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ABSTRACT

The rate–distortion–perception function (RDPF; Blau and Michaeli, 2019) has
emerged as a useful tool for thinking about realism and distortion of reconstruc-
tions in lossy compression. Unlike the rate–distortion function, however, it is
unknown whether encoders and decoders exist that achieve the rate suggested by
the RDPF. Building on results by Li and El Gamal (2018), we show that the RDPF
can indeed be achieved using stochastic, variable-length codes. For this class of
codes, we also prove that the RDPF lower-bounds the achievable rate.

1 INTRODUCTION

Lossy compression seeks to represent data with as few bits as possible while also reconstructing the
data as closely as possible. In most applications of compression, however, low bit-rates and low
distortion of the input are not the only desiderata. Another criterion often considered is the realism
or “perceptual quality” of reconstructions. While distortion is typically measured using semimetrics,
realism is more readily expressed in terms of a divergence between the source and reconstruction
ensembles. When this divergence is zero, reconstructions are indistinguishable from real data and
therefore maximally realistic, even though the distortion between source-reconstruction pairs may
be large.

Approximately optimizing divergences using adversarial networks (Goodfellow et al., 2014) has
been key to many approaches in generative modeling. In the context of compression, the joint
optimization of distortions and divergences has shown particular promise for photo-realistic recon-
structions at low bit-rates (e.g., Rippel and Bourdev, 2017; Ledig et al., 2017; Santurkar et al., 2018;
Agustsson et al., 2019). Blau and Michaeli (2018) provided a theoretical motivation for this ap-
proach by showing that in general there is a tension between divergences and distortions, suggesting
that optimizing distortion alone is not sufficient to achieve realism.

Blau and Michaeli (2019) further formalized the idea of a trade-off between different desiderata and
introduced the (information) rate–distortion–perception function (RDPF). This function gives the
hypothetical rate of an optimal code under constraints on distortion and realism. However, unlike
the conventional rate–distortion function (Shannon, 1948; 1959), it is not yet clear whether the rate
suggested by the RDPF is operationally achievable, and under what conditions.

We show that the RDPF indeed describes the limit of compression under suitable constraints on
distortion and realism. In Section 2 we will define the most important concepts needed for our
results in Section 3.

2 PRELIMINARIES

In practice, the data source X is generally modeled as a real-valued (though possibly discrete) ran-
dom variable X : Ω → RM . Our results apply to sources in more abstract spaces, however. Loga-
rithms are to the base 2 and entropy and mutual information are measured in bits.
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Definition 1. For any distortion d, divergence D, and a random variable X, the (information) rate–
distortion–perception function (RDPF) is defined as (Blau and Michaeli, 2019)

R(θd, θD) = inf
PX̂|X

I[X, X̂] s.t. E[d(X, X̂)] ≤ θd and D[PX, PX̂] ≤ θD. (1)

More generally, we can define a rate function for an arbitrary set of constraints on PX,X̂ as follows.

Definition 2. For a source X ∼ PX and a set of real-valued functions Di of joint distributions
PX,X̂, the (information) rate function (IRF) is defined as

R(θ) = inf
PX̂|X

I[X, X̂] s.t. ∀i : Di[PX,X̂] ≤ θi. (2)

The RDPF is a special case of the IRF where we chose

D1[PX,X̂] = E[d(X, X̂)] and D2[PX,X̂] = D[PX, PX̂]. (3)

The generalized constraint in Equation 2 was anticipated by Shannon (1948). We prove our results
for the IRF, from which results on the RDPF immediately follow. The ready unification of distor-
tion and perception suggests that these concepts are less distinct than it might first appear. Note
that rate-distortion theorems with multiple, competing constraints have been considered in other
contexts (Kakavand and El Gamal, 2006; Csiszár and Körner, 1981, Exercise 2.2.14).

So far we have only defined informational rate functions which may or may not have any connection
to the operational compression problem. The hope is, of course, that the value of these functions
represents the rate of the best codes whose reconstructions satisfy the given constraints. That is, we
hope that a code exists which achieves the given rate and, conversely, that no code can do better.

Definition 3. For an arbitrary set X , we define a (stochastic) encoder as any function contained in

F = {f : X × R→ N0}. (4)

Similarly, we define (stochastic) decoders as elements of

G = {g : N0 × R→ X}. (5)

A (stochastic) code is an element of F × G.

Note that a stochastic encoder expects data and an additional source of randomness as input. Without
loss of generality, we can assume that this randomness is represented by a single real number (or an
infinite number of bits). Similar to the encoder, the decoder receives additional random bits as input.
The encoder and decoder may receive the same random bits or they may each have their own source
of randomness, and this has implications for the efficiency of a code (e.g., Cuff, 2008). Throughout
the paper, we assume that the encoder and decoder receive the same bits.

Next we define our notion of achievability. Following the conventions in information theory, we
distinguish between one-shot achievability and (asymptotic) achievability.

Definition 4. For a source X ∼ PX and a given set of constraints, we say that a rate R is one-shot
achievable if an encoder f ∈ F , a decoder g ∈ G, and a random variable U exist with

K = f(X, U) and X̂ = g(K,U) (6)

such that the joint distribution PX,X̂ satisfies the constraints and the conditional entropy of K is not
more than R, H[K | U ] ≤ R.

This definition is justified by the fact that a variable-rate prefix-free entropy code always exists
whose coding cost is within 1 bit of the entropy, H[K | U ]. Note that an entropy coder may use the
variable U to assign bits to K since U is known to both the encoder and the decoder.

In one-shot achievability, the source X is not assumed to have any discernible structure. This is in
contrast to (asymptotic) achievability, for which the source is assumed to be a long i.i.d. sequence.
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Definition 5. For a source X ∼ PX and a given set of constraints, we say that a rate R is (asymp-
totically) achievable if there exists a sequence of encoders fN : XN × R → N0 and decoders
gN : N0 × R→ XN with

KN = f(XN , U) and X̂N = g(KN , U) (7)

such that each joint distribution PXn,X̂n
(n = 1, . . . , N ) satisfies the constraints and

lim
N→∞

H[KN | U ]/N ≤ R. (8)

An important detail is that this definition requires that the reconstruction of each individual data
point satisfies the constraints, not just when averaged over the N points.

3 ACHIEVABILITY OF THE IRF (AND RDPF)

We first prove the one-shot achievability of an upper bound on the IRF.

Theorem 1. Let an arbitrary source X ∼ PX and constraints Di[PX,X̂] ≤ θi be given. If

R > R(θ) + log(R(θ) + 1) + 4, (9)

then R is one-shot achievable.

Proof. This result is a direct consequence of the properties of the Poisson functional representation
introduced by Li and El Gamal (2018). By the definition of the IRF, there exists a PX̂|X such that

∀i : Di[PX,X̂] ≤ θi and I[X, X̂] ≤ R(θ) + ε (10)

for any ε > 0. Using a shared source of randomness, an encoder and decoder are both able to
generate a draw from the following random variables for i ∈ N,

X̂i ∼ PX̂, Si ∼ Exp(1), Ti =
∑i

j=1 Si. (11)

Here, Si are exponentially distributed so that Ti are the epochs of a Poisson process. For an input x,
the encoder selects one of the candidates X̂i as follows,

K = argmin
i∈N

Ti
dPX̂

dPX̂|X( · | x)
(X̂i). (12)

After receiving K, the decoder reconstructs X̂K . That is,

f(x, U) = K and g(K,U) = X̂K , (13)

where U is a random variable representing the shared source of randomness used to construct the
random variables in Equation 11. Li and El Gamal (2018) proved that X̂K ∼ PX̂|X, that is, the code
is communicating a sample from the conditional distribution. It was further shown that

H[K] < I[X, X̂] + log(I[X, X̂] + 1) + 4, (14)

that is, the indices’ entropy is not much more than the mutual information. Hence,

H[K | U ] ≤ H[K] < R(θ) + log(R(θ) + ε) + 4 + ε < R, (15)

if we choose ε small enough.

Next, we show that the IRF is a lower bound on the one-shot achievable rate. This extends a similar
result by Blau and Michaeli (2019, Appendix C) from deterministic to stochastic codes.

Theorem 2. Let an arbitrary source X ∼ PX and constraints Di[PX,X̂] ≤ θi be given. If R <∞
is one-shot achievable, then R ≥ R(θ).
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Proof. Applying properties of mutual information and discrete entropy, we have
H[f(X, U) | U ] ≥ I[X, f(X, U) | U ] (16)

≥ I[X, X̂ | U ] (17)

= I[X, X̂ | U ] + I[X, U ] (18)

= I[X, (X̂, U)] ≥ I[X, X̂] ≥ R(θ).

We are now ready to prove the IRF (and hence RDPF) coding theorem.

Theorem 3. Let an arbitrary source X ∼ PX and constraints Di[PX,X̂] ≤ θi be given. Then
R <∞ is achievable if and only if R ≥ R(θ).

Proof. We first show that if R(θ) <∞, then R(θ) is itself achievable. By the definition of the IRF,
for each N > 0 there exists a (potentially different) PX̂|X such that

I[X, X̂] < R(θ) +
1

N
(19)

and PX,X̂ satisfies the constraints. Following the same approach as in Theorem 1, we can construct
a code communicating a sample from

PX̂N |XN =
∏N

n=1 PX̂|X, (20)

where the right-hand side indicates a product measure, that is, X̂n will only depend on Xn. Each
individual data point and reconstruction (Xn, X̂n) follows the marginal distribution PX,X̂ and thus
satisfies the constraints. We encode the data points jointly into some KN so that its average entropy
is now at most

H[KN ]

N
<

1

N
(I[XN , X̂N ] + log(I[XN , X̂N ] + 1) + 4) (21)

= I[X, X̂] +
1

N
log(NI[X, X̂] + 1) +

4

N
(22)

< R(θ) +
1

N
log(NR(θ) + 2) +

5

N
. (23)

This converges to R(θ) in the limit of large N , proving the former’s achievability. Turning to the
converse, for each N , let RN (θ) denote the IRF of XN with constraints Di[PXn,X̂n

] ≤ θi ∀ i, n. If
R is achievable then there exists a sequence of codes (fN , gN ) satisfying these constraints and

lim
N→∞

H[KN | U ]/N ≤ R, (24)

where KN = fN (XN , U). But by Theorem 2 we must have H[KN | U ] ≥ RN (θ) and so
R ≥ lim

N→∞
H[KN | U ]/N ≥ lim

N→∞
RN (θ)/N. (25)

It thus suffices to show that RN (θ) ≥ NR(θ). But this follows from the chain rule for mutual
information, the data processing theorem, and the independence of Xn from Xm (m 6= n):

I[XN , X̂N ] =
∑N

n=1 I[Xn, X̂
N | X1, . . . ,Xn−1]

=
∑N

n=1 I[Xn, X̂
N | X1, . . . ,Xn−1] +

∑N
n=1 I[Xn, (X1, . . . ,Xn−1)]

=
∑N

n=1 I[Xn, (X̂
N ,X1, . . . ,Xn−1)]

≥
∑N

n=1 I[Xn, X̂n] ≥
∑N

n=1R(θ) = NR(θ).

4 DISCUSSION

By building on the results of Li and El Gamal (2018) we proved a complete coding theorem for
the RDPF (and more generally, any IRF). This clarifies the practical relevance of the RDPF. Note
that our asymptotic formulation in Definition 5 requires the constraints to hold for each n, not just
on average. This stronger constraint is satisfied by the construction of Li and El Gamal (2018)
and eliminated the need for the assumption, used by Blau and Michaeli (2019), that the divergence
measure is convex. On the other hand, unlike Blau and Michaeli (2019), our formulation allowed
for variable-length coding and common randomness between the encoder and decoder. The case of
fixed-rate and/or deterministic codes is also of interest but is left for future research.
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