 675

676 Zejian Li, Chenye Meng, Yize Li, Ling Yang, Shengyuan Zhang, Jiarui Ma, Jiayi Li, Guang Yang,
 677 Changyuan Yang, Zhiyuan Yang, Jinxiong Chang, and Lingyun Sun. LAION-SG: An enhanced
 678 large-scale dataset for training complex image-text models with structural annotations, 2024b.
 679 URL <https://arxiv.org/abs/2412.08580>. arXiv: 2412.08580 [cs.CV].
 680

681 Ilya Loshchilov and Frank Hutter. Decoupled Weight Decay Regularization, January 2019. URL
 682 <http://arxiv.org/abs/1711.05101>. arXiv: 1711.05101 [cs].
 683

684 Saeed Mahloujifar, Luca Melis, and Kamalika Chaudhuri. Auditing \$f\$-Differential Privacy in One
 685 Run, 2024. URL <https://arxiv.org/abs/2410.22235>.
 686

687 Pratyush Maini, Skyler Seto, Richard He Bai, David Grangier, Yizhe Zhang, and Navdeep Jaitly.
 688 Rephrasing the web: A recipe for compute and data-efficient language modeling. In Lun-Wei
 689 Ku, Andre Martins, and Vivek Srikumar (eds.), *Proceedings of the 62nd Annual Meeting of
 690 the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2024, Bangkok,
 691 Thailand, August 11-16, 2024*, pp. 14044-14072. Association for Computational Linguistics, 2024.
 692 doi: 10.18653/V1/2024.ACL-LONG.757. URL <https://doi.org/10.18653/v1/2024.acl-long.757>.
 693

694 B. K. Natarajan. Sparse Approximate Solutions to Linear Systems. *SIAM Journal on Computing*,
 695 24(2):227-234, 1995. ISSN 0097-5397. doi: 10.1137/S0097539792240406. URL <https://epubs.siam.org/doi/abs/10.1137/S0097539792240406>. Publisher: Society
 696 for Industrial and Applied Mathematics.
 697

698 Sung Min Park, Kristian Georgiev, Andrew Ilyas, Guillaume Leclerc, and Aleksander Madry. TRAK:
 699 attributing model behavior at scale. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara
 700 Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), *International Conference on Machine
 701 Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA*, volume 202 of *Proceedings of
 Machine Learning Research*, pp. 27074-27113. PMLR, 2023. URL <https://proceedings.mlr.press/v202/park23c.html>.
 701

702 Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli,
 703 Hamza Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The RefinedWeb
 704 dataset for falcon LLM: Outperforming curated corpora with web data, and web data only, 2023.
 705 URL <https://arxiv.org/abs/2306.01116>. arXiv: 2306.01116 [cs.CL].

706 Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
 707 Raffel, Leandro Von Werra, and Thomas Wolf. The FineWeb datasets: Decanting the web for
 708 the finest text data at scale, 2024. URL <https://arxiv.org/abs/2406.17557>. arXiv:
 709 2406.17557 [cs.CL].

710 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 711 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever.
 712 Learning transferable visual models from natural language supervision. In Marina Meila and
 713 Tong Zhang (eds.), *Proceedings of the 38th International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event*, volume 139 of *Proceedings of Machine Learning Research*, pp. 8748–8763. PMLR, 2021. URL <http://proceedings.mlr.press/v139/radford21a.html>.

714 ScaleAI. Scale AI. URL <https://scale.com>.

715 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership inference
 716 attacks against machine learning models. In *2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017*, pp. 3–18. IEEE Computer Society, 2017. doi:
 717 10.1109/SP.2017.41. URL <https://doi.org/10.1109/SP.2017.41>.

718 Snorkel. Snorkel AI | Helping model providers and AI development teams push the boundaries of AI.
 719 URL <https://snorkel.ai/>.

720 Tristan Thrush, Christopher Potts, and Tatsunori Hashimoto. Improving pretraining data using
 721 perplexity correlations. In *The Thirteenth International Conference on Learning Representations, ICLR 2025, Singapore, April 24-28, 2025*. OpenReview.net, 2025. URL <https://openreview.net/forum?id=huuKoVQnB0>.

722 Bastiaan S. Veeling, Jasper Linmans, Jim Winkens, Taco Cohen, and Max Welling. Rotation
 723 equivariant cnns for digital pathology. In Alejandro F. Frangi, Julia A. Schnabel, Christos
 724 Davatzikos, Carlos Alberola-López, and Gabor Fichtinger (eds.), *Medical Image Computing and Computer Assisted Intervention - MICCAI 2018 - 21st International Conference, Granada, Spain, September 16-20, 2018, Proceedings, Part II*, volume 11071 of *Lecture Notes in Computer Science*, pp. 210–218. Springer, 2018. doi: 10.1007/978-3-030-00934-2_24. URL
 725 https://doi.org/10.1007/978-3-030-00934-2_24.

726 Shanshan Wu, Zheng Xu, Yanxiang Zhang, Yuanbo Zhang, and Daniel Ramage. Prompt Public
 727 Large Language Models to Synthesize Data for Private On-device Applications, 2024. URL
 728 <https://arxiv.org/abs/2404.04360>.

729 Da Yu, Sivakanth Gopi, Janardhan Kulkarni, Zinan Lin, Saurabh Naik, Tomasz Lukasz Religa, Jian
 730 Yin, and Huishuai Zhang. Selective pre-training for private fine-tuning. *Trans. Mach. Learn. Res.*,
 731 2024, 2024. URL <https://openreview.net/forum?id=y3u8OpPHxz>.

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756 **A CURATION METHODS**
757758 Table 2: Overview of Curation Methods
759

760 Method	761 Description	762 Score Function
763 Image-based	764 Identifies relevant pool data using 765 image embeddings	$s(x) = \max_{t \in \mathcal{T}} \cos(\phi(x), \phi(t))$ 766 where $\phi(\cdot)$ is the embedding function
767 TRAK	768 Computes attribution scores via pro- 769 jected gradients to identify influen- 770 tial pool samples	$s(x) = \frac{1}{ \mathcal{T} } \sum_{t \in \mathcal{T}} \Phi(x)^T G_t$ where 771 Φ are projected and out-to-loss- 772 scaled features

773 **A.1 IMAGE-BASED SCORING**
774

775 We employ Image-based nearest neighbor distances inspired by Gadre et al. (2023). Following the
776 **DataComp** methodology, we use embeddings from OpenAI’s pretrained CLIP ViT-L/14 model (Rad-
777 ford et al., 2021) to compute the image representations $\phi(\cdot)$. For each pool sample $x_i \in \mathcal{D}$, the
778 curation score is computed as the maximum cosine similarity to any target sample in \mathcal{T} , i.e., the pool
779 sample is scored based on its closest (most similar) target sample. This nearest-neighbor mechanism
780 creates a deterministic relationship where each pool sample’s score is determined by exactly one
781 target sample.

782 **A.2 TRAK**
783

784 The TRAK algorithm (Park et al., 2023) for computing influence scores is formally presented in
785 Algorithm 2.

786 **Algorithm 2** TRAK Algorithm for Influence Computation

787 **Require:** Training dataset \mathcal{D} , target dataset \mathcal{T} , model f_θ , projection dimension d_{proj}

788 **Ensure:** Influence scores s of training samples on target samples

789 $\mathbf{G}_{\text{train}} \leftarrow \nabla_\theta f_\theta(\mathcal{D})$	▷ Gradients for training data
790 $\boldsymbol{\alpha}_{\text{train}} \leftarrow \nabla_{f_\theta} \mathcal{L}(\mathcal{D}, f_\theta)$	▷ Output-to-loss gradients
791 $\mathbf{G}_{\text{target}} \leftarrow \nabla_\theta f_\theta(\mathcal{T})$	▷ Gradients for target data
792 $\mathbf{P} \leftarrow \text{RandomProjectionMatrix}(\dim(\theta), d_{\text{proj}})$	▷ Typically Rademacher
793 $\mathbf{G}_{\text{train}} \leftarrow \mathbf{G}_{\text{train}} \mathbf{P}$	▷ Project training gradients
794 $\mathbf{G}_{\text{target}} \leftarrow \mathbf{G}_{\text{target}} \mathbf{P}$	▷ Project target gradients
795 $\mathbf{X}^T \mathbf{X} \leftarrow \mathbf{G}_{\text{train}}^T \mathbf{G}_{\text{train}}$	▷ Compute Gram matrix
796 $\boldsymbol{\Phi} \leftarrow \mathbf{G}_{\text{train}} \cdot (\mathbf{X}^T \mathbf{X})^{-1}$	▷ Compute features
797 $\mathbf{s}_{\text{raw}} \leftarrow \frac{1}{ \mathcal{T} } \sum_{i=1}^{ \mathcal{T} } \boldsymbol{\Phi} \cdot \mathbf{G}_{\text{target}, i}^T$	▷ Raw scores
798 $\mathbf{s} \leftarrow \mathbf{s}_{\text{raw}} \odot \boldsymbol{\alpha}_{\text{train}}$	▷ Scale by output-to-loss gradients
799 return \mathbf{s}	▷ Final influence scores

800 **B ATTACKING CURATION SCORES**
801802 **B.1 ATTACK DESIGN RATIONALE**
803

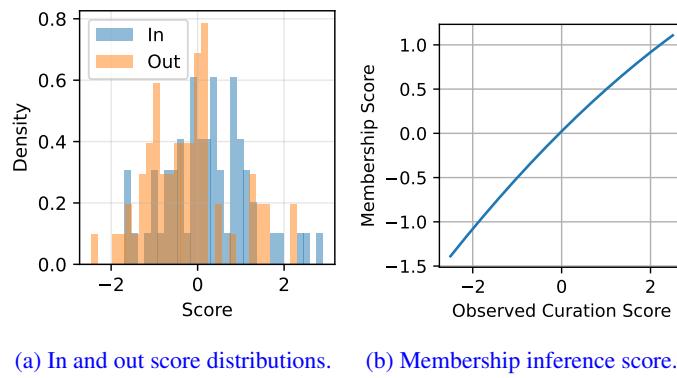
804 We design our attacks to exploit the specific mathematical structure of each curation method. While
805 no attack can be proven universally optimal without strong distributional assumptions, our approaches
806 are theoretically grounded and, in the case of Image-based scoring, exploit fundamental limits of
807 what can be inferred from the exposed information.

808 **Method-Agnostic Attacks via LiRA.** For general-purpose membership inference, we employ the
809 Likelihood Ratio Attack (LiRA) (Carlini et al., 2022a). This attack is theoretically motivated by the

Neyman-Pearson lemma, which establishes that the likelihood ratio test is optimal for binary hypothesis testing (membership vs. non-membership) under the assumption that the score distributions are known or can be accurately estimated. LiRA provides a principled baseline that makes minimal assumptions about the curation method’s internal structure.

We make two key adaptations for curation pipelines. First, we replace shadow *models* with shadow *curation runs*, i.e., instantiations of the curation algorithm using different random subsets of \mathcal{T} , s.t. each target sample is part of exactly half of the random subsets. Second, following Jagielski et al. (2023), we filter the curation scores to select only the public sample per target with the maximum difference in expected scores between member and non-member hypotheses (Equation (1)).

This preserves the essential statistical properties needed for LiRA: we can empirically model $P(s|t \in \mathcal{T})$ and $P(s|t \notin \mathcal{T})$ from shadow observations. Figure 7a illustrates the resulting in and out score distributions. We can then formulate a likelihood ratio attack on the curation scores by computing the log-ratio of the in and out score distributions (Equation (3)). Figure 7b illustrates the mapping from measured scores to the resulting membership inference score. Given sufficient shadow sets and correct distributional assumptions (e.g., Gaussian for continuous scores, Bernoulli for binary selections), LiRA approximates the theoretically optimal likelihood ratio test.



(a) In and out score distributions. (b) Membership inference score.

Figure 7: **LiRA can be adapted to curation pipelines.** (a) We can empirically model $P(s|t \in \mathcal{T})$ and $P(s|t \notin \mathcal{T})$ from shadow observations. (b) We can then compute membership inference scores based on a likelihood ratio attack by computing the log-ratio of the in and out score distributions.

Image-Based Curation: Exploiting Deterministic Structure. For Image-based scoring with nearest-neighbor retrieval ($s(x) = \max_{t \in \mathcal{T}} \cos(\phi(x), \phi(t))$), the max operation creates a *deterministic* function where each pool sample’s score is determined by exactly one target sample: its nearest neighbor. This structure enables perfect reverse-engineering: given $s(x)$ and the embeddings, we can identify which $t^* \in \mathcal{T}$ was responsible via $t^* = \arg \min_t |\cos(\phi(x), \phi(t)) - s(x)|$.

Our custom voting attack exploits this theoretical limit, since only nearest-neighbor relationships are exposed, and our attack recovers exactly these relationships. Positive votes accumulate for targets that are nearest neighbors to pool samples, while negative votes identify targets that would have produced higher scores if present. This is fundamentally more powerful than LiRA because it does not rely on distributional assumptions or shadow set approximations; it deterministically extracts the membership signal embedded in the nearest-neighbor structure.

The attack’s effectiveness is constrained only by: (1) the sparsity of nearest-neighbor relationships (many targets may not be nearest neighbors to any pool sample, as shown in the main paper), and (2) numerical precision in matching scores to similarities. Unlike LiRA, which requires many shadow sets to approximate distributions, our deterministic attack needs only the scoring function’s mathematical structure and embedding access.

B.1.1 ORACLE ATTACK SETUP

To establish an upper bound on attack performance for Image-based scoring, we define an oracle attack that leverages perfect knowledge of the curation mechanism. The oracle operates under the following membership scoring scheme for each target sample $t \in \mathcal{T}$:

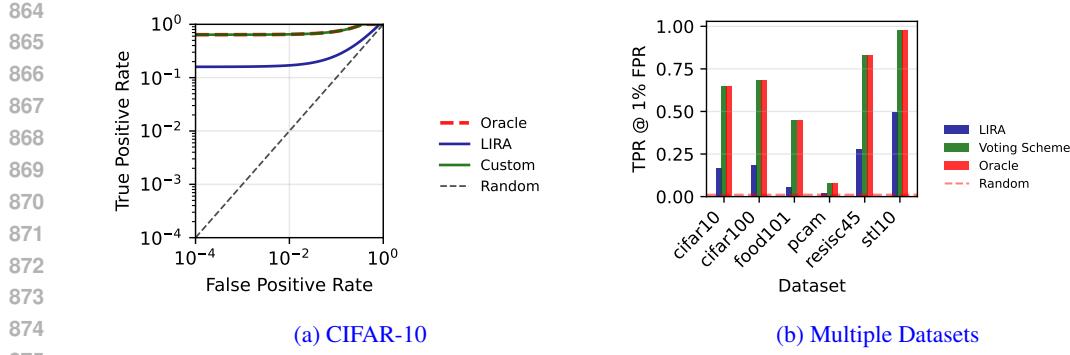


Figure 8: **Our custom attack on Image-based scores matches oracle performance.** With access to the scores, the attack achieves the same utility as the oracle attack.

$$\text{membership_score}(t) = \begin{cases} 1 & \text{if } t \text{ is the nearest neighbor of any pool sample} \\ 0 & \text{if } \exists x \in \mathcal{D} : \cos(\phi(x), \phi(t)) > s(x) \\ 0.5 & \text{otherwise (no influence on scores)} \end{cases} \quad (17)$$

The rationale for this scoring scheme is as follows:

- **Score 1 (Member):** If a target sample t is responsible for the observed score of at least one pool sample (*i.e.*, it is the nearest neighbor in \mathcal{T} for that pool sample), then the oracle has definitive evidence that $t \in \mathcal{T}_{\text{sel}}$.
- **Score 0 (Non-member):** If the oracle can identify pool samples where the similarity to t exceeds the observed score, this indicates that t would have produced a higher score if it were in \mathcal{T}_{sel} . Since it did not, the oracle can definitively conclude that $t \notin \mathcal{T}_{\text{sel}}$.
- **Score 0.5 (Unknown):** For target samples that have no observable influence on any pool scores—neither as nearest neighbors nor as potential higher-scoring alternatives—even the most powerful oracle can only guess their membership status uniformly at random.

This oracle attack represents the theoretical maximum achievable performance given the information exposed by the Image-based scoring mechanism. As shown in Figure 8, our deterministic voting attack matches oracle performance when scores are available, confirming that it successfully extracts all membership information embedded in the nearest-neighbor structure.

TRAK: Compressed Sensing for Averaged Signals. TRAK scores are computed as $s(x) = \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} \Phi(x)^\top G_t$, averaging gradient contributions projected to a low-dimensional space from all targets. This averaging *diffuses* individual membership signals, preventing the deterministic reverse-engineering that succeeds for Image-based methods.

Recovering which targets contributed to averaged scores is a *sparse recovery* problem: given the observation $s \in \mathbb{R}^{|\mathcal{D}|}$ and the measurement matrix $\Phi^\top G \in \mathbb{R}^{|\mathcal{D}| \times |\mathcal{T}|}$, we seek the sparse indicator vector $\mathcal{T}_{\text{sel}} \in \{0, 1\}^{|\mathcal{T}|}$ such that $s \approx \Phi^\top G \mathcal{T}_{\text{sel}}$. This is a compressed sensing problem that has been extensively studied in signal processing and optimization literature.

We employ Orthogonal Matching Pursuit (OMP) and Iterative Hard Thresholding (IHT) (Axiotis & Sviridenko, 2022)—greedy algorithms known to provide near-optimal solutions under certain conditions. These represent the state-of-the-art for practical sparse recovery. Theoretically optimal attacks would require solving the ℓ_0 -minimization problem exactly, which is NP-hard (Natarajan, 1995). Brute-force search over all $\binom{|\mathcal{T}|}{|\mathcal{T}_{\text{sel}}|}$ possible target subsets is computationally infeasible for realistic dataset sizes (*e.g.*, $\binom{50000}{5000} \approx 10^{7000}$ possibilities).

In practice, we find that even these theoretically-grounded compressed sensing attacks fail to meaningfully outperform LiRA on TRAK. This empirical result suggests that the averaging operation in TRAK provides inherent protection by spreading signal across many dimensions, making sparse recovery ill-conditioned. The attack success becomes dependent on $|\mathcal{T}|$: smaller target sets (common

918 in sensitive domains) concentrate signal and become more vulnerable, while larger sets benefit from
 919 stronger averaging.
 920

921 **B.2 METHOD-AGNOSTIC ATTACKS**
 922

923 To attack the curation methods, we employ the likelihood-ratio attack (LiRA) from Carlini et al.
 924 (2022a). We initialize $N = 256$ shadow models. Each of those uniformly curates for a random
 925 subset of the target dataset, s.t., each target sample is used in exactly half of the shadow models.
 926 Furthermore, we perform 25 independent curation runs on random subsets that we will attack.

927 To analyze the attackability of a target sample, we group the shadow model scores into those that
 928 contained the target sample \mathbf{S}_{in} and those that did not \mathbf{S}_{out} . We then average over the shadow models,
 929 giving us two vectors of pool scores \mathbf{s}_{in} and \mathbf{s}_{out} . As many of those scores will probably not give
 930 us meaningful membership signals (Jagielski et al., 2023), we first find the index of the pool score
 931 that has the largest average difference, *i.e.*, $i = \arg \max |\mathbf{s}_{\text{in}} - \mathbf{s}_{\text{out}}|$. We then fit a Gaussian to the
 932 distribution of $\mathbf{S}_{i,\text{in}}$ and $\mathbf{S}_{i,\text{out}}$, giving us two distributions $P_{\text{in}}(s)$ and $P_{\text{out}}(s)$. We can then compute
 933 the log-ratio of the of the i th pool score to the two distributions, giving us the LiRA score.

934 To perform the attack without access to the scores, we replace the scores with binary signals,
 935 indicating whether a particular pool sample would be in the selected partition of the shadow models.
 936 The **binarized LiRA** computes the mean of those binary signals and computes the difference in
 937 bernoulli log-probability mass functions.

938 **B.3 IMAGE-BASED SCORING**
 939

940 We recall that for Image-based scoring, the score for each sample in \mathcal{D} is only influenced by the
 941 nearest neighbour in \mathcal{T} . Therefore, we analyse how many pool samples each target sample is the
 942 nearest neighbour for.

943 Given a pool sample $x \in \mathcal{D}$ with target score $s(x)$, we can determine which target sample $t \in \mathcal{T}$ was
 944 responsible for this score through the following attack:

945 1. Normalize the embeddings: $\hat{x} = \frac{\phi(x)}{\|\phi(x)\|_2}$ and $\hat{t} = \frac{\phi(t)}{\|\phi(t)\|_2}$ for all $t \in \mathcal{T}$
 946 2. Compute similarities: $\text{sim}(x, t) = \hat{x}^T \hat{t}$ for all $t \in \mathcal{T}$
 947 3. Find target with matching score: $t^* = \arg \min_{t \in \mathcal{T}} |\text{sim}(x, t) - s(x)|$
 948 4. For each target t , assign votes:

$$949 v(t) = \begin{cases} 1 & \text{if } t = t^* \\ -1 & \text{if } \text{sim}(x, t) > s(x) \\ 0 & \text{otherwise} \end{cases}$$

950 The voting scheme reveals membership in \mathcal{T} through positive votes: if a target sample receives
 951 positive votes, it was used to compute the score of at least one pool sample. Negative votes indicate
 952 that this target sample could have given a higher score than what was observed, implying it was not
 953 used in the curation.

954 **Selection-Based Attack.** When we only have access to the selected pool samples $\tilde{\mathcal{D}} \subseteq \mathcal{D}$ but not
 955 their scores, we can still reconstruct the target dataset through an iterative elimination process:

956 1. Initialize $\mathcal{T}_0 = \mathcal{T}$ as the full target dataset, $\mathcal{R} = \emptyset$ as the set of removed samples, and voting
 957 scores $\mathbf{v} = \mathbf{0}$
 958 2. At each iteration i :
 959 (a) Identify target-missing and target-exclusive samples:
 960 • Target-missing: $\mathcal{M}_i = \tilde{\mathcal{D}}_i \setminus \tilde{\mathcal{D}}_{\text{target}}$ (selected by us but not target)
 961 • Target-exclusive: $\mathcal{E}_i = \tilde{\mathcal{D}}_{\text{target}} \setminus \tilde{\mathcal{D}}_i$ (selected by target but not us)
 962 (b) Find nearest neighbors in remaining targets:
 963 • For target-missing: $\mathcal{N}_i^- = \text{NN}(\mathcal{M}_i, \mathcal{T}_i)$

972 **Algorithm 3** Image-based Scores MIA

```

973
974 1: Input: Dataset embeddings  $\{\phi(x)\}_{x \in \mathcal{D}}$ , target embeddings  $\{\phi(t)\}_{t \in \mathcal{T}}$ , target scores  $\mathbf{s}$ 
975 2: Output: Votes  $v(t)$  for each target  $t \in \mathcal{T}$ 
976 3: Initialize  $\forall_{t \in \mathcal{T}} : v(t) = 0$ 
977 4: Normalize all target embeddings:  $\hat{\mathbf{t}} = \frac{\phi(t)}{\|\phi(t)\|_2}$  for all  $t \in \mathcal{T}$ 
978 5: for each sample  $x \in \mathcal{D}$  do
979 6:   Normalize the query embedding:  $\hat{\mathbf{x}} = \frac{\phi(x)}{\|\phi(x)\|_2}$ 
980 7:   Compute similarities:  $\text{sim}(x, t) = \hat{\mathbf{x}}^T \hat{\mathbf{t}}$  for all  $t \in \mathcal{T}$ 
981 8:   Find target with matching score:  $t^* = \arg \min_{t \in \mathcal{T}} |\text{sim}(x, t) - s(x)|$ 
982 9:   for each target  $t \in \mathcal{T}$  do
983 10:    if  $t = t^*$  then
984 11:       $v(t) = v(t) + 1$ 
985 12:    else if  $\text{sim}(x, t) > s(x)$  then
986 13:       $v(t) = v(t) - 1$ 
987 14:    end if
988 15:  end for
989 16: end for
990

```

```

991   • For target-exclusive:  $\mathcal{N}_i^+ = \text{NN}(\mathcal{E}_i, \mathcal{T}_i)$ 
992 (c) Update votes:
993   •  $\mathbf{v}[\mathcal{N}_i^-] \leftarrow \mathbf{v}[\mathcal{N}_i^-] - 1$  (negative for likely non-members)
994   •  $\mathbf{v}[\mathcal{N}_i^+] \leftarrow \mathbf{v}[\mathcal{N}_i^+] + 1$  (positive for likely members)
995 (d) Update removed set:  $\mathcal{R} = \{t \in \mathcal{T} : \mathbf{v}[t] < 0\}$ 
996 (e) Update remaining targets:  $\mathcal{T}_{i+1} = \mathcal{T} \setminus \mathcal{R}$ 
997 (f) Recompute pool selection:  $\tilde{\mathcal{D}}_{i+1} = \text{TopK}(\text{NN-Sim}(\mathcal{D}, \mathcal{T}_{i+1}), k)$ 
998 (g) Compute Jaccard similarity:  $J_i = \frac{|\tilde{\mathcal{D}}_{i+1} \cap \tilde{\mathcal{D}}_{\text{target}}|}{|\tilde{\mathcal{D}}_{i+1} \cup \tilde{\mathcal{D}}_{\text{target}}|}$ 
1000 3. Stop when either:
1001   • Perfect reconstruction:  $J_i = 1$ 
1002   • No improvement:  $J_i - J_{i-p} < \epsilon$  for patience  $p$  and threshold  $\epsilon$ 

```

1004 The attack maintains a voting score for each target sample. Negative votes suggest the target sample
1005 is causing overselection of pool samples that are not in $\mathcal{T}_{\text{Sel.}}$, while positive votes indicate the target
1006 sample helps select pool samples that are also in $\mathcal{T}_{\text{Sel.}}$. The ROC-AUC of these votes against true
1007 membership provides a measure of attack success.

1008 **B.4 TRAK**

1009 TRAK computes the scores for all pool samples $\mathbf{s} \in \mathcal{R}^{|\mathcal{D}|}$ as

$$1010 \mathbf{s} = \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} \Phi^T \mathbf{G}_t \quad (18)$$

1011 Following the DsDm methodology (Engstrom et al., 2024), we first train a CLIP model on the
1012 full pool dataset \mathcal{D} to obtain a reference model. We then obtain the gradients \mathbf{G}_t and Φ from this
1013 model by computing the per-sample zero-shot gradients—the gradients obtained by minimizing the
1014 classification loss of the linear zero-shot classifier obtained by embedding caption-templates (Cherti
1015 & Beaumont, 2025). The curation score for each pool sample is the average of its TRAK attribution
1016 scores across all target samples $t \in \mathcal{T}$, capturing how influential that pool sample would be for
1017 improving performance on the target dataset.

1018 Since the target model does not use the entire target dataset, but instead an unknown subset $\mathcal{T}_{\text{sel}} \subseteq \mathcal{T}$,
1019 the target scores are computed as

$$1020 \mathbf{s}_{\mathcal{T}_{\text{sel}}} = \frac{1}{|\mathcal{T}_{\text{sel}}|} \sum_{t \in \mathcal{T}_{\text{sel}}} \Phi^T \mathbf{G}_t \quad (19)$$

1026 where $\mathbf{G}_{\mathcal{T}_{\text{sel}}} \in \mathbb{R}^{d \times |\mathcal{T}_{\text{sel}}|}$ is the matrix of the target gradients for the selected target samples.
 1027
 1028 Recovering \mathcal{T}_{sel} from $\mathbf{s}_{\mathcal{T}}$ constitutes a subset-sum problem, which is NP-hard (Natarajan, 1995). We
 1029 know about \mathcal{T}_{sel} that it is a subset of \mathcal{T} .

1030 B.4.1 ORTHOGONAL MATCHING PURSUIT

1031 Hence, we can formulate this as a standard compressed sensing problem with the formulation

$$1034 \quad \mathbf{s}_{\mathcal{T}_{\text{sel}}} = \Phi^T \mathbf{G} \mathbf{T}_{\text{sel}} \quad (20)$$

1036 where $\mathbf{T}_{\text{sel}} \in \mathbb{R}_+^{|\mathcal{T}|}$ is a $|\mathcal{T}_{\text{sel}}|$ -sparse vector that performs the equivalence of a masked mean compu-
 1037 tation. We then recover the standard compressed sensing problem

$$1039 \quad \min_{\mathbf{T}_{\text{sel}} \in \mathbb{R}_+^{|\mathcal{T}|}} \|\mathbf{T}_{\text{sel}}\|_0 \quad \text{s.t.} \quad \Phi^T \mathbf{G} \mathbf{T}_{\text{sel}} = \mathbf{s}_{\mathcal{T}_{\text{sel}}} \quad (21)$$

1041 where $\|\mathbf{T}_{\text{sel}}\|_0$ is the ℓ_0 -“norm” of \mathbf{T}_{sel} , *i.e.*, the number of non-zero elements in \mathbf{T}_{sel} . We approach this
 1042 problem using the greedy orthogonal matching pursuit (OMP) algorithm and adaptively regularized
 1043 iterative hard thresholding (IHT) (Axiotis & Sviridenko, 2022).

1045 B.4.2 LEAST SQUARES FORMULATION

1046 We solve for the membership indicator via least squares. Let $\mathbf{X} \in \mathbb{R}^{N \times d}$ denote the pool features (Φ)
 1047 and $\mathbf{Y} \in \mathbb{R}^{n \times d}$ the target gradients (\mathbf{G}^T). The TRAK scores satisfy

$$1049 \quad \mathbf{s} = \frac{1}{k} \sum_{i \in \mathcal{T}_{\text{sel}}} \mathbf{X} \mathbf{Y}_i^T = \mathbf{X} \mathbf{Y}^T \mathbf{m} \quad (22)$$

1052 where $\mathbf{m} \in \{0, 1/k\}^n$ is the mean operator encoding membership, with $k = |\mathcal{T}_{\text{sel}}|$ non-zero entries
 1053 indicating which targets are in \mathcal{T}_{sel} . To avoid materializing $\mathbf{X} \mathbf{Y}^T \in \mathbb{R}^{N \times n}$, we multiply both sides
 1054 from the left by \mathbf{X}^T :

$$1056 \quad \mathbf{X}^T \mathbf{s} = \mathbf{X}^T \mathbf{X} \mathbf{Y}^T \mathbf{m}. \quad (23)$$

1057 Since $\mathbf{X}^T \mathbf{X} \in \mathbb{R}^{d \times d}$ and $(\mathbf{X}^T \mathbf{X}) \mathbf{Y}^T \in \mathbb{R}^{d \times n}$ are tractable, we avoid materializing the (N, n) matrix.
 1058 We solve the least squares problem

$$1060 \quad \underset{\mathbf{m} \in \mathbb{R}^n}{\text{minimize}} \quad \|\mathbf{X}^T \mathbf{X} \mathbf{Y}^T \mathbf{m} - \mathbf{X}^T \mathbf{s}\|_2^2 \quad (24)$$

1062 for \mathbf{m} . The membership scores are then given by $\mathbf{s}_{\text{lstsq}} = \mathbf{m}^*$, where \mathbf{m}^* is the optimal solution.

1064 B.5 COMBINING VOTING AND LiRA ATTACKS

1066 We analyze whether the voting-based attack for Image-based scoring and the LiRA attack provide
 1067 complementary signals that can be combined for improved membership inference. The attacks exploit
 1068 different aspects of the curation mechanism: voting exploits the deterministic nearest-neighbor
 1069 structure, while LiRA models score distributions from shadow curation runs. Correlation analysis
 1070 reveals that LiRA and voting scores have low Pearson correlation ($\rho \approx 0.3$).

1071 We combine the two attack scores via weighted averaging:

$$1073 \quad s_{\text{combined}}(t) = w \cdot s_{\text{LiRA}}(t) + (1 - w) \cdot s_{\text{voting}}(t) \quad (25)$$

1075 where $s_{\text{LiRA}}(t)$ and $s_{\text{voting}}(t)$ are normalized to $[0, 1]$, and $w \in [0, 1]$ controls the weighting. We
 1076 evaluate $w \in \{0, 0.25, 0.5, 0.75, 1.0\}$ to identify the optimal combination.

1077 Figure 9 shows ROC curves for the individual and combined attacks. The combined method does not
 1078 improve over voting alone. Since LiRA substantially underperforms voting on Image-based scoring
 1079 (AUC ≈ 0.6 vs. ≈ 0.95) and the voting-based attack already matches the oracle attack performance
 (Figure 8), LiRA contributes mostly noise when combined.

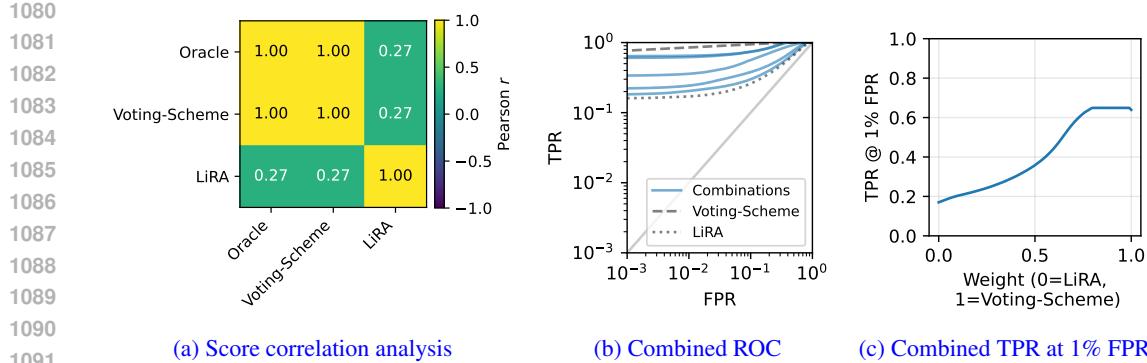


Figure 9: **Combining voting and LiRA does not improve attack performance.** (a) Scatter plot showing correlation between LiRA and voting scores reveals low correlation ($\rho = 0.27$). (b) ROC curves for the combined attack and (c) TPR for different weightings of the two attacks. We show that the combined attack does not improve over voting alone.

C ATTACKING MODELS TRAINED ON CURATED DATA

C.1 MODEL TRAINING DETAILS

All end-to-end attack experiments train CLIP models following the DataComp small-scale benchmark (Gadre et al., 2023). We provide the complete training configuration below: We use the Vision Transformer ViT-B-32 architecture (Dosovitskiy et al., 2021) for all experiments. Models are trained with the AdamW optimizer (Loshchilov & Hutter, 2019) with the following hyperparameters:

- Learning rate: 5×10^{-4} with cosine decay schedule
- Linear warmup: 500 steps
- Weight decay: 0.2
- Beta coefficients: $\beta_1 = 0.9$, $\beta_2 = 0.98$
- Gradient clipping: maximum norm of 1.0
- Batch size: 1024
- Precision: Automatic mixed precision (AMP)

Training Budget. All models are trained for a fixed budget of 10M samples. The number of epochs is adjusted based on the curated pool size, *e.g.*, a pool of 100k samples results in 100 epochs, while a pool of 1M samples results in 10 epochs. This ensures all models receive equivalent amounts of training regardless of curation pool size.

Training Data. Models are trained exclusively on the curated subset $\tilde{\mathcal{D}}$ selected from CommonPool (small). They are *never* trained on the private target data \mathcal{T} directly—they only benefit from curation performed using \mathcal{T} .

C.2 IMAGE-BASED

Image-based curation scores each pool sample $x \in \mathcal{D}$ based on its maximum similarity to any target sample:

$$s(x) = \max_{t \in \mathcal{T}} \cos(\phi(x), \phi(t)) \quad (26)$$

where $\phi(\cdot)$ is the CLIP embedding function. This creates a one-to-many correspondence mapping between targets and pool samples.

The key insight: When a target t^* is included in the victim’s subset $\mathcal{T}_{\text{victim}}$, all pool samples for which t^* is the nearest neighbor will receive higher scores and may cross the selection threshold.

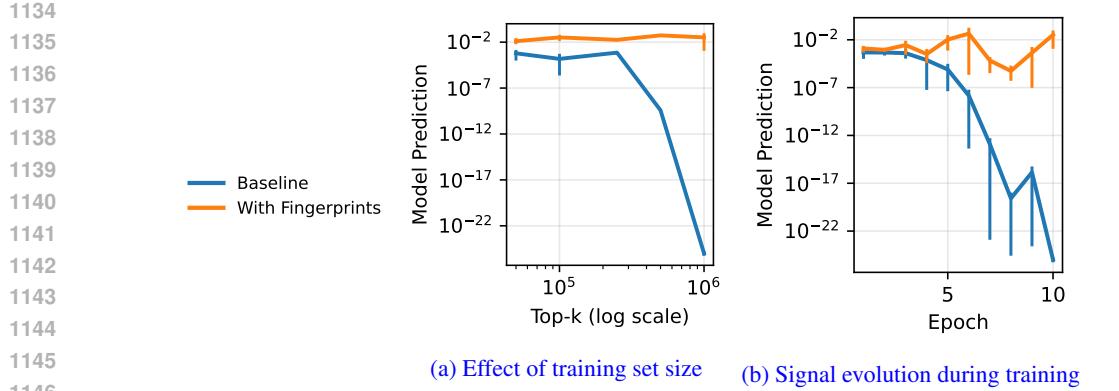


Figure 10: **Mislabeled images leave a measurable fingerprint in the trained model.** We fix the number of fingerprints at 5 and measure probability on the mislabeled concept. (a) The signal remains detectable even as the training set grows to 1,000,000 samples (0.0005% fingerprint rate), though variance increases. Non-fingerprinted models consistently produce near-zero signal, enabling reliable fingerprint detection. (b) The fingerprint signal strengthens with additional training epochs.

We note that by default most target samples do not affect any target samples, as Figure 2 shows. But, we assume the adversary can inject samples with embeddings $X = \{x_1, \dots, x_M\} \subset \mathbb{R}^d$ into the pool to probe membership.

Algorithm 4 Image-based Correspondence Mapping

- 1: **Input:** Candidate embeddings Φ_C , target pool embeddings Φ_T , mixing parameter α
- 2: **Phase 1: Find correspondences**
- 3: For each target $t \in \mathcal{T}$:
- 4: Find k candidate nearest neighbors: $\text{NN}_k(t) = \{x_1, \dots, x_k\}$
- 5: Compute attraction score: $a_i = \cos(\phi(t), \phi(x_i))$ (similarity to target)
- 6: Compute repulsion score: $r_i = \max_{t' \neq t} \cos(\phi(t'), \phi(x_i))$ (similarity to other targets)
- 7: Combined score: $s_i = (1 - \alpha) \cdot a_i + \alpha \cdot r_i$
- 8: Select best match: $x^* = \arg \max_{x \in \text{NN}_k(t)} s_i$
- 9: Store mapping: $\mathcal{M}(t) = x^*$
- 10: **Phase 2: Identify correspondence uniqueness**
- 11: For each selected candidate $x \in \{x^* : x^* = \mathcal{M}(t) \text{ for some } t\}$:
- 12: Count targets mapping to it: $|\mathcal{M}^{-1}(x)| = |\{t : \mathcal{M}(t) = x\}|$
- 13: **Output:** Correspondence mapping \mathcal{M} and uniqueness counts $|\mathcal{M}^{-1}(x)|$

For each candidate sample x , we compute its baseline percentile against the full target pool:

$$p_0(x) = \text{percentile} \left(\max_{t \in \mathcal{T}} \cos(\phi(x), \phi(t)) \right) \quad (27)$$

This represents the expected ranking when the target randomly selects their subset $\mathcal{T}_{\text{Sel.}}$.

The adversary then marks samples for monitoring based on information potential: For sample x with targets $\mathcal{M}^{-1}(x)$:

$$\text{InfoScore}(x) = \text{CrossingScore}(x) \times \text{UniquenessScore}(x) \quad (28)$$

where:

$$\text{CrossingScore}(x) = \begin{cases} \frac{1}{1+e^{(\tau-p_0(x)-10)/5}} & \text{if } p_0(x) < \tau \\ 0.1 & \text{if } p_0(x) \geq \tau \end{cases} \quad (29)$$

$$\text{UniquenessScore}(x) = \frac{1}{|\mathcal{M}^{-1}(x)|} \quad (30)$$

1188 **Algorithm 5** Image-based End-to-End MIA

1189 1: **Input:** Fingerprinted samples \mathcal{F} , selection observations $\{\text{selected}_x : x \in \mathcal{F}\}$, baseline per-

1190 centiles $\{p_0^x\}$, selection rate ρ

1191 2: Compute selection threshold: $\tau = (1 - \rho) \times 100$ (e.g., π_{50})

1192 3: For each target $t \in \mathcal{T}$:

1193 4: Initialize: $\text{surprise}_t = 0$, $\text{count}_t = 0$

1194 5: For each fingerprinted sample $x \in \mathcal{F}$ where $t \in \mathcal{M}^{-1}(x)$:

1195 6: Compute expected selection probability:

1196 7: $P_{\text{exp}}(x) = \frac{1}{1 + \exp(-(p_0^x - \tau)/10)}$ (sigmoid model)

1197 8: Observe: selected_x (whether fingerprinted sample x was selected)

1198 9: Compute surprise:

1199 10: If $\text{selected}_x = \text{true}$: $\delta = 1 - P_{\text{exp}}(x)$ (high surprise if unlikely selection)

1200 11: If $\text{selected}_x = \text{false}$: $\delta = -P_{\text{exp}}(x)$ (negative surprise if expected selection missed)

1201 12: Weight by uniqueness: $w = 1/|\mathcal{M}^{-1}(x)|$

1202 13: Update: $\text{surprise}_t \leftarrow \text{surprise}_t + w \cdot \delta$

1203 14: Update: $\text{count}_t \leftarrow \text{count}_t + 1$

1204 15: Average: $\text{MIA}_t = \text{surprise}_t / \max(\text{count}_t, 1)$

1205 16: **Output:** MIA scores $\{\text{MIA}_t\}_{t \in \mathcal{T}}$

1206
1207 The adversary marks the top-scoring samples that are most likely to reveal membership through
1208 threshold crossing. Having stronger a-priori bounds on τ , the percentile the target will use for
1209 curation, will improve this attack. In practice, we assume τ to be 50%, meaning the target will
1210 probably not pick from the worse half of public data.

1211 Using this information, the adversary selects the highest-scoring candidates to form the fingerprinted
1212 set $\mathcal{F} \subseteq \Phi_C$. These samples are then inserted into the pool \mathcal{D} with altered captions to enable
1213 detection.

1214
1215 Algorithm 5 shows the full algorithm.

1216
1217

C.3 TRAK

1218 The TRAK system computes influence scores $\mathbf{s} = \frac{1}{|\mathcal{T}|} \sum_{t \in \mathcal{T}} \Phi^T \mathbf{G}_t$ where Φ are the projected pool
1219 features and \mathbf{G}_t are target gradients. However, when the target uses a secret subset $\mathcal{T}_{\text{Sel.}} \subseteq \mathcal{T}$, the
1220 actual scores become:

$$\mathbf{s}_{\mathcal{T}_{\text{Sel.}}} = \frac{1}{|\mathcal{T}_{\text{Sel.}}|} \sum_{t \in \mathcal{T}_{\text{Sel.}}} \Phi^T \mathbf{G}_t \quad (31)$$

1221 We assume the adversary can inject samples with gradients $C = \{c_1, \dots, c_M\} \subset \mathbb{R}^d$ into the pool to
1222 probe membership. Obviously, gradients cannot be chosen arbitrarily. Instead, we obtain these as
1223 gradients of target samples with modified captions.

1224 When a contrastive gradient c_i is appended to the pool matrix X , the Sherman-Morrison formula
1225 gives its score as:

$$z_{\text{new}} = q_{\text{new}} \cdot \frac{c_i^T G^{-1} y}{1 + c_i^T G^{-1} c_i} \quad (32)$$

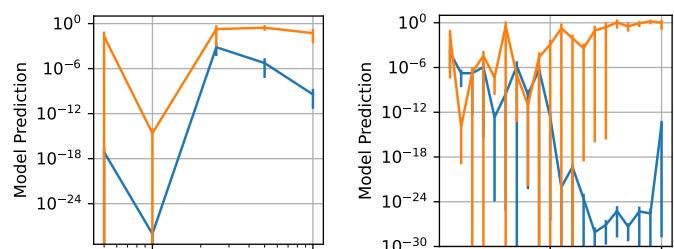
1226 where $G^{-1} = (X^T X + \lambda I)^{-1}$ is the regularized inverse Gram matrix and $y = \frac{1}{m} \sum_{s \in S} y_s$ is the
1227 secret average.

1228 The key insight is that including target y_j in the secret subset creates a change in scores of the
1229 samples:

$$\Delta_j(c_i) = \frac{q_{\text{new}}}{m} \cdot \frac{c_i^T G^{-1} y_j}{1 + c_i^T G^{-1} c_i} \quad (33)$$

1230 This membership signal is proportional to the preconditioned inner product $c_i^T G^{-1} y_j$ and inversely
1231 proportional to the subset size m , making smaller subsets more vulnerable.

1242
 1243
 1244
 1245
 1246
 1247
 1248
 1249
 1250
 1251



1252 (a) Effect of training set size (b) Signal evolution during training
 1253

1254 **Figure 11: Samples with harmless orthogonal information imprint a measurable signal in the**
 1255 **model.** In this case, we insert samples from CIFAR10 with an appropriate caption from CLIP-
 1256 Benchmark with an additional 'and ratatouille' in the end. We then measure the model zeroshot
 1257 probability for the concept 'ratatouille'. This effect has more variance than Figure 10 shows for
 1258 mislabeled images, but still distinguishes models trained with and without the fingerprints.

1259
 1260
 1261
 1262

Assuming target gradients have mean μ and covariance Σ , the signal-to-noise ratio for detecting target y_j using contrastive c_i is:

$$\text{SNR}_j(c_i) = \frac{|c_i^\top G^{-1} y_j|}{\sqrt{m \cdot c_i^\top G^{-1} \Sigma G^{-1} c_i}} \quad (34)$$

1263
 1264
 1265

For each target y_j , the adversary selects the contrastive maximizing SNR:

$$i^*(j) = \arg \max_{i \in [M]} \frac{|c_i^\top G^{-1} y_j|}{\sqrt{c_i^\top G^{-1} \Sigma G^{-1} c_i}} \quad (35)$$

1266
 1267
 1268
 1269
 1270

The attackability score $\mathcal{A}_j = \max_i \text{SNR}_j(c_i)$ quantifies how detectable each target's membership is. The attack succeeds when the contrastive gradient crosses the curation selection threshold. Let τ_k be the score of the k -th ranked pool sample. The attack is successful if:

1271
 1272
 1273
 1274
 1275
 1276
 1277

- Under H_0 (target not in subset): $z_{H_0} < \tau_k$ (not selected)
- Under H_1 (target in subset): $z_{H_1} \geq \tau_k$ (selected)

1278
 1279
 1280
 1281

This binary change in selection status provides a clear membership signal. The attack is most effective when the contrastive score under H_0 is just below τ_k , requiring only a small membership signal to cross the threshold.

1282
 1283
 1284
 1285
 1286
 1287
 1288
 1289
 1290

To maximize the sensitivity to our target samples we experiment with adding copies of the target data to the pool. These should naturally have a high utility. To imprint a measurable membership signal in the model, we need to add some additional information, though. Mislabeling the samples as Carlini & Terzis (2022) did would serve that purpose, but those samples would not get picked by the TRAK algorithm, as it specifically rejects mislabeled samples as Park et al. (2023) have shown. So instead, we add *harmless and orthogonal information*, i.e., we retain the original and useful caption but add something to it, which mostly preserves the TRAK signal (see Appendix C.5). Figure 11 shows the measurable difference in models trained on such samples with additional text appended to the caption.

1291
 1292

C.4 COMPUTATIONAL AND QUERY COST

1293
 1294
 1295

We analyze the computational and query costs of our proposed attacks. Unlike traditional membership inference attacks that require training on the order of hundreds of shadow models (Shokri et al., 2017; Carlini et al., 2022a), our attacks require a few curation runs, are training-free, and scale with the curation algorithms themselves.

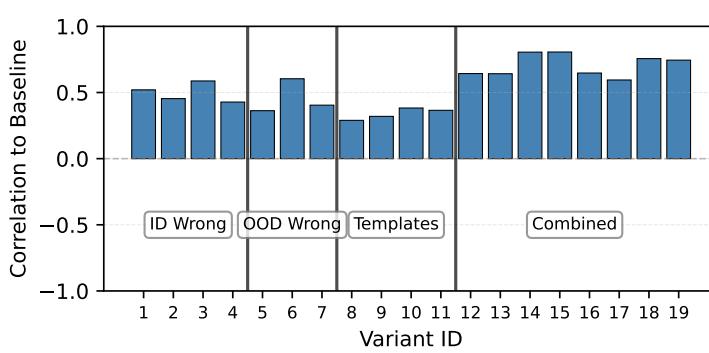


Figure 12: **Gradient correlation with baseline configuration.** Combined templates (IDs 12–19) that pair an OOD concept with the correct class label maintain the highest gradient correlation with the baseline (ID 0), preserving natural TRAK curation behavior. Other caption variants, while potentially more detectable, alter gradients too drastically and reduce attack signal strength.

Computational Complexity. Let $N = |\mathcal{D}|$ denote the pool size, $n = |\mathcal{T}|$ the target dataset size. Our attacks require running only the respective curation algorithms or operations of similar complexity, therefore scaling linearly with the number of pool samples, as do the curation methods. For Image-based scoring, a curation costs $\mathcal{O}(Nn)$ for computing cosine similarities. For TRAK, this requires training M model checkpoints and computing gradients for all N pool samples, with complexity $\mathcal{O}(M \cdot N \cdot F)$ where F is the number of operations in a forward pass.

- **Score-based attacks** require one curation run.
- **Subset-based attacks** require approximately 10 iterative curation runs until convergence.
- **End-to-end attacks** require one curation run to identify fingerprints.

This makes our attacks practical at any scale where curation is practical in the first place.

Query Budget. For end-to-end black-box attacks using fingerprinting (Appendix C), we analyze the number of queries required to the target model.

To attack a single target sample, we need at most 5 black-box queries, one for each fingerprint sample identified during the curation phase. In practice, some fingerprints contribute to multiple targets when they share nearest-neighbor relationships. This causes the query budget to scale at most linearly with the number of targets and on expectation sublinearly with respect to $|\mathcal{T}|$.

C.5 CAPTION PROPERTIES IN CURATION POISONING

To understand which caption should be used for TRAK fingerprints, we analyze the effect of altering the captions on the curation score.

Experimental Design. We systematically ablate over three key dimensions of caption design: (1) **concept type**: correct class label baseline (ID 0), wrong in-distribution CIFAR-10 classes (IDs 1–4), and out-of-distribution concepts (IDs 5–19); and (2) **caption templates**: simple, article, imageof, photoof, and combined variants (IDs 8–13). Table 3 shows the complete set of 20 caption configurations tested. We also compare different OOD concepts (ratatouille, shader, medical scan, abstract art) and combined templates that pair an OOD concept with the correct class label from the image to understand detectability and curation signal strength trade-offs.

For each caption configuration in Table 3, we analyze gradient correlations with the baseline configuration (ID 0) to understand how caption properties impact TRAK curation behavior.

OOD concepts (IDs 5–7) with explicit templates like photoof and imageof (IDs 10–11) alter TRAK gradients too drastically, resulting in low curation signals that undermine attack effectiveness. We find that combined templates (IDs 12–19) offer the most practical trade-off: by pairing an

1350
 1351 **Table 3: Caption templates used in ablation study.** We test variations across ID (in-distribution)
 1352 and OOD (out-of-distribution) concepts using different template styles. ID 0 uses the correct class
 1353 label (baseline, denoted as `class`). IDs 1–4 use wrong ID classes (e.g., labeling a dog image as
 1354 “airplane”). IDs 5–11 use pure OOD concepts. Combined templates (IDs 12–19) pair an OOD concept
 1355 with the correct class label (e.g., “dog and ratatouille” for a dog image).

ID	Concept	Type	Template	Caption
0	class	id	photoof	a photo of <code>class</code>
1	airplane	id	photoof	a photo of airplane
2	automobile	id	photoof	a photo of automobile
3	bird	id	photoof	a photo of bird
4	cat	id	photoof	a photo of cat
5	ratatouille	ood	photoof	a photo of ratatouille
6	shader	ood	photoof	a photo of shader
7	medical scan	ood	photoof	a photo of medical scan
8	ratatouille	ood	simple	ratatouille
9	ratatouille	ood	article	a ratatouille
10	ratatouille	ood	imageof	an image of ratatouille
11	ratatouille	ood	photoof	a photo of ratatouille
12	ratatouille	id + ood	combined_imageof	an image of <code>class</code> and ratatouille
13	ratatouille	id + ood	combined_photoof	a photo of <code>class</code> and ratatouille
14	shader	id + ood	combined_imageof	an image of <code>class</code> and shader
15	shader	id + ood	combined_photoof	a photo of <code>class</code> and shader
16	medical scan	id + ood	combined_imageof	an image of <code>class</code> and medical scan
17	medical scan	id + ood	combined_photoof	a photo of <code>class</code> and medical scan
18	abstract art	id + ood	combined_imageof	an image of <code>class</code> and abstract art
19	abstract art	id + ood	combined_photoof	a photo of <code>class</code> and abstract art

1377 OOD concept with the correct class label, their gradients correlate highly with the baseline (ID 0),
 1378 preserving the TRAK curation behavior while planting detectable information in the model. This
 1379 makes combined captions the optimal choice for practical curation poisoning attacks.

1381 C.6 MEASURING WORST-CASE PRIVACY LEAKAGE

1383 While the above attacks already are effective in showing privacy leakage from curation pipelines in
 1384 natural setups, we further want to approximate the worst-case privacy leakage that can occur. There-
 1385 fore, we rely on inserting canaries \mathcal{C} into the private data \mathcal{T} . Canaries are sample specifically crafted
 1386 to be attackable and have been used successfully to assess empirical privacy leakage (Mahloujifar
 1387 et al., 2024) and verify formal privacy guarantees (Annamalai et al., 2024).

1388 **For Image-based Curation** To craft an Image-based curation canary c and probe p , we can first select
 1389 any two similar and very low-scoring (e.g., π_1) samples from \mathcal{D} . The low score ensures that they are
 1390 far away from any sample in \mathcal{T} , so our probe p will not be selected during curation by default. With a
 1391 high similarity between p and c , we can also reliably ensure that if c is inserted into \mathcal{T} , p will score
 1392 high.

1393 **For TRAK-based Curation**, we recount that TRAK computes the score of a training sample $x \in X$
 1394 for the average μ of $T = \text{grads}(\mathcal{T})$ as $x(X^T X)^{-1} \mu q$.

$$1396 \quad \sigma(p) := p^\top G^{-1} \Sigma G^{-1} p.$$

1398 Similarly to the attack in Section 3.4, we derive (in more detail in Appendix C.6.1) the Signal-to-
 1399 Noise-Ratio (SNR) between target canary c and pool sample p as

$$1401 \quad \text{SNR}(p, c) = \frac{|\Delta(p, c)|}{\sigma(p)} = \frac{|p^\top G^{-1} c|}{\sqrt{p^\top G^{-1} \Sigma G^{-1} p}}.$$

1403 We insert those canary pairs that yield the highest SNR.

1404 C.6.1 CRAFTING TRAK CANARIES
14051406 TRAK computes the score of a training sample $x \in X$ for the average μ of $T = \text{grads}(\mathcal{T})$ as
1407 $x(X^T X)^{-1} \mu q$. If we append a probe $p \in \mathbb{R}^d$ to X , the score of that new row (using the Sher-
1408 man–Morrison formula) is

1409
$$z_{\text{new}} = \frac{p^\top G^{-1} \mu}{1 + p^\top G^{-1} p} \cdot q_{\text{new}}.$$

1410
1411

1412 If we formulate as a hypothesis test whether our canary gradient $c \in \mathbb{R}^d$ is part of the target gradients
1413 T (H_1) or is not part (H_0), we can define the following statistics
1414

1415
$$y = \mu + \varepsilon \quad (H_0), \quad \text{or} \quad y = \mu + \frac{1}{m} c + \varepsilon \quad (H_1),$$

1416
1417 with

1419
$$\mathbb{E}[\varepsilon] = 0, \quad \text{Cov}(\varepsilon) \approx \Sigma,$$

1420
1421 For a fixed probe p , we can define the baseline influence b , the denominator d and the canary influence
1422 c as
1423

1423
$$b(p) := p^\top G^{-1} \mu, \quad d(p) := 1 + p^\top G^{-1} p, \quad s(p, c) := p^\top G^{-1} c.$$

1424

1425 Then under H_0

1426
$$s_0(p) = q_{\text{new}} \cdot \frac{b(p)}{d(p)}.$$

1427
1428 Under H_1 adding c leads to a change in score for p of

1430
$$\Delta(p, c) = q_{\text{new}} \cdot \frac{s(p, c)}{m d(p)}.$$

1431
1432

1433 The standard deviation of the probe score in either case is
1434

1435
$$\sigma(p) := p^\top G^{-1} \Sigma G^{-1} p.$$

1436
1437

1438 C.7 CANARY ANALYSIS

1439 For **Image-based** curation, we manage to find canaries that will reliably leak their presence in the
1440 shaders21k dataset. For **TRAK**, our canaries achieve similar success rates as the original attack
1441 on the final trained model. We hypothesize that TRAK’s resistance to canary attacks stems from
1442 the limited adversary control. Despite optimizing for maximum signal-to-noise ratio, canaries
1443 provide only marginal improvements under a realistic threat scenario. Since the canary gradients are
1444 obtain contrastively with thousands of other samples the adversary cannot control, then randomly
1445 projected into a lower-dimensional space, and afterwards averaged with all other gradients, it remains
1446 challenging to craft a strong signal.1447
1448 D MITIGATING PRIVACY LEAKAGE
14491450 We investigate how to mitigate the privacy risks outlined in our work. Appendix D.1 outlines how
1451 we employ DP to protect the target dataset. Appendix D.2 shows the effect of removing the most
1452 vulnerable samples.
14531454 D.1 DIFFERENTIAL PRIVACY
14551456 We provide detailed methodology and experimental results for the differentially private (DP) adaptions
1457 of curation methods introduced in Section 4.3.

1458 D.1.1 DP IMAGE-BASED CURATION
1459

1460 In standard Image-based curation each pool sample’s score is determined by its nearest neighbor in
1461 the target set. This deterministic nearest-neighbor structure creates a direct correspondence between
1462 scores and individual target samples, making the method highly vulnerable to MIAs.

1463 We replace the nearest-neighbor distance with a distance to the DP mean of all target embeddings:

$$s_{\text{DP}}(x) = \cos(\phi(x), \bar{\phi}_T + \eta) \quad (36)$$

1466 where $\bar{\phi}_T = \frac{1}{|T|} \sum_{t \in T} \phi(t)$ is the mean target embedding, and $\eta \sim \mathcal{N}(0, \sigma^2 I)$ is Gaussian noise
1467 calibrated to achieve (ε, δ) -differential privacy via the Gaussian mechanism (Dwork et al., 2006b).

1468 The ℓ_2 -sensitivity of the mean is:

$$\Delta_2 = \frac{1}{|T|} \cdot \max_{t, t'} \|\phi(t) - \phi(t')\|_2 \leq \frac{2}{|T|} \quad (37)$$

1472 for normalized embeddings $\|\phi(t)\|_2 = 1$. To achieve (ε, δ) -DP, we set:

$$\sigma = \frac{\Delta_2}{\varepsilon} \sqrt{2 \log(1.25/\delta)} = \frac{2}{|T|\varepsilon} \sqrt{2 \log(1.25/\delta)} \quad (38)$$

1477 D.1.2 DP TRAK CURATION

1478 TRAK-based curation computes scores via $s(x) = \Phi(x)^T \bar{g}$, where $\bar{g} = \frac{1}{|T|} \sum_{t \in T} G_t$ is the mean
1479 gradient over target samples. While averaging provides some natural privacy protection, small target
1480 sets ($|T| < 5000$) remain highly vulnerable to membership inference attacks.

1482 We privatize the mean gradient computation:

$$\bar{g}_{\text{DP}} = \frac{1}{|T|} \sum_{t \in T} \tilde{G}_t + \eta, \quad \eta \sim \mathcal{N}(0, \sigma^2 I) \quad (39)$$

1486 where \tilde{G}_t are the clipped gradients

$$\tilde{G}_t = G_t \cdot \min \left(1, \frac{C}{\|G_t\|_2} \right) \quad (40)$$

1490 with clipping threshold C and sensitivity $\Delta_2 = 2C/|T|$. The noise scale is $\sigma = \frac{2C}{|T|\varepsilon} \sqrt{2 \log(1.25/\delta)}$.

1493 D.1.3 EVALUATION

1494 We test $\varepsilon \in \{0.1, 0.5, 1.0, 2.0, 5.0, 10.0\}$ with $\delta = 10^{-5}$. We attack the curation scores with LiRA,
1495 fitted on shadow curation scores with no DP.

1496 Table 4 shows the attack success on the curation scores for DP Image-based and TRAK curation.
1497 The results show that these measures are effective at mitigating privacy leakage. For Image-Based
1498 Curation, just replacing the nearest neighbor operation with a mean drastically reduces the attack
1499 success. For TRAK-based curation we saw higher attack success, despite using a mean, because
1500 the gradient projection dimension (32,768) is significantly higher than the embedding dimension for
1501 Image-based curation (768). This aligns with our ablation results for TRAK, where the attack success
1502 drops for less than 2,048 dimensions. This explains why even the non-private mean is hard to attack,
1503 and subsequently why a DP guarantee of $\varepsilon = 1000$ shows low attack success. Table 5 analyzes this
1504 further, comparing the mean and nearest neighbor-based curation for various privacy guarantees. The
1505 results show that the mean is harder to attack than the nearest neighbor-based curation for various
1506 privacy guarantees.

1507 D.2 REMOVING THE MOST VULNERABLE SAMPLES

1509 We detail our approach and results of removing the most vulnerable samples from the target dataset.

1510 We conduct our experiments on the curation scores for CIFAR-10. For the **TRAK-based** analysis,
1511 we use a target dataset size of 25,000 samples and employ the least squares attack. The attack is

1512 **Table 4: Attack success on curation scores for DP Image-based and TRAK curation.**
1513

1514 1515 1516 1517 1518 1519 1520 1521	Privacy Guarantee ($\epsilon, \delta = 1e - 5$)	TPR @ 1% FPR	
		1514 1515 1516 1517 1518 1519 1520 1521	Image-Based Curation
non-private	0.9842 \pm 0.0013	1514 1515 1516 1517 1518 1519 1520 1521	1.0000 \pm 0.0000
1000	0.0160 \pm 0.0000		1.0000 \pm 0.0000
100	0.0155 \pm 0.0000		0.3324 \pm 0.0797
10	0.0134 \pm 0.0000		0.0165 \pm 0.0072
5	0.0107 \pm 0.0000		0.0136 \pm 0.0071
2	0.0105 \pm 0.0000		0.0125 \pm 0.0065

1522 **Table 5: Impact of Nearest-Neighbor vs. Mean on the Image-Based Privacy Leakage.**
1523

1524 1525 1526 1527 1528 1529 1530 1531	Privacy Guarantee ($\epsilon, \delta = 10^{-5}$)	TPR @ 1% FPR	
		1524 1525 1526 1527 1528 1529 1530 1531	Image-Based Curation (Mean)
non-private (inf)	0.0160 \pm 0.0067	1524 1525 1526 1527 1528 1529 1530 1531	0.9842 \pm 0.0013
1000	0.0160 \pm 0.0069		0.8591 \pm 0.0158
100	0.0155 \pm 0.0113		0.0542 \pm 0.0090
10	0.0134 \pm 0.0069		0.0110 \pm 0.0050
5	0.0107 \pm 0.0065		0.0109 \pm 0.0057
2	0.0105 \pm 0.0045		0.0106 \pm 0.0057

1532
1533
1534 evaluated over 16 seeds. For the **Image-based** analysis, we use a target dataset size of 5,000 samples
1535 and employ the LiRA attack. The attack is evaluated over 16 seeds with 256 shadow models. In both
1536 experiments, we define the “vulnerable” set as the top 5% of samples with the highest membership
1537 inference attack success rate. For comparison, we also remove 5% of samples at random. We report
1538 AUC only on the remaining samples.

1539 We then evaluate four scenarios:

1540

- 1541 • **Baseline:** Full target dataset.
- 1542 • **Ideal:** Post-hoc removal of vulnerable samples from ROC computation.
- 1543 • **Vulnerable Removal:** Re-run experiment after removing vulnerable samples from target dataset.
- 1544 • **Random Removal:** Re-run experiment after removing random samples from target dataset.

1545 **Findings.** We investigate whether removing the most vulnerable samples from the target dataset
1546 could serve as an effective defense against membership inference. The results show that for both
1547 methods, removing samples increases overall attack success.

1548 For **Image-based** curation, Figure 13a shows that the attack success increases significantly when
1549 removing the most vulnerable samples. Removing samples at random increases the attack success
1550 only marginally. The 5% most vulnerable target samples are the score-determining nearest neighbors
1551 for 31.1% of the pool. Their removal exposes 1.8% of previously shielded targets and increases
1552 vulnerability for over 80% of target samples, which are now on average the nearest neighbor for 83
1553 additional pool samples. Therefore, removing the most vulnerable samples actually exposes many
1554 previously protected samples. This is a strong case of the *Privacy Onion effect* (Carlini et al., 2022b).

1555 For **TRAK-based** curation, Figure 13b shows that removing vulnerable samples increases overall
1556 attack success similarly to removing random samples. Removing the most vulnerable samples (AUC
1557 0.9400) reduces attack success marginally more than removing random samples (AUC 0.9439). But
1558 our ablations have shown that the attack success is very sensitive to target dataset size (Fig. 34-35 in
1559 Appendix E.5), so the reduction in target dataset size outweighs the benefit of removing any samples.

1560 Our findings suggest that simple sample removal is not a robust defense strategy. For image-based
1561 curation, the onion effect negates the benefit of removing outliers. For TRAK-based curation, while
1562 no onion effect is present, the attack remains effective, indicating that privacy leakage is not confined
1563 to a small subset of “vulnerable” points but is a systemic property of the curation process.

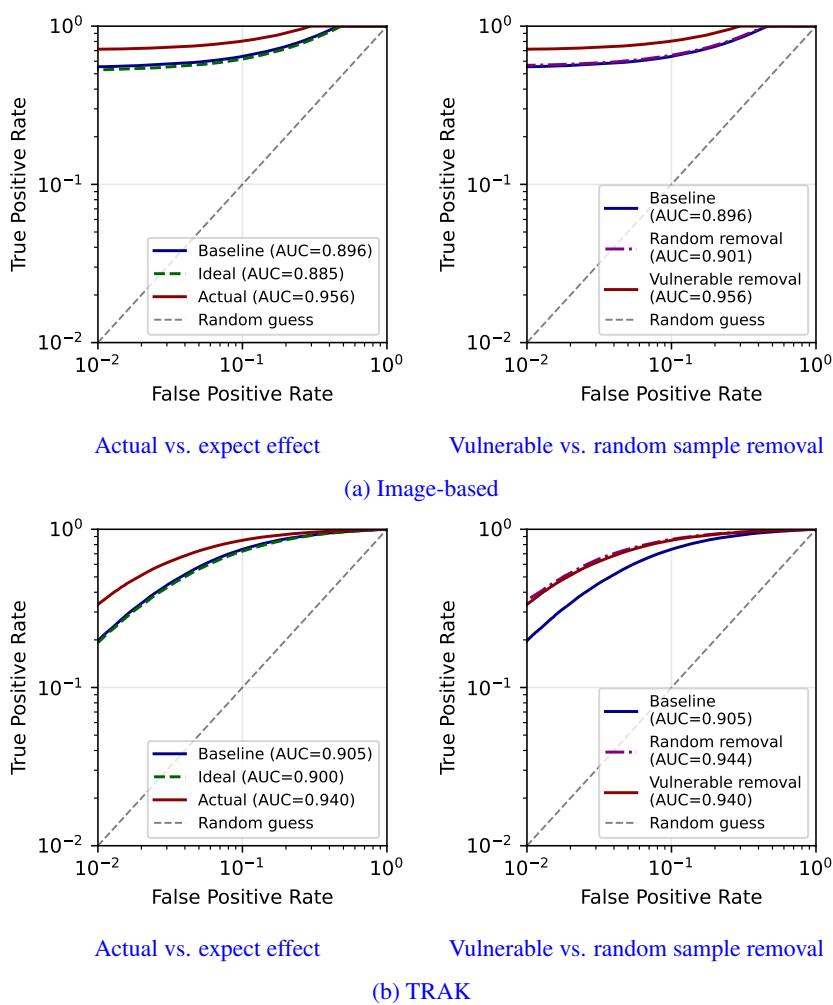
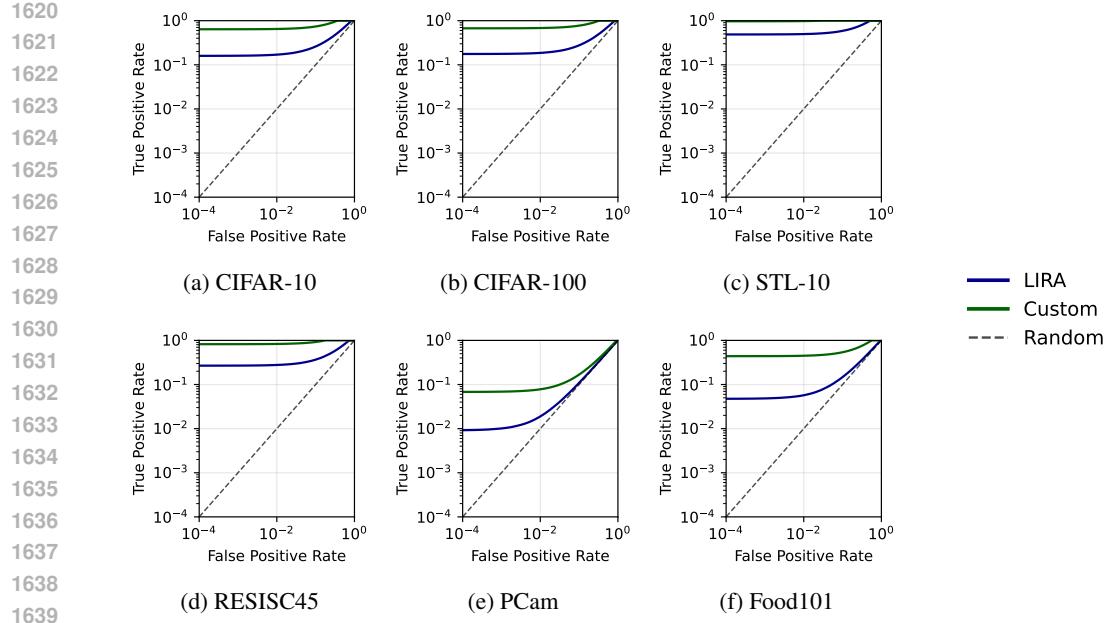


Figure 13: **Removing the most sensitive samples does not prevent leakage.** We show attack success *increases* when removing the most vulnerable samples. a) **Image-based** curation shows a strong *privacy onion effect*. Removing the most vulnerable samples increases attack success significantly, while removing random samples has a negligible effect. b) **TRAK-based** curation shows no privacy onion effect, but since attack success is highly sensitive to target dataset size, removing samples increases it.

E EXTENDED EVALUATION

E.1 IMAGE-BASED SCORING ATTACKS

We show the results of the attack on Image-based scoring in Figure 14. LiRA exhibits strong and consistent performance across all datasets. The custom attack is better for all datasets at $FPR > 10^{-4}$. For lower FPRs, performance is highly variable. Figure 15 shows the results of the attack on Image-based scoring without access to the scores. The custom attack and LiRA achieve similar results, with the custom attack being slightly more successful in the low FPR region.



1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Figure 14: **Image-based Attack success with access to the scores** for various datasets and curation methods given access to the full set of pool scores. We find that - while none of the methods satisfy DP - only Image-based scoring is attackable.

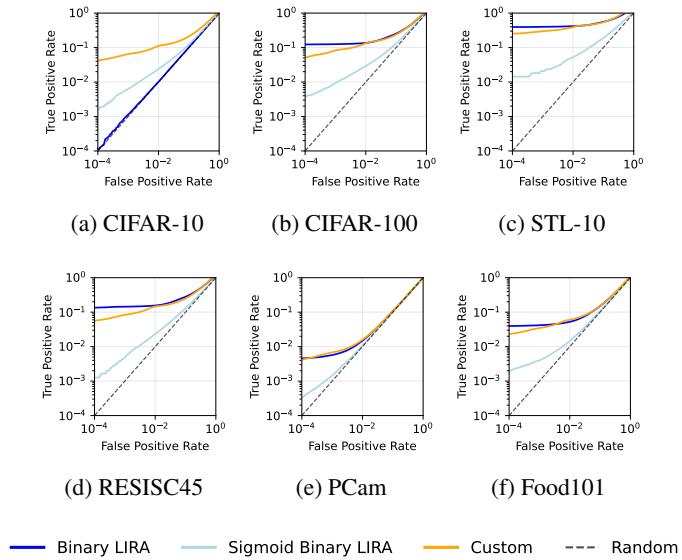
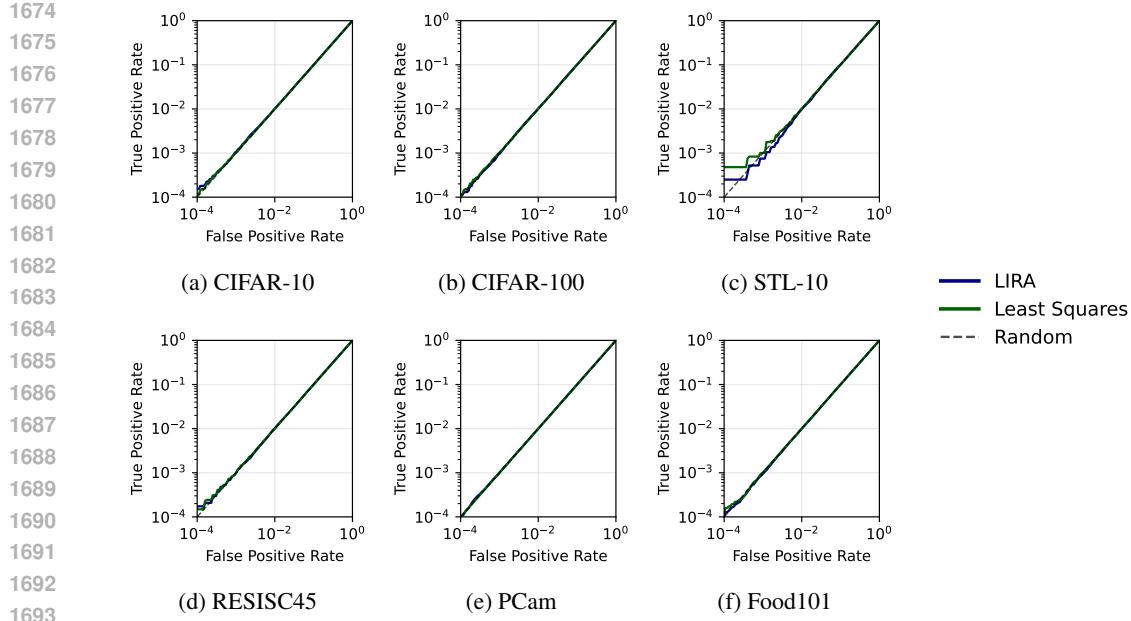
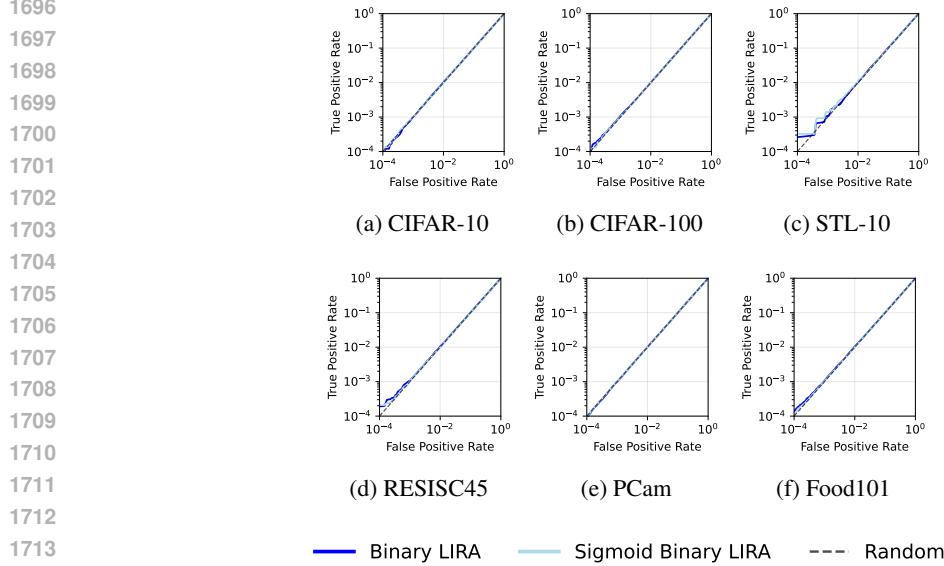


Figure 15: **Image-based Attack success without access to the scores** for various datasets and curation methods given access to the full set of pool scores. We show that just the selection of the pool samples reveals membership information about the targets.

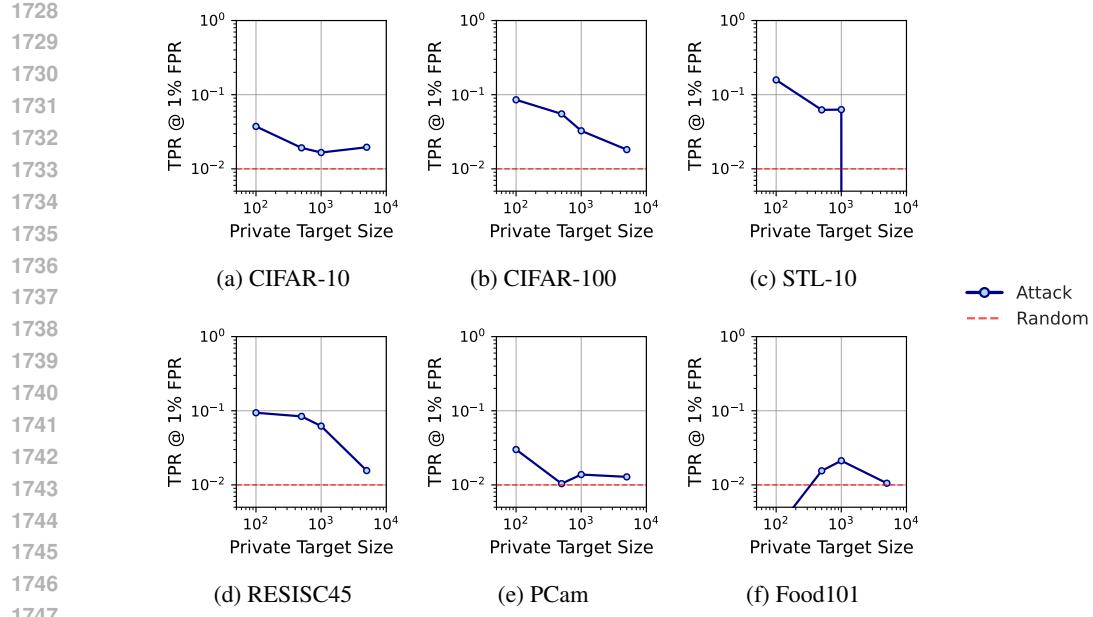
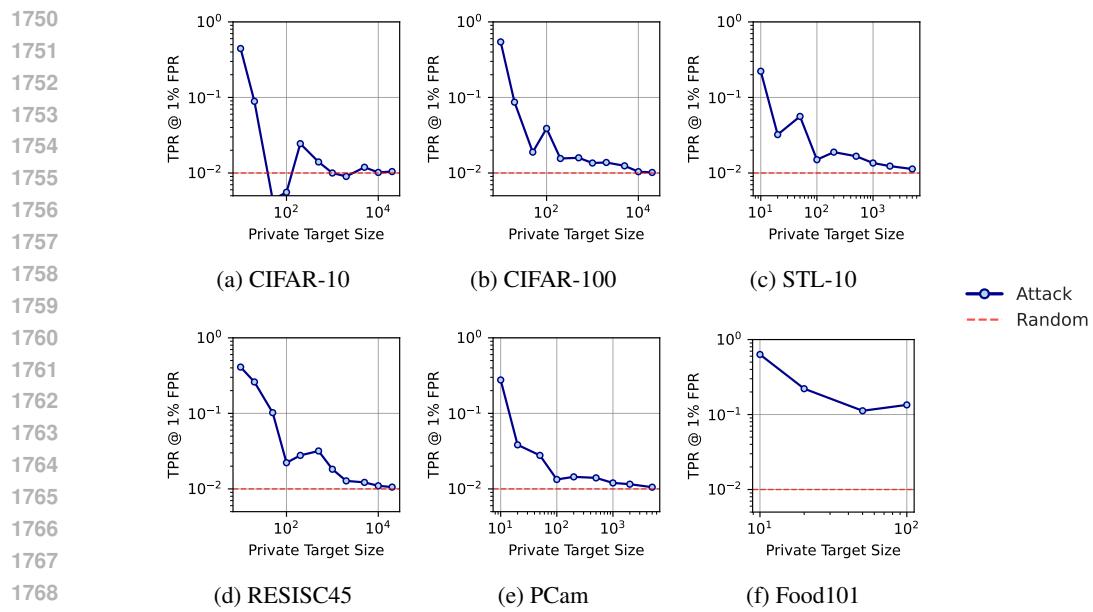
E.2 TRAK SCORING ATTACKS

Figures 16 and 17 show that TRAK is hardly attackable, both with access to the scores and without.

Figure 16: **TRAK Attack success with access to the scores.**Figure 17: **TRAK Attack success without access to the scores.**

E.3 END-TO-END ATTACKS

Figure 18 shows that models trained on Image-based curation leak membership information over all target dataset sizes. Figure 19 shows that for small target datasets, even models curated with TRAK are highly attackable, more so than Image-based curation. This success diminishes as the target dataset size is increased though.

1748 **Figure 18: Image-based attack success with access only to the models trained on curated data.**1770 **Figure 19: TRAK attack success with access only to the models trained on curated data.**

E.4 DETAILED ROC CURVES

1774 Figures 20 to 31 show full ROC curves for 36 configurations of datasets and target dataset sizes
 1775 for the end-to-end attack, showing the full TPR-FPR tradeoff. We furthermore add AUC plots, to
 1776 enhance comparison with other work that has reported these numbers. These results show that, when
 1777 the attack is successful, it succeeds across a wide range of the trade-off curve.

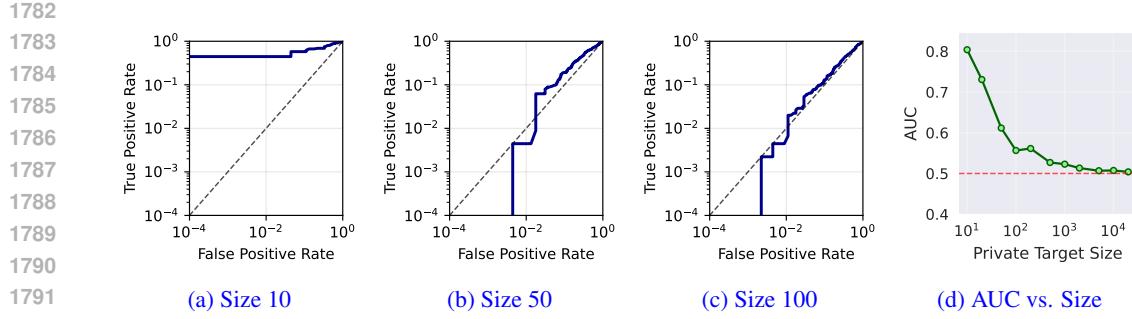


Figure 20: **TRAK end-to-end attack on CIFAR-10:** ROC curves for different target dataset sizes and AUC vs. size summary.

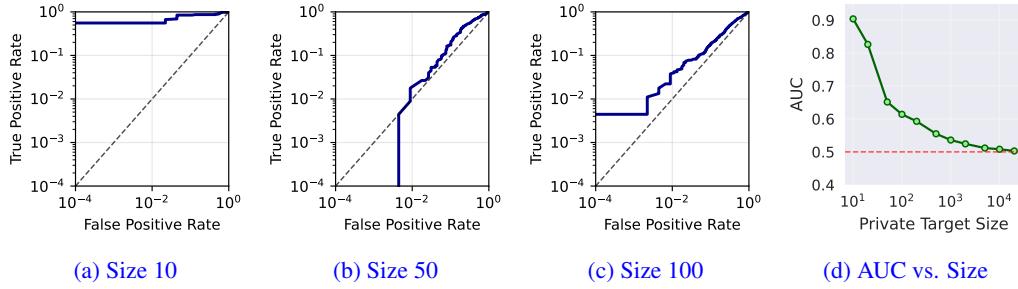


Figure 21: **TRAK end-to-end attack on CIFAR-100:** ROC curves for different target dataset sizes and AUC vs. size summary.

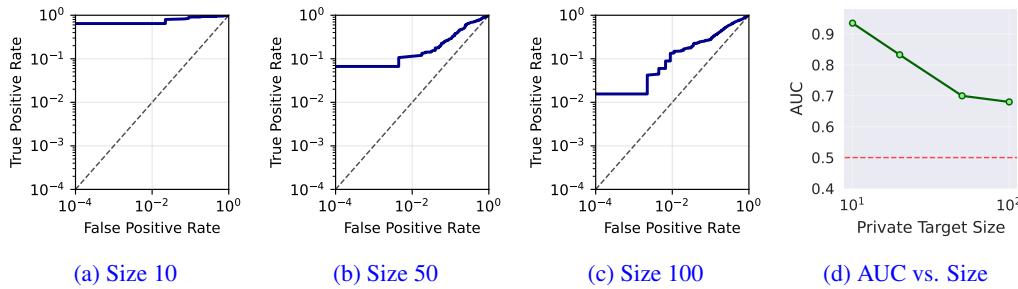


Figure 22: **TRAK end-to-end attack on Food101:** ROC curves for different target dataset sizes and AUC vs. size summary.

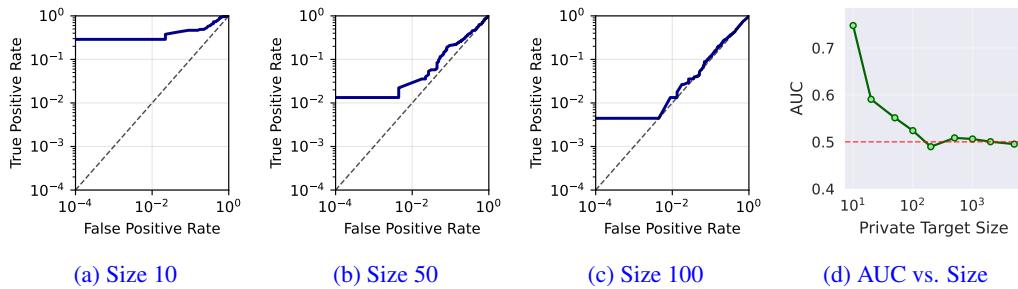


Figure 23: **TRAK end-to-end attack on PCam:** ROC curves for different target dataset sizes and AUC vs. size summary.

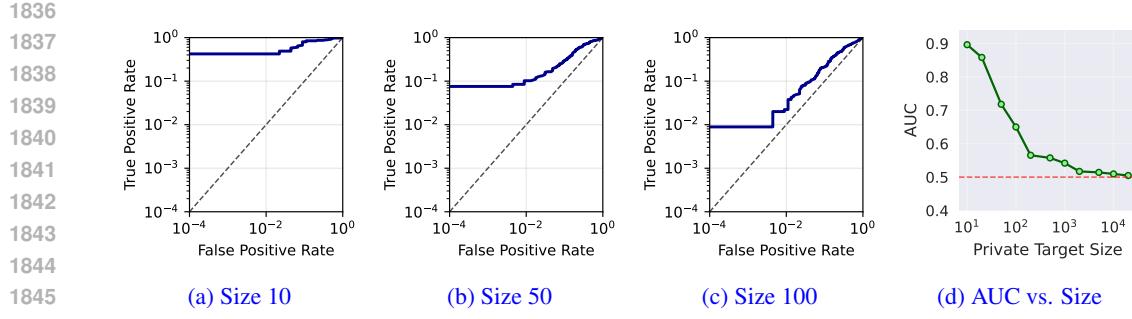


Figure 24: **TRAK end-to-end attack on RESISC45:** ROC curves for different target dataset sizes and AUC vs. size summary.

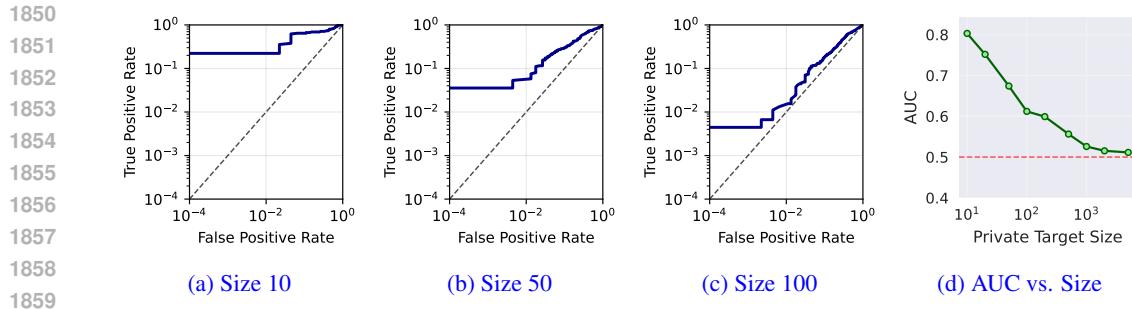


Figure 25: **TRAK end-to-end attack on STL-10:** ROC curves for different target dataset sizes and AUC vs. size summary.

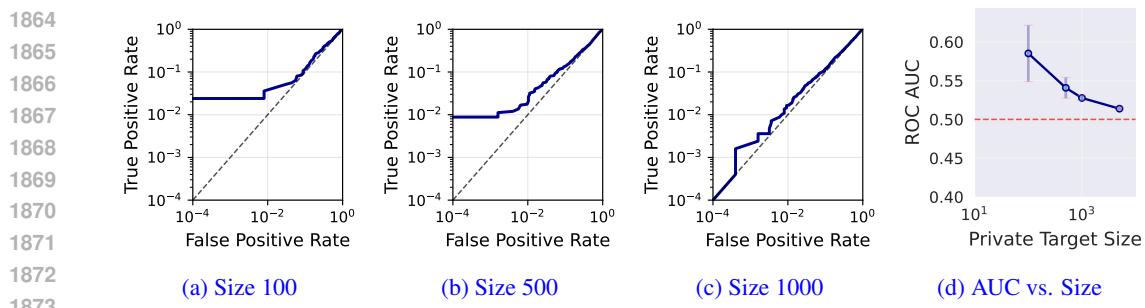


Figure 26: **Image-based end-to-end attack on CIFAR-10:** ROC curves for different target dataset sizes and AUC vs. size summary.

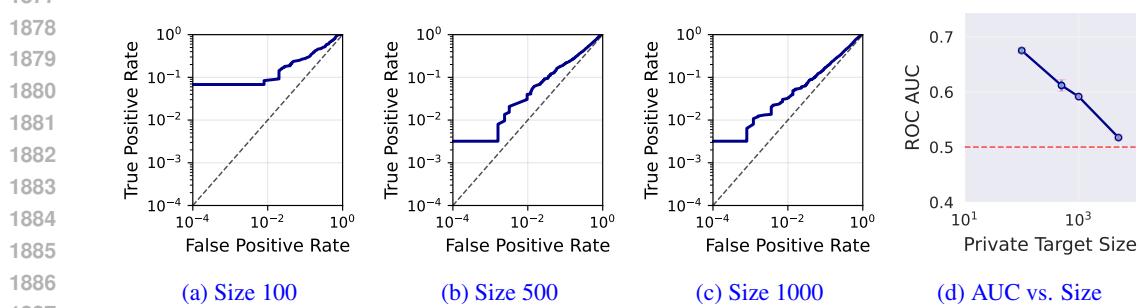


Figure 27: **Image-based end-to-end attack on CIFAR-100:** ROC curves for different target dataset sizes and AUC vs. size summary.

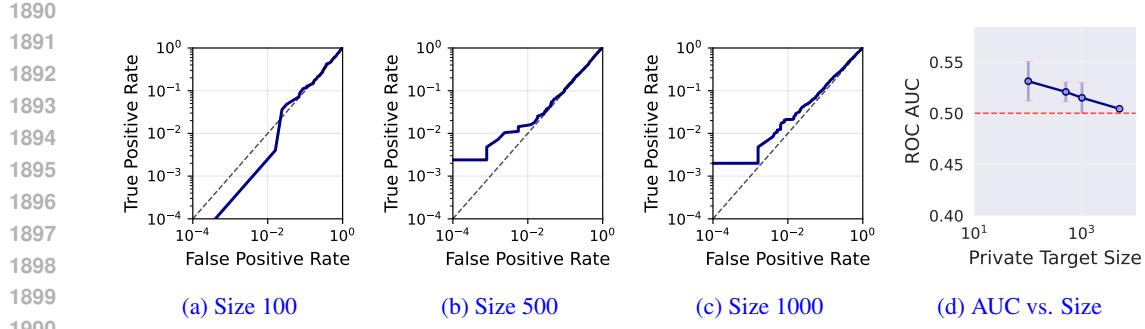


Figure 28: **Image-based end-to-end attack on Food101:** ROC curves for different target dataset sizes and AUC vs. size summary.

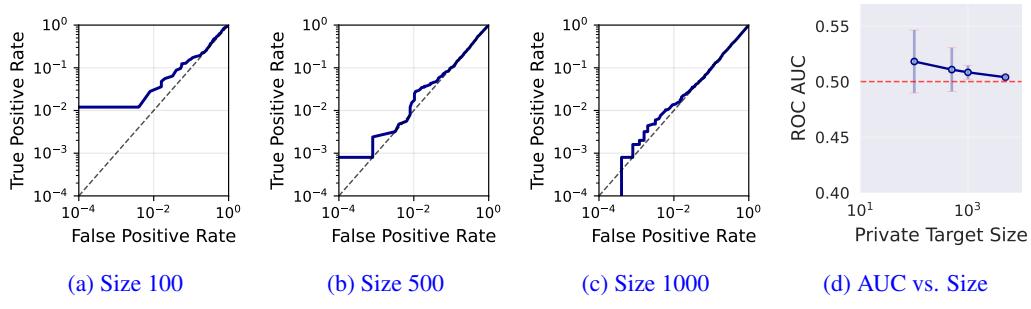


Figure 29: **Image-based end-to-end attack on PCam:** ROC curves for different target dataset sizes and AUC vs. size summary.

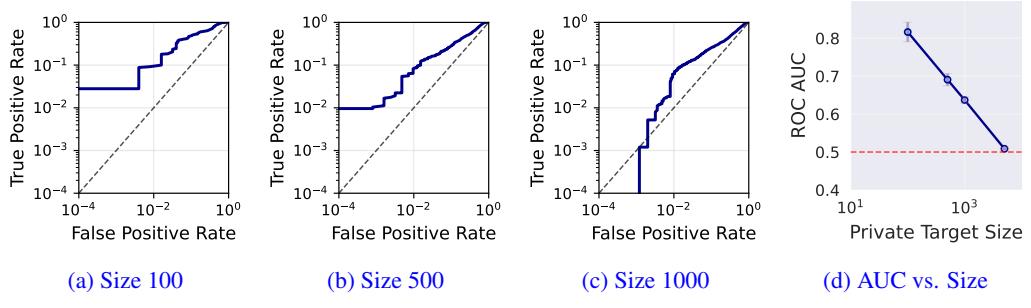


Figure 30: **Image-based end-to-end attack on RESISC45:** ROC curves for different target dataset sizes and AUC vs. size summary.

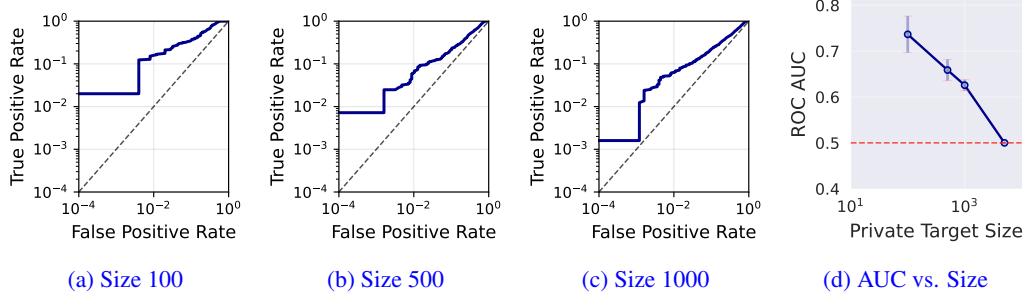


Figure 31: **Image-based end-to-end attack on STL-10:** ROC curves for different target dataset sizes and AUC vs. size summary.

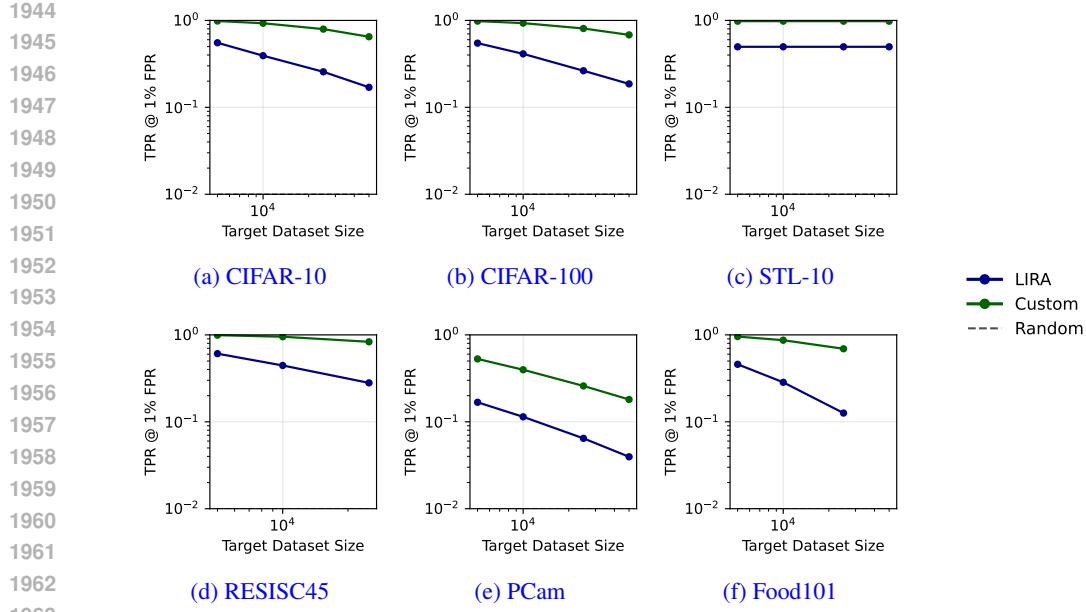


Figure 32: Image-based attack success with access to scores ablated over target dataset size.

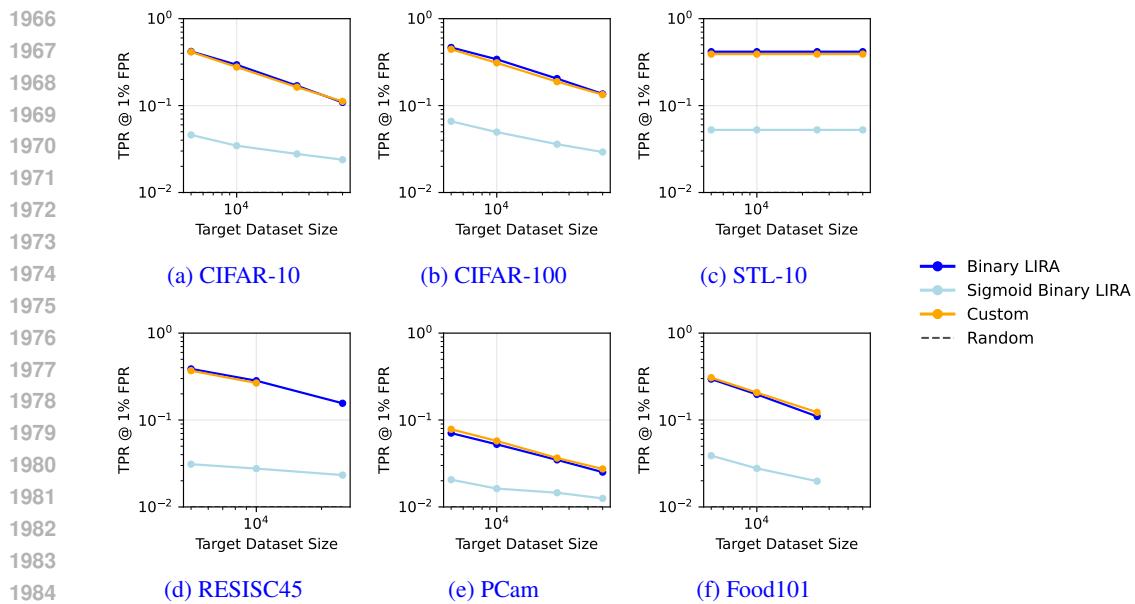
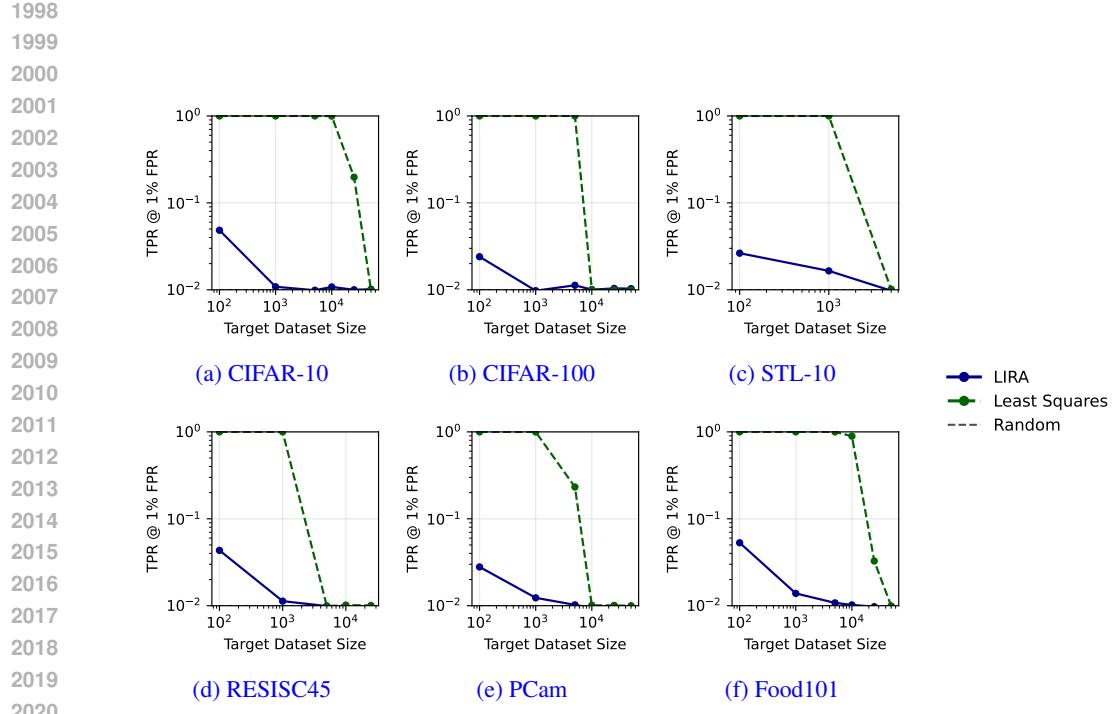
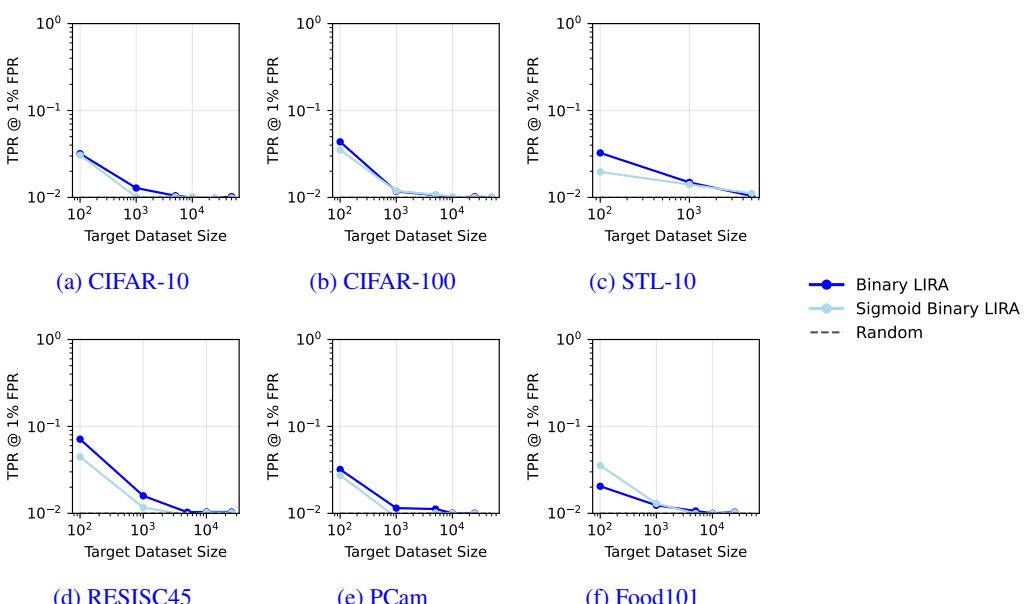


Figure 33: Image-based attack success without access to scores ablated over target dataset size.

E.5 TARGET DATASET SIZE ABLATION

Figures 32 to 35 show the effect of target dataset size on attack success. For Image-based curation, the leakage is considerable at all dataset sizes. Since only the nearest neighbors determine the scores, a larger dataset size means fewer samples are exposed, but the sensitivity of the exposed samples remains constant. For TRAK-based curation, at small dataset sizes all samples are exposed, but at larger sizes the averaging has a shielding effect for all samples as well.

Figure 34: **TRAK-based attack success with access to scores ablated over target dataset size.**Figure 35: **TRAK-based attack success without access to scores ablated over target dataset size.**

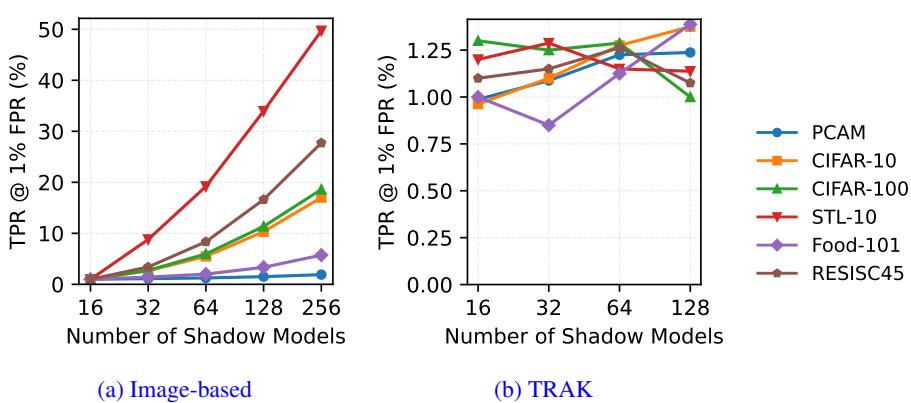


Figure 36: **Shadow models ablation.** (a) For Image-based curation we show that the improvement of adding more shadow models varies drastically between datasets. (b) For TRAK, we do not observe any improvement in attack success when adding more shadow models.

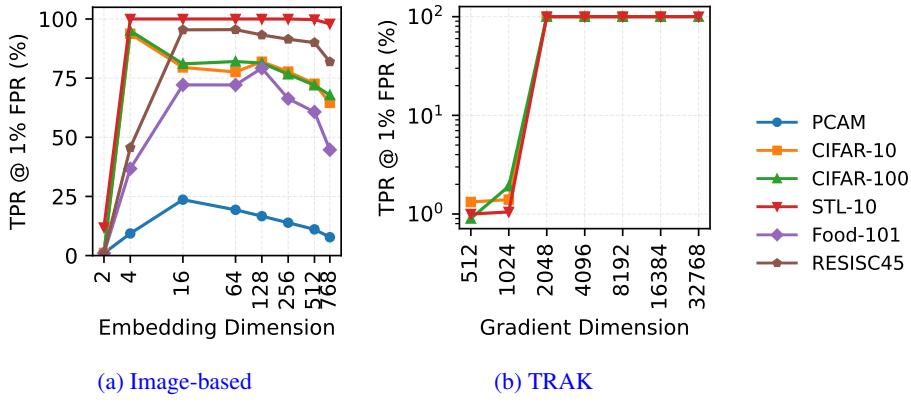


Figure 37: **Dimension ablation.** We show that the number of (a) embedding dimensions for Image-based curation and (b) projection dimensions for TRAK have a moderate effect on attack success.

E.6 SHADOW MODELS ABLATION

Figure 36 shows that the improvement of adding more shadow models varies drastically between datasets. For Image-based curation, the improvement is connected to the sparsity of the signals that Figure 2 shows. For TRAK, the improvement is more consistent across datasets.

E.7 DIMENSION ABLATION

Figure 37 shows the effect of changing the number of dimensions. For Image-Based curation, we show that the attack success is highest for 128 dimensions using our voting based attack (for LiRA 64 dimensions). Because attacks on Image-based curation exploit one-to-one mappings of measurements between target and pool samples, having fewer dimensions can increase the reliability of those measurements. Only for extremely few dimensions (e.g., two) does the attack success drop to that of random guessing. For TRAK, we need a sufficient number of dimensions (≤ 1024), below which the attack success drops significantly.

F LLM USAGE

We have used LLMs to speed up the process of typesetting figures and formulas in L^AT_EX. We argue this is akin to coding assistance for other programming languages.