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Abstract

On-policy reinforcement learning (RL) algorithms are typically characterized as algo-
rithms that perform policy updates using i.i.d. trajectories collected by the agent’s cur-
rent policy. However, after observing only a finite number of trajectories, on-policy
sampling may produce data that fails to match the expected on-policy data distribution.
This sampling error leads to high-variance gradient estimates and data inefficient on-
policy learning. Recent work in policy evaluation has shown that non-i.i.d., off-policy
sampling can produce data with lower sampling error w.r.t. the expected on-policy dis-
tribution than on-policy sampling can produce (Zhong et al., 2022). Motivated by this
observation, we introduce an adaptive, off-policy sampling method to reduce sampling
error during on-policy policy gradient RL training. Our method, Proximal Robust On-
Policy Sampling (PROPS), reduces sampling error by collecting data with a behavior
policy that increases the probability of sampling actions that are under-sampled w.r.t.
the current policy. We empirically evaluate PROPS on MuJoCo benchmark tasks and
demonstrate that (1) PROPS decreases sampling error throughout training and (2) in-
creases the data efficiency of on-policy policy gradient algorithms.

1 Introduction

One of the most widely used classes of reinforcement learning (RL) algorithms is the class of on-
policy policy gradient algorithms. These algorithms optimize a parameterized policy via gradient
ascent to increase the probability of observed actions with high expected returns under the current
policy. In practice, the policy gradient is typically estimated using the Monte Carlo estimator, an
average over i.i.d. trajectories sampled from the current policy. This estimator is unbiased and
consistent: as the number of collected samples increases, the empirical distribution of data converges
to the expected on-policy distribution, and thus the estimated gradient converges to the true gradient.
However, with finite data, the empirical distribution of data often differs from the desired on-policy
data distribution—a mismatch we call sampling error. Sampling error leads to inaccurate gradient
estimates, high-variance updates, and potentially convergence to suboptimal policies.

With i.i.d. on-policy sampling, the only way to reduce sampling error is to collect more data. Al-
ternatively, we can reduce sampling error more efficiently using adaptive, off-policy sampling. To
illustrate, consider an MDP with two discrete actions A and B, and suppose the current policy π
places equal probability on both actions in some state s. After 10 visits to s under π, we will ob-
serve both actions 5 times in expectation. Now suppose that after the first 9 visits to s, we actually
observe A 4 times and B 5 times. If we sample an action from π upon our next visit to s, we may
sample B, and our data will not match the expected on-policy distribution. Alternatively, if we se-
lect the under-sampled action A with probability 1, we will observe each action 5 times, making the
aggregate data match the on-policy distribution even though this final action was sampled off-policy.
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Figure 1: An overview of PROPS. We collect data with a separate data collection policy πϕ that we
continually adapt to reduce sampling error in D with respect to the agent’s current policy.

Recently, Zhong et al. (2022) introduced an adaptive, off-policy sampling method (ROS) that can
produce data that more closely matches the on-policy distribution than data acquired through i.i.d.
on-policy sampling. However, this work was limited to low-dimensional policy evaluation tasks.
Moreover, ROS required large batches of data to reduce sampling error – approximately 5000 sam-
ples on tasks like CartPole-v1 (Brockman et al., 2016) – and struggled to reduce sampling error on
tasks with continuous actions. To make adaptive sampling practical for data-efficient RL, we need
methods that can reduce sampling error in high-dimensional continuous-action tasks while using
the smaller batch sizes typically used in RL. These observations raise the following question: can
on-policy policy gradient algorithms learn more efficiently without on-policy sampling?

In this work, we address these challenges and show for the first time that on-policy policy gradient
algorithms are more data-efficient learners when they use on-policy data acquired with adaptive,
off-policy sampling. Our method, Proximal Robust On-Policy Sampling (PROPS), adaptively cor-
rects sampling error in previously collected data by increasing the probability of sampling actions
that are under-sampled with respect to the current policy (Fig. 1). We empirically evaluate PROPS
on continuous-action MuJoCo benchmark tasks and show that (1) PROPS reduces sampling error
throughout training and (2) increases the data efficiency of on-policy policy gradient algorithms. In
summary, our contributions are

1. We introduce PROPS, a scalable adaptive sampling algorithm for on-policy policy gradient learn-
ing that reduces sampling error w.r.t. the agent’s current policy.

2. We demonstrate empirically that PROPS reduces sampling error more efficiently than on-policy
sampling and ROS.

3. We show empirically that PROPS increases data efficiency in on-policy policy gradient RL.

2 Related Work

Prior works have used adaptive off-policy sampling to reduce sampling error in the policy evaluation
subfield of RL. Zhong et al. (2022) first proposed that adaptive off-policy sampling could produce
data that more closely matches the on-policy distribution than on-policy sampling could produce.
Mukherjee et al. (2022) use a deterministic sampling rule to take actions in a particular proportion.
Other works in the bandit setting use a non-adaptive exploration policy to collect additional data
conditioned on previously collected data (Tucker & Joachims, 2022; Wan et al., 2022; Konyushova
et al., 2021). Since these works only focus on policy evaluation, they do not have to contend with a
changing on-policy distribution as our work does for the control setting.

Several prior works propose importance sampling methods (Precup, 2000) to reduce sampling error
without collecting new data. In the RL setting, Hanna et al. (2021) showed that reweighting off-
policy data according to an estimated behavior policy can correct sampling error and improve policy
evaluation. Similar methods exist for temporal difference learning (Pavse et al., 2020) and policy
evaluation in the bandit setting (Li et al., 2015; Narita et al., 2019). While these works reduce
sampling error by reweighting existing data, our work reduces sampling error during data collection.
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As we will discuss in Section 5, the method we introduce permits data collected in one iteration
of policy optimization to be re-used in future iterations rather than discarded as typically done by
on-policy algorithms. Prior work has attempted to avoid discarding data by combining off-policy
and on-policy updates with separate loss functions or by using alternative gradient estimates (Wang
et al., 2016; Gu et al., 2016; 2017; Fakoor et al., 2020; O’Donoghue et al., 2016; Queeney et al.,
2021). In contrast, our method modifies the sampling distribution at each iteration so that the entire
data set of past and newly collected data matches the expected distribution under the current policy.

3 Preliminaries

We formalize the RL environment as a finite-horizon Markov decision process (Puterman, 2014)
with state space S, action space A, transition dynamics p : S × A × S → [0, 1], reward function
r : S × A → R, initial state distribution d0, and discount factor γ ∈ [0, 1). We consider stochastic
policies πθ : S×A → [0, 1] parameterized by θ and let dπθ

: S×A → [0, 1] denote the state-action
visitation distribution of πθ. The RL objective is to find a policy maximizing expected discounted
return, J(θ) = Eτ∼πθ

[∑H
t=0 γ

tr(st,at)
]
, where H is the horizon. We refer to the policy used for

data collection as the behavior policy and the policy that optimizes the return as the target policy.

Policy gradient algorithms perform gradient ascent over policy parameters to maximize an agent’s
expected return J(θ). The gradient of J(θ) with respect to θ, or policy gradient, is often given as:

∇θJ(θ) = Es∼dπθ
,a∼πθ

[Aπθ (s,a)∇θ log πθ(a|s)] , (1)

where Aπθ (s,a) is the advantage of choosing action a in state s, quantifying the extra expected
reward for choosing a instead of sampling an action from πθ. In practice, the expectation in Eq. 1 is
approximated with Monte Carlo samples collected from πθ, and an estimate of Aπθ used in place of
the true advantages (Schulman et al., 2016). Currently, the most successful on-policy algorithm is
PPO (Schulman et al., 2017), the algorithm of choice in several success stories (Berner et al., 2019;
Akkaya et al., 2019; Vinyals et al., 2019). PPO maximizes the clipped surrogate objective:

LPPO = min(g(s,a,θ,θold)A
πθold (s,a), clip(g(s,a,θ,θold), 1− ϵ, 1 + ϵ)Aπθold (s,a)), (2)

where θold denotes the policy parameters prior to the update, g(s,a,θ,θold) = πθ(a|s)/πθold (a|s), and
the clip function with hyperparameter ϵ clips g(s,a,θ,θold) to the interval [1 − ϵ, 1 + ϵ]. This
objective disincentivizes large changes to πθ(a|s). While other policy gradient algorithms perform
a single gradient update per data sample to avoid destructively large policy updates, PPO’s clipping
mechanism permits multiple epochs of minibatch policy updates.

4 Correcting Sampling Error in Reinforcement Learning

In this section, we illustrate how sampling error can produce inaccurate policy gradient estimates
and then describe how adaptive, off-policy sampling can reduce sampling error. For exposition, we
assume finite state and action spaces. The policy gradient can then be written as:

∇θJ(θ) =
∑

(s,a)∈S×A
dπθ

(s,a) [Aπθ (s,a)∇θ log πθ(a|s)] . (3)

The policy gradient is thus a linear combination of the gradient for each (s,a) pair ∇θ log πθ(a|s)
weighted by dπθ

(s,a)Aπθ (s,a). LetD be a dataset of trajectories. It is straightforward to show that
the Monte Carlo estimate of the policy gradient can be written in a similar form as Equation 3 except
with the true state-action visitation distribution replaced with the empirical visitation distribution
dD(s,a), denoting the fraction of times (s,a) appears in D (Hanna et al., 2021). When (s,a)
is over-sampled (i.e., dD(s,a) > dπθ

(s,a)), then ∇θ log πθ(a|s) contributes more to the overall
gradient than it should. Similarly, when (s,a) is under-sampled, ∇θ log πθ(a|s) contributes less
than it should. Below, we provide a concrete example illustrating how small amounts of sampling
error can cause the wrong actions to be reinforced.
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Example: Sampling error can cause incorrect policy updates

Let πθ be a policy for an MDP with two discrete actions a0 and a1, and suppose that
in a particular state s0, the advantage of each action w.r.t. πθ is Aπθ (s0,a0) = 20
and Aπθ (s0,a1) = 15. For simplicity, suppose the policy has a direct parameterization
πθ(a0|s) = θs, πθ(a1|s) = 1 − θs and places equal probability on both actions in s0
(θs0

= 0.5). Then, we have ∇θ log πθ(a0|s0) = −∇θ log πθ(a1|s0) and dπθ
(s0,a0) =

dπθ
(s0,a1) so that the expected gradient increases the probability of sampling a0, the opti-

mal action. With on-policy sampling, after 10 visits to s0, the agent will sample both actions
5 times in expectation. However, if the agent actually observes a0 4 times and a1 6 times, a
Monte Carlo estimate of the policy gradient then yields

4/10 · 20 · ∇θ log πθ(a0|s0) + 6/10 · 15 · ∇θ log πθ(a1|s0) = −∇θ log πθ(a0|s0)

which decreases the probability of sampling the optimal a0 action.

While sampling error in on-policy sampling vanishes with infinite data, we can eliminate sampling
error with finite data by adapting the agent’s next action based on previously sampled actions. Sup-
pose the agent visits s0 9 times and samples a0 4 times and a1 5 times. Sampling the next action
from a distribution that puts probability 1 on a0 will produce an aggregate batch of data that exactly
matches the on-policy distribution and thus produces an accurate gradient. This example suggests
a heuristic to reduce sampling error: at each state, select the most under-sampled action. Under the
assumption that the MDP has a DAG structure, Zhong et al. (2022) showed that in fixed-horizon
settings, this strategy yields an empirical state-action distribution that converges to dπθ

(s,a) faster
than on-policy sampling. We extend this result by removing the restrictive DAG assumption:

Proposition 1. Assume that data is collected with an adaptive behavior policy that always takes the
most under-sampled action in each state s w.r.t. π, i.e, a← argmaxa′(π(a′|s)− πD(a

′|s)), where
πD is the empirical policy after m state-action pairs have been collected. Assume that S and A are
finite and that the Markov chain induced by π is irreducible. Then we have that the empirical state
visitation distribution, dm, converges to the state distribution of π, dπ , with probability 1:

∀s, lim
m→∞

dm(s) = dπ(s).

We prove Proposition 1 in Appendix A. While this heuristic reduces sampling error, it is difficult
to implement in practice; the argmax in Proposition 1 often has no closed-form solution, and the
empirical policy πD can be expensive to compute at every timestep. The following section presents
a scalable adaptive sampling algorithm that reduces sampling error in on-policy policy gradient RL.

5 Proximal Robust On-Policy Sampling for Policy Gradient Algorithms

Algorithm 1 On-policy policy gradient algorithm
with adaptive sampling

1: Inputs: Target batch size n, behavior batch size
m, buffer size b.

2: Initialize target policy parameters θ.
3: Initialize behavior policy parameters ϕ← θ.
4: Initialize empty buffer D with capacity bn.
5: for target update i = 1, 2, . . . do
6: for behavior update j = 1, . . . , ⌊n/m⌋ do
7: Collect m samples with πϕ and add to D.
8: Update πϕ with D using Algorithm 2.
9: Update πθ with D.

We outline a general framework for on-policy
learning with an adaptive behavior policy in
Algorithm 1. The behavior πϕ policy collects
a batch of m transitions, adds it to buffer D,
and then updates its weights such that the next
batch it collects reduces sampling error in D
with respect to the target policy πθ (Lines 6-
8). Every n steps (with n > m), the agent up-
dates its target policy with data from D (Line
9). We refer to m and n as the behavior batch
size and the target batch size, respectively.
A subtle implication of adaptive sampling is
that it can correct sampling error in any em-
pirical data distribution—even one generated by a different policy. Thus, rather than discarding
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off-policy data from old policies, we let the data buffer hold up to b target batches (bn transitions)
and call b the buffer size. The behavior policy must continually adjust action probabilities so that
the aggregate data distribution ofD matches the expected on-policy distribution of the current target
policy (Line 8). Implementing Line 8 is the core challenge we now discuss.

To reduce sampling error, updates to πϕ should increase the probability of actions that are under-
sampled with respect to πθ. Zhong et al. (2022) recently developed Robust On-policy Sampling
(ROS) to make such updates. ROS increases the probability of under-sampled actions by updating ϕ
with a single gradient step in direction∇ϕL := −∇ϕ

∑
(s,a)∈D log πϕ(a|s)|θ=ϕ at each timestep.1

In theory and in low-dimensional policy evaluation tasks, ROS reduced sampling error at a faster
rate compared to on-policy sampling—even when D contained off-policy data. Unfortunately, two
challenges render ROS unsuitable for Line 8 in Algorithm 1.

Algorithm 2 PROPS Update

1: Inputs: Target policy parameters θ, buffer D, tar-
get KL δPROPS, clipping coefficient ϵPROPS, regularizer
coefficient λ, n_epoch, n_minibatch.

2: ϕ← θ
3: for epoch i = 1, 2, . . . , n_epoch do
4: for minibatch j = 1, 2, . . . , n_minibatch do
5: Sample minibatch Dj ∼ D
6: Update ϕ with a step of gradient ascent on loss

1

|Dj |
∑

(s,a)∈Dj

LPROPS(s,a,ϕ,θ, ϵPROPS, λ)

7: if DKL(πθ||πϕ) > δPROPS then
8: break

Challenge 1: Historic data in D may
be very off-policy w.r.t. the current tar-
get policy. Since ∇ϕ log πϕ(a|s) in-
creases in magnitude as πϕ(a|s) ap-
proaches zero, those off-policy samples
can produce destructively large updates.

Challenge 2: In continuous-action tasks,
ROS may increase sampling error. Con-
tinuous policies are typically parameter-
ized as Gaussians with mean µ(s) and di-
agonal covariance matrix Σ(s). Since ac-
tions in the tails of the Gaussian will gen-
erally be under-sampled, the ROS update
will continually push the entries of µ(s)
toward ±∞ and the diagonal entries of
Σ(s) toward 0 to increase their probability. The result is a degenerate behavior policy that is too far
from the target policy to correct sampling error. We illustrate this scenario in Fig. 6 of Appendix C.

We address these challenges with a new behavior policy update. To address Challenge 1, first ob-
serve that the gradient of the ROS loss −∇ϕL = ∇ϕ log πϕ(a|s)|ϕ=θ is equivalent to the pol-
icy gradient (Eq. 1) with Aπθ (s,a) = −1,∀(s,a). Since the clipped surrogate objective of PPO
(Eq. 2) prevents destructively large updates in on-policy policy gradient learning, we can use a sim-
ilar clipped objective in place of the ROS objective to prevent destructive behavior policy updates:

LCLIP(s,a,ϕ,θ, ϵPROPS) = min

[
− πϕ(a|s)

πθ(a|s)
,−clip

(
πϕ(a|s)
πθ(a|s)

, 1− ϵPROPS, 1 + ϵPROPS

)]
. (4)

Intuitively, this objective is equivalent to the PPO objective (Eq. 2) with A(s,a) = −1,∀(s,a)
and incentivizes the agent to decrease the probability of observed actions by at most a factor of
1 − ϵPROPS. As in PPO, clipping avoids destructively large policy updates and permits us to per-
form multiple epochs of minibatch updates with the same batch of data. We formally characterize
∇ϕLCLIP in Table 1 of Appendix C. To address the second challenge, we introduce an auxiliary loss
that incentivizes the agent to minimize the KL divergence between the behavior policy and target
policy at states in the observed data. The full PROPS objective is then:

LPROPS(s,a,ϕ,θ, ϵPROPS, λ) = LCLIP(s,a,ϕ,θ)− λDKL(πθ(·|s)||πϕ(·|s)) (5)

where λ is a regularization coefficient quantifying a trade-off between maximizing LPROPS and mini-
mizing DKL. Algorithm 2 details the PROPS update. Like ROS, we set the behavior policy parameters

1To provide intuition for the ROS update: gradient ascent on the log-likelihood L(ϕ) =
∑

(s,a)∈D log πϕ(a|s)|θ=ϕ

adjusts ϕ to better match the empirical distribution of D, increasing the probability of over-sampled actions and decreasing
that of under-sampled ones. Taking a step in the opposite direction thus increases the probability of under-sampled actions.
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ϕ equal to the target policy parameters at the start of each behavior update, and then make a local ad-
justment to ϕ to increase the probabilities of under-sampled actions. We stop the PROPS update early
when DKL(πθ||πϕ) reaches a chosen threshold δPROPS. This technique further mitigates large policy
updates and is used in popular implementations of PPO (Raffin et al., 2021; Liang et al., 2018). In
Appendix B, we provide theoretical intuition for the relationship between PROPS hyperparameters.

6 Experiments

Figure 2: GridWorld
sampling error. 10 seeds.

Our experiments focus on continuous MuJoCo tasks (Brockman et al.,
2016) and a tabular 5x5 GridWorld task (Fig. 15a of Appendix E.3).
GridWorld contains an optimal goal and a suboptimal goal. While the
expected policy gradient increases the probability of reaching the opti-
mal goal, sampling error can yield an empirical gradient that increases
the probability of reaching the suboptimal goal and cause agent to con-
verge suboptimally. To converge optimally, the agent must have low
sampling error. In all figures, solid curves denote averages and shaded
regions denote 95% bootstrap confidence intervals.

Fixed Target Policy Experiments. We begin by evaluating how quickly PROPS reduces sampling
error under a fixed, uniform target policy, similar to the policy evaluation setting considered by
Zhong et al. (2022), and compare against two baselines: on-policy sampling and ROS. In Grid-
World, we measure sampling error as the total variation distance between the empirical state-action
visitation distribution dD(s,a)—denoting the proportion of times (s,a) appears in D—and the
true visitation distribution under πθ:

∑
(s,a)∈D |dD(s,a) − dπθ

(s,a)|. In MuJoCo tasks where
dD(s,a) is intractable, we follow Zhong et al. (2022) and measure sampling error as the KL diver-
gence DKL(πD||πθ) between the empirical policy πD and the target policy πθ. We discuss how we
compute πD in Appendix D and our hyperparameter search in Appendix E.1.

(a) Fixed target policy. (b) During RL training.

Figure 3: Sampling error. In (a), the ROS and
on-policy sampling curves overlap. 10 seeds

In GridWorld (Fig. 2), PROPS reduces sampling error
faster than on-policy sampling. PROPS and ROS per-
form similarly, which is expected: with a fixed target
policy in a tabular environment, the buffer contains
no off-policy data, so Challenges 1 and 2 (from the
previous section) do not arise. Appendix E.3 fur-
ther shows that PROPS yields unbiased and lower-
variance estimates than on-policy sampling. In con-
tinuous MuJoCo tasks (Fig. 3a), where Challenge 2
occurs, PROPS again reduces sampling error faster
than both on-policy sampling and ROS. Notably,
ROS offers no improvement over on-policy sampling
in all MuJoCo task. This limitation of ROS is un-
surprising, as Zhong et al. (2022) showed that ROS
struggled to reduce sampling error even in low-dimensional continuous-action tasks. Additional
MuJoCo results and ablations of PROPS’s clipping and regularization are in Appendix E.1.

RL Expeiments. We now study PROPS during RL training. Since ROS is computationally expen-
sive and fails to reduce sampling error in MuJoCo tasks even with a fixed policy, we omit it from
MuJoCo experiments. We use PPO (Schulman et al., 2017) to update the target policy and consider
two baseline methods for providing data to compute PPO updates: vanilla PPO with on-policy sam-
pling, and PPO with on-policy sampling using a buffer of size b (PPO-BUFFER). PPO-BUFFER reuses
off-policy data from old policies as if it were on-policy. Although PPO-BUFFER computes biased
gradients, it has been successful in prior works (Berner et al., 2019). Since PROPS and PPO-BUFFER
have access to the same amount of data for each policy update, any performance difference between
these two methods arises from differences in how they sample actions during data collection. In
MuJoCo tasks, we use b = 2, retaining data for one extra iteration. In GridWorld, we set b = 1 and
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discard all historic data. To leverage the additional data, we scale the minibatch size for both target
and behavior policy updates by a factor of b. We provide hyperparameters in Appendix F.

Figure 4: Mean return on MuJoCo tasks. 50 seeds

In GridWorld (Fig. 5a), on-policy sampling
achieves a 77% success rate, while PROPS and
ROS reach 100%. In MuJoCo tasks (Fig. 4),
PROPS achieves higher return than both PPO
and PPO-BUFFER throughout training. Fig-
ure 12 in Appendix E.2 further shows that the
performance profile of PROPS almost always
lies above that of PPO and PPO-BUFFER. We
now evaluate whether PROPS reduces sampling
error more than PPO-BUFFER throughout train-
ing. Because PROPS and PPO-BUFFER pro-
duce different target policy sequences, we en-
sure a fair comparison by computing sampling
error for on-policy sampling using target poli-
cies generated by PROPS. As shown in Fig. 5b, PROPS achieves lower sampling error than PPO-
BUFFER in Hopper-v4. We provide ther MuJoCo results in Appendix E.2. In GridWorld, PROPS
and ROS reduce sampling error during the first 300 steps and then match on-policy sampling. Since
the target policy becomes more deterministic over training, sampling error diminishes, reducing the
potential gains from PROPS and ROS. We ablate the clipping coefficient, regularization coefficient,
and buffer size in Appendix E.2.

7 Limitations and Future Work

(a) Success rate. (b) Sampling error.

Figure 5: GridWorld RL. 50 seeds.

PROPS builds on ROS (Zhong et al., 2022), which fo-
cused on theoretical analysis and policy evaluation
in low-dimensional settings, while we study empiri-
cal performance in standard RL benchmarks. A natu-
ral next step is to analyze whether PROPS inherits the
improved convergence rate shown for ROS. While
our results highlight the practical benefits of PROPS,
one limitation is that it increases the probability of under-sampled actions regardless of their impact
on the gradient. For instance, actions with zero advantage do not influence the gradient and need not
be sampled. Future work could prioritize correcting sampling error for (s,a) with large |Aπθ (s,a)|.
A less obvious feature of PROPS is that it can track the distribution of any desired policy, not just the
current policy. Thus, PROPS could be integrated into off-policy algorithms to better match a desired
exploration policy, enabling more targeted exploration without explicit visitation tracking.

8 Conclusion

In this work, we ask whether on-policy policy gradient methods can learn more efficiently without
on-policy sampling. To answer this question, we introduce an adaptive, off-policy sampling method
for on-policy policy gradient RL that collects data such that the empirical distribution of sampled
actions closely matches the expected on-policy data distribution at observed states. Our method,
Proximal Robust On-policy Sampling (PROPS), periodically updates the data collecting behavior
policy to increase the probability of sampling actions that are currently under-sampled with respect
to the on-policy distribution. Furthermore, rather than discarding collected data after every policy
update, PROPS permits more data efficient on-policy learning by using data collection to adjust
the distribution of previously collected data to be approximately on-policy. We replace on-policy
sampling with PROPS to collect data for the popular PPO algorithm and empirically demonstrate that
PROPS produces data that more closely matches the expected on-policy distribution and yields more
data efficient learning compared to on-policy sampling.
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A Core Theoretical Results

In this section, we present the proof of Proposition 1. The proof of this result builds upon Lemma 2
by Zhong et al. (2022), which we first restate below for completeness. First, we state an assumption
made by Zhong et al. (2022) that is used in their lemma.

Assumption 2. ROS uses a step-size of α → ∞ and the behavior policy is parameterized as a
softmax function, i.e., πθ(a | s) ∝ eθs,a , where for each state s and action a, we have a parameter
θs,a. This assumption implies that ROS always takes the most under-sampled action in each state.

Lemma 3. Let s be a state that we visit m times. Under ROS sampling, we have ∀a ∈ A that:

lim
m→∞

πD(a|s) = π(a|s).

We now present the proof of Proposition 1. We use dm, πm, and pm as the empirical state visitation
distribution, empirical policy, and empirical transition probabilities after m state-action pairs have
been taken, respectively. That is, dm(s) is the proportion of the m states that are s, πm(a|s) is the
proportion of the time that action a was observed in state s, and pm(s′|s, a) is the proportion of the
time that the state changed to s′ after action a was taken in state s.

Proposition 4. Assume that data is collected with an adaptive behavior policy that always takes the
most under-sampled action in each state, s, with respect to policy π, i.e, a← argmaxa′(π(a′|s)−
πm(a′|s)). We further assume that S and A are finite. Then we have that the empirical state
visitation distribution, dm, converges to the state distribution of π, dπ , with probability 1:

∀s, lim
m→∞

dm(s) = dπ(s).

Proof. The proof of this theorem builds upon Lemma 2 by Zhong et al. (2022) (restated as Lemma 3
above). Note that this lemmas superficially concern the ROS method whereas we are interested in
data collection by taking the most under-sampled action at each step. However, as stated in the proof
by Zhong et al. (2022), these sampling methods are equivalent under Assumption 2. Thus, we can
immediately adopt these lemmas for this proof.

Under Lemma 3, we have that limm→∞ πm(a|s) = π(a|s) for any state s under this adaptive data
collection procedure. We then have the following ∀s:

lim
m→∞

dm(s)
(a)
= lim

m→∞

∑
s̃

∑
ã

pm(s|s̃, ã)πm(ã|s̃)dm(s̃)

=
∑
s̃

∑
ã

lim
m→∞

pm(s|s̃, ã)πm(ã|s̃)dm(s̃)

=
∑
s̃

∑
ã

lim
m→∞

pm(s|s̃, ã) lim
m→∞

πm(ã|s̃) lim
m→∞

dm(s̃)

(b)
=

∑
s̃

∑
ã

p(s|s̃, ã)π(ã|s̃) lim
m→∞

dm(s̃).

Here, (a) follows from the fact that the empirical frequency of state s can be obtained by considering
all possible transitions that lead to s. The last line, (b), holds with probability 1 by the strong law of
large numbers and Lemma 3.

We now have a system of |S| variables and |S| linear equations. Define variables x(s) :=
limm→∞ dm(s) and let x ∈ R|S| be the vector of these variables. We then have x = Pπx where
Pπ ∈ R|S|×|S| is the transition matrix of the Markov chain induced by running policy π. Assuming
that this Markov chain is irreducible, dπ is the unique solution to this system of equations and hence
limm→∞ dm(s) = dπ(s),∀s.
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B Additional Theoretical Results

In this section, we provide additional theory to describe the relationship between different hyperpa-
rameters in PROPS:

1. The amount of sampling error in previously collected data and the size of behavior policy updates.

2. The amount of historic data retained by an agent and the amount of additional data the behavior
policy must collect to reduce sampling error.

For simplicity, we first focus on a simple bandit setting and then extend to a tabular RL setting.

Suppose we have already collected m state-action pairs and these have been observed with empirical
distribution πm(a). From what distribution should we sample an additional k state-action pairs so
that the empirical distribution over the m+ k samples is equal in expectation to πθ?

Proposition 5. Assume that m actions have been collected by running some policy πθ(a) and
πm(a) is the empirical distribution on this dataset. If we collect an additional k state-action pairs
using the following distribution, and if (m + k)πθ(a) ≥ m · πm(a), then the aggregate empirical
distribution over the m+ k pairs is equal to πθ(a) in expectation:

πb(a) :=
1

Z

[
πθ(a) +

m

k
(πθ(a)− πm(a))

]
where Z =

∑
a∈A

[
πθ(a) +

m
k (πθ(a)− πm(a))

]
is a normalization coefficient.

Proof. Observe that (m + k)πθ(a) is the expected number of times a is sampled under πθ after
m + k steps, m · πm(a) is the number of times each a was sampled thus far, and k · πb(a) is the
expected number of times a is sampled under our behavior policy after k steps. We want to choose
πb(a) such that (m+ k)πθ(a) = m · πm(a) + k · πb(a) in expectation.

(m+ k)πθ(a) = k · πb(a) +m · πm(a)

−k · πb(a) = m · πm(a)− (m+ k)πθ(a)

πb(a) = −
m

k
πm(a) +

(m
k

+ 1
)
πθ(a)

= πθ(a) +
m

k
(πθ(a)− πm(a))

Note that πb(a) will be a valid probability distribution after normalizing only if

πθ(a) +
m

k
(πθ(a)− πm(a)) ≥ 0(m

k
+ 1

)
πθ(a) ≥

m

k
πm(a)

(m+ k)πθ(a) ≥ m · πm(a).

If (m+ k)πθ(a) < m · πm(a), then prior to collecting additional data with our behavior policy, a
already appears in our data more times in our data than it would in expectation after m + k steps
under πθ. In other words, we would need to collect more than k additional samples to achieve zero
sampling error (or discard some previously collected samples).

When sampling error is large, behavior policy updates must also be large. Intuitively, the
difference πθ(a) − πm(a) is the mismatch between the true and empirical visitation distributions,
so adding this term to dπθ

adjusts dπθ
to reduce this mismatch. If πθ(a)−πm(a) < 0, then a is over-

sampled w.r.t πθ, and πb will decrease the probability of sampling a. If πθ(a)−πm(a) > 0, then a is
under-sampled w.r.t πθ, and πb will increase the probability of sampling a. When |πθ(a)− πm(a)|
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is small, the optimal πb(a) requires only a small adjustment from πθ (i.e., a small update to the
behavior policy is sufficient to reduce sampling error). When |πθ(a)− πm(a)| is large, the optimal
πb(a) requires a large adjustment from πθ (i.e., a large to the behavior policy is needed to reduce
sampling error). We can increase (or decrease) the target KL cutoff δPROPS to allow for larger (or
smaller) behavior updates.

When we retain large amounts of historic data, the behavior policy must collect a large amount
of additional data to reduce sampling error in the aggregate distribution. The m

k factor implies
that how much we adjust dπθ

depends on how much data we have already collected (m) and how
much additional data we will collect (k). If the k additional samples to collect represent a small
fraction of the aggregate m+ k samples (i.e. k << m), then m

k is large, and the adjustment to dπθ

is large. This case generally arises when we retain more and more historic data. If the k additional
samples to collect represent a large fraction of the aggregate m+ k samples (i.e. k >> m), then m

k
is small, and the adjustment to dπθ

is small. This case generally arises when we retain little to no
historic data.

The next proposition extends this analysis to the tabular RL setting.

Proposition 6. Assume that m state-action pairs have been collected by running some policy and
dm(s,a) is the empirical distribution on this dataset. If we collect an additional k state-action
pairs using the following distribution, and if (m+ k)dπθ

(s,a) ≥ m · dm(s,a), then the aggregate
empirical distribution over the m+ k pairs is equal to dπθ

(s,a) in expectation:

db(s,a) :=
1

Z

[
dπθ

(s,a) +
m

k
(dπθ

(s,a)− dm(s,a))
]

where Z =
∑

(s,a)∈S×A
[
dπθ

(s,a) + m
k (dπθ

(s,a)− dm(s,a))
]

is a normalization coefficient.

Proof. The proof is identical to the proof of Proposition 5, replacing πθ(a), πm(a), and πb(a) with
dπθ

(s,a), dm(s,a), and db(s,a).

In practice, we cannot sample directly from the visitation distribution db(s,a) in Proposition 6
and instead approximate sampling from this distribution by sampling from its corresponding policy
πb(a|s) = db(s,a)/

∑
(s′,a′)∈S×A db(s

′,a′).
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Figure 6: In this example, π(·|s) = N (0, 1). After several visits to s, all sampled actions (blue)
satisfy a > 0 so that actions a < 0 are under-sampled. Without regularization, PROPS will attempt
to increase the probabilities of under-sampled action in the tail of target policy distribution (green).
The regularization term in the PROPS objective ensures the behavior policy remains close to target
policy.

g(sa,ϕ,θ) > 0 Is the objective clipped? Return value of min Gradient
g(sa,ϕ,θ) ∈ [1− ϵPROPS, 1 + ϵPROPS] No −g(s,a,ϕ,θ) ∇ϕLCLIP

g(s,a,ϕ,θ) > 1 + ϵPROPS No −g(s,a,ϕ,θ) ∇ϕLCLIP

g(s,a,ϕ,θ) < 1− ϵPROPS Yes −(1− ϵPROPS) 0

Table 1: Behavior of PROPS’s clipped surrogate objective (Eq. 4).

C PROPS Implementation Details

In this appendix, we describe two relevant implementation details for the PROPS update (Algo-
rithm 2) and summarize the behavior of PROPS’s clipping mechanism. First, we discuss implemen-
tation details.

1. PROPS update: The PROPS update adapts the behavior policy to reduce sampling error in the
buffer D. When performing this update with a full buffer, we exclude the oldest batch of data
collected by the behavior policy (i.e., the m oldest transitions inD); this data will be evicted from
the buffer before the next behavior policy update and thus does not contribute to sampling error
in D.

2. Behavior policy class: We compute behavior policies from the same policy class used for target
policies. In particular, we consider Gaussian policies which output a mean µ(s) and a variance
σ2(s) and then sample actions a ∼ π(·|s) ≡ N (µ(s), σ2(s)). In principle, the target and
behavior policy classes can be different. However, using the same class for both policies allows
us to easily initialize the behavior policy equal to the target policy at the start of each update.
This initialization is necessary to ensure the PROPS update increases the probability of sampling
actions that are currently under-sampled with respect to the target policy.

We summarize the behavior of PROPS’s clipping mechanism in Table 1. Intuitively, the PROPS
objective is equivalent to the PPO objective (Eq. 2) with A(s,a) = −1,∀(s,a) and incentivizes
the agent to decrease the probability of observed actions by at most a factor of 1 − ϵPROPS. Let
g(s,a,ϕ,θ) =

πϕ(a|s)
πθ(a|s) . When g(s,a,ϕ,θ) < 1− ϵPROPS, this objective is clipped at −(1− ϵPROPS).

The loss gradient ∇ϕLCLIP becomes zero, and the (s,a) pair has no effect on the policy update.
When g(s,a,ϕ,θ) > 1 − ϵPROPS, clipping does not apply, and the gradient ∇ϕLCLIP points in a
direction that decreases the probability of πϕ(a|s).
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D Computing Sampling Error

We claim that PROPS improves the data efficiency of on-policy learning by reducing sampling error
in the agent’s bufferD with respect to the agent’s current (target) policy. To measure sampling error,
we use the KL-divergence DKL(πD||πθ) between the empirical policy πD and the target policy πθ

which is the primary metric Zhong et al. (2022) used to show ROS reduces sampling error:

DKL(πD||πθ) = Es∼D,a∼πD(·|s)

[
log

(
πD(a|s)
πθ(a|s)

)]
. (6)

We compute a parametric estimate of πD by maximizing the log-likelihood of D over the same
policy class used for πθ. More concretely, we let θ′ be the parameters of neural network with the
same architecture as πθ train and then compute:

θMLE = argmax
θ′

∑
(s,a)∈D

log πθ′(a|s) (7)

using stochastic gradient ascent. After computing θMLE, we then estimate sampling error using the
Monte Carlo estimator:

DKL(πD||πθ) ≈
∑

(s,a)∈D

(log πθMLE(a|s)− log πθ(a|s)) . (8)
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Figure 7: Sampling error with a fixed, randomly initialized target policy. Solid curves denote the
mean over 5 seeds. Shaded regions denote 95% confidence belts.

Figure 8: Sampling error ablations with a fixed, expert target policy. Here, “no clipping” refers to
setting ϵPROPS = ∞, and “no regularization” refers to setting λ = 0. Solid curves denote the mean
over 10 seeds, and shaded regions denote 95% bootstrap confidence intervals.

E Additional Experiments

E.1 Correcting Sampling Error for a Fixed Target Policy

In this appendix, we expand upon results presented in our main experiments and provide additional
experiments investigating the degree to which PROPS reduces sampling error with respect to a fixed,
randomly initialized target policy. We additionally include ablation studies investigating the effects
of clipping and regularization.

We tune PROPS and ROS using a hyperparameter sweep. For PROPS, we sweep over learning rates
in {10−3, 10−4} and fix the remaining PROPS hyperparameters: regularization coefficient λ = 0.1,
target KL δPROPS = 0.03, and clipping coefficient ϵPROPS = 0.3. For ROS, we sweep over learning
rates in {10−3, 10−4, 10−5}. We report results for hyperparameters yielding the lowest sampling
error.

In Fig. 7, we see that PROPS achieves lower sampling error than both ROS and on-policy sampling
across all tasks. ROS shows little to no improvement over on-policy sampling, again highlighting the
difficulty of applying ROS to higher dimensional tasks with continuous actions.

Fig. 8 ablates the effects of PROPS’s clipping mechanism and regularization on sampling error reduc-
tion. We ablate clipping by setting ϵPROPS = ∞, and we ablate regularization by setting λ = 0. We
use a fixed expert target policy and use the same tuning procedure described earlier in this appendix.
In all tasks, PROPS achieves higher sampling error without clipping nor regularization than it does
with clipping and regularization, though this method nevertheless outperforms on-policy sampling
in all tasks. Only removing clipping increases sampling error in most setups, and only removing
regularization often increases sampling error for smaller batches of data, e.g., 1024 samples. These
observations indicate that while regularization in is helpful, clipping has a stronger effect on sam-
pling error reduction than regularization when the target policy is fixed.
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Figure 9: Sampling error throughout RL training. Solid curves denote the mean over 5 seeds. Shaded
regions denote 95% confidence belts.

Figure 10: Sampling error throughout RL training without clipping the PROPS objective. Solid
curves denote the mean over 5 seeds. Shaded regions denote 95% confidence belts.

Figure 11: Sampling error throughout RL training without regularizing the PROPS objective. Solid
curves denote the mean over 5 seeds. Shaded regions denote 95% confidence belts.
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Figure 12: Performance profiles over 50 seeds. Higher values correspond to more reliable conver-
gence to high-return policies. Shaded regions denote 95% bootstrap confidence intervals.
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Figure 13: Mean return over 50 seeds of PROPS with and without clipping or regularizing the PROPS
objective. Shaded regions denote 95% bootstrap confidence intervals.

E.2 Correcting Sampling Error During RL Training

In this appendix, we include additional experiments investigating the degree to which PROPS reduces
sampling error during RL training, expanding upon results presented in Section ?? of the main paper.
We include sampling error curves for all six MuJoCo benchmark tasks and additionally provide
ablation studies investigating the effects of clipping and regularization on sampling error reduction
and data efficiency in the RL setting. We ablate clipping by tuningRL agents with ϵPROPS = ∞, and
we ablate regularization by tuning RL agents with λ = 0. Fig. 10 and Fig. 11 show sampling error
curves without clipping and without regularization, respectively. Without clipping, PROPS achieves
larger sampling than on-policy sampling in all tasks except Humanoid. Without regularization,
PROPS achieves larger sampling error in 3 out of 6 tasks. These observations indicate that while
clipping and regularization both help reduce sampling during RL training, clipping has a stronger
effect on sampling error reduction. As shown in Fig. 13 PROPS data efficiency generally decreases
when we remove clipping or regularization.

Lastly, we consider training with larger buffer sizes b in Fig. 14. We find that data efficiency may
decrease with a larger buffer size. Intuitively, the more historic data kept around, the more data that
must be collected to impact the aggregate data distribution.
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Figure 14: Mean return over 50 seeds for PROPS with different buffer sizes. We exclude b = 8
for Humanoid-v4 due to the expense of training and tuning. Shaded regions denote 95% bootstrap
confidence intervals.
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(a) GridWorld (b) Sampling error bias (c) Sampling error variance

Figure 15: (a) GridWorld diagram. The agent starts in the center and receives +1 for reaching the
bottom right (optimal goal), +0.5 for the top left (suboptimal goal), and −0.01 elsewhere. Under
an initial uniform policy, the agent is equally likely to observe both goals, so the expected policy
gradient points toward an optimal policy. However, with sampling error, the empirical policy gradi-
ent can point toward a suboptimal policy that visits the suboptimal goal. (b, c) Sampling error bias
and variance estimates of different sampling methods. Empirically, PROPS is unbiased and lower
variance than on-policy sampling.

Figure 16: Runtimes for PROPS, PPO-BUFFER, and PPO. We report means and standard errors over
3 independent runs.

E.3 Bias and Variance of PROPS

In Fig. 15, we investigate the bias and variance of the empirical state-action visitation distribution
dD(s,a) under PROPS, ROS, and on-policy sampling. We report the bias and variance averaged over
all (s,a) ∈ S ×A computed as follows:

bias =
1

|S × A|
∑

(s,a)∈S×A

(E [dD(s,a)]− dπθ
(s,a)) (9)

variance =
1

|S × A|
∑

(s,a)∈S×A

E
[
(dD(s,a)− dπθ

(s,a))
2
]

(10)

As shown in Fig. 15, the visitation distribution under PROPS and ROS empirically have near zero
bias (note that the vertical axis has scale 10−18) and have lower variance than on-policy sampling.

E.4 Runtime Comparisons

Figure 16 shows runtimes for PROPS, PPO-BUFFER, and PPO averaged over 3 runs. We trained all
agents on a MacBook Air with an M1 CPU and use the same tuned hyperparameters used throughout
the paper. PROPS takes at most twice as long as PPO-BUFFER; intuitively, both PROPS and PPO-
BUFFER learn from the same amount of data but PROPS learns two policies.
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PPO learning rate 10−3, 10−4, linearly annealed to 0 over training
PPO batch size n 1024, 2048, 4096, 8192
PROPS learning rate 10−3, 10−4 (and 10−5 for Swimmer)
PROPS behavior batch size m 256, 512, 1024
PROPS KL cutoff δPROPS 0.03, 0.05, 0.1
PROPS regularizer coefficient λ 0.1, 0.3

Table 2: Hyperparameters used in our hyperparameter sweep for RL training.

Environment Batch Size Learning Rate
Swimmer-v4 4096 10−3

Hopper-v4 2048 10−3

HalfCheetah-v4 1024 10−4

Walker2d-v4 4096 10−4

Ant-v4 1024 10−3

Humanoid-v4 8192 10−4

Table 3: Tuned PPO hyperparameters

We note that PPO-BUFFER is faster than PPO is HalfCheetah-v4 because, with our tuned hyperpa-
rameters, PPO-BUFFER performs fewer target policy updates than PPO. In particular, PPO-BUFFER
is updating its target policy every 4096 steps, whereas PPO is updating the target policy every 1024
steps.

F Hyperparameter Tuning for RL Training

For all RL experiments in Section ?? and Appendix E.2, we tune PROPS, PPO-BUFFER, and PPO sep-
arately using a hyperparameter sweep over parameters listed in Table 2 and fix the hyperparameters
in Table 5 across all experiments. Since we consider a wide range of hyperparameter values, we ran
10 independent training runs for each hyperparameter setting. We then performed 50 independent
training runs for the hyperparameters settings yielding the largest returns at the end of RL train-
ing. We report results for these hyperparameters in the main paper. Fig. 17 shows training curves
obtained from a subset of our hyperparameter sweep.

This tuning procedure requires running a few thousand jobs and requires access to many CPUs to
do efficiently. We ran all experiments on a compute cluster where we could run several thousand
CPU-only jobs in parallel. Our longest jobs (RL training with Humanoid) took at most 12 hours.
Jobs for simpler environments like Swimmer finish in under an hour.

PPO PPO PROPS PROPS PROPS PROPS
Environment Batch Size Learning Rate Batch Size Learning Rate KL Cutoff Regularization λ
Swimmer-v4 2048 10−3 1024 10−5 0.03 0.1
Hopper-v4 2048 10−3 256 10−3 0.05 0.3
HalfCheetah-v4 1024 10−4 512 10−3 0.05 0.3
Walker2d-v4 2048 10−3 256 10−3 0.1 0.3
Ant-v4 2048 10−4 256 10−3 0.03 0.1
Humanoid-v4 8192 10−4 256 10−4 0.1 0.1

Table 4: Tuned hyperparameters used in RL training with PROPS.
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(a) PROPS KL cutoff values δPROPS.

(b) Regularization coefficients λ.

(c) Behavior batch sizes m (i.e. the number of steps between behavior policy updates).

Figure 17: A subset of results obtained from our hyperparameter sweep. Default hyperparameter
values are as follows: PROPS KL cutoff δPROPS = 0.03; regularization coefficient λ = 0.1; behavior
batch size m = 256. Darker colors indicate larger hyperparameter values. Solid and dashed lines
have the PROPS learning rate set to 1 · 10−3 and 1 · 10−4, respectively. Curves denote averages over
10 seeds, and shaded regions denote 95% confidence intervals.
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PPO number of update epochs 10
PROPS number of update epochs 16
Buffer size b 2 target batches (also 3, 4, and 8 in Fig. 14)
PPO minibatch size for PPO update bn/16
PROPS minibatch size for PROPS update bn/16
PPO and PROPS networks Multi-layer perceptron

with hidden layers (64,64)
PPO and PROPS optimizers Adam (Kingma & Ba, 2015)
PPO discount factor γ 0.99
PPO generalized advantage estimation (GAE) 0.95
PPO advantage normalization Yes
PPO loss clip coefficient 0.2
PPO entropy coefficient 0.01
PPO value function coefficient 0.5
PPO and PROPS gradient clipping (max gradient norm) 0.5
PPO KL cut-off 0.03
Evaluation frequency Every 10 target policy updates
Number of evaluation episodes 20

Table 5: Hyperparameters fixed across all experiments. We use the PPO implementation provided
by CleanRL (Huang et al., 2022).


