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Abstract

With the widespread application of Large Lan-
guage Models (LLMs) in the field of Natural
Language Processing (NLP), enhancing their
performance has become a research hotspot.
This paper presents a novel multi-prompt en-
semble decoding approach designed to bolster
the generation quality of LLMs by leverag-
ing the aggregation of outcomes from multiple
prompts. Given a unique input X, we sub-
mit n variations of prompts with X to LLMs
in batch mode to decode and derive probabil-
ity distributions. For each token prediction,
we calculate the ensemble probability by av-
eraging the n probability distributions within
the batch, utilizing this aggregated probabil-
ity to generate the token. This technique is
dubbed Inner-Batch Ensemble. To facilitate
efficient batch inference, we implement a Left-
Padding strategy to maintain uniform input
lengths across the n prompts. Through exten-
sive experimentation on diverse NLP tasks, in-
cluding code generation, text simplification and
machine translation, we demonstrate the effi-
cacy of our method in enhancing LLM per-
formance. The results show substantial im-
provements in pass@k rates, LENS metrics
and BLEU scores over conventional methods.

1 Introduction

Large Language Models (LLMs) (OpenAl, 2023;
Touvron et al., 2023a,b; Bai et al., 2023; Yang et al.,
2024) have demonstrated exceptional capabilities
in understanding and generating natural language
through extensive data pre-training, becoming the
core driving force in the field of Natural Language
Processing (NLP). Prompt technology (Jiang et al.,
2020; Liu et al., 2023; Pitis et al., 2023; Zhao et al.,
2023; Heineman et al., 2024; Wei et al., 2022;
Wang et al., 2023b), as a key to enhancing LLMs’
performance, can strengthen the model’s effects
without altering model parameters, achieving seam-
less integration with downstream tasks. However,

in the practical application of LLMs, the output re-
sults are closely related to the quality of the Prompt,
and a precise and effective Prompt is crucial for im-
proving the model’s response quality. How to use
Prompts more efficiently to fully leverage the po-
tential of LLMs has become a hot issue of common
concern in academia and industry.

Ensemble decoding(Lakshminarayanan et al.,
2017; Ganaie et al., 2022; Zhou et al., 2002) is a
widely employed technique for enhancing the qual-
ity of model-generated outputs. Typically, standard
ensemble decoding refers to the process of com-
bining the outputs of multiple distinct models on
the same input. This approach, often termed model
ensemble, leverages the diversity among models
to reduce uncertainty and improve overall predic-
tive performance. In theory, ensemble decoding
could be applied to large language models (LLMs).
However, LLLMs already demand considerable
memory resources, and implementing ensemble
decoding with multiple LL.Ms presents signifi-
cant challenges in terms of memory usage.

In this paper, we introduce a particularly sim-
ple yet effective method: Multi-Prompt Ensemble
Decoding (M-Ped). This approach constructs n
distinct prompts for a single query, generating n
diverse input samples that are batched together and
submitted to LLMs for inference. During the in-
ference process, we average the prediction proba-
bilities within the batch for each word prediction.
To ensure batched inference is feasible, we specifi-
cally propose the use of left-padding technology to
address the issue of varying prompt lengths within
a batch. Compared to traditional model ensem-
ble methods, our approach shifts the focus of
diversity from using different models to using
different prompts. We have validated the effec-
tiveness of this method across various tasks and
multiple models, including extensive experiments
on multiple test sets for code generation, text sim-
plification and machine translation tasks. The re-
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Figure 1: The overall process of Our Multi-Prompt Ensemble Decoding.

sults demonstrate improvements in pass@¥k scores
for code generation(Chen et al., 2021; Jiang et al.,
2024; Dehaerne et al., 2022), LENS scores for text
simplification tasks(Nakamachi et al., 2020; Mad-
dela et al., 2023) and BLEU scores for machine
translation(Papineni et al., 2002; Vaswani et al.,
2017; Sennrich et al., 2016; Wei et al., 2023; Gu
et al., 2018).

Our approach differs significantly from other
multi-prompt methods, such as self-consistency
(Wang et al., 2023a) and best-of-n(Jinnai et al.,
2025). Specifically, our method operates dur-
ing the inference process, whereas other methods
are applied after inference is completed. More-
over, these alternative methods often require task-
specific evaluation metrics to be integrated into
their post-inference processes. In contrast, our ap-
proach is metric-agnostic and does not rely on
specific evaluation metrics. These other methods
can be collectively categorized under Minimum
Bayes Risk (MBR) (Bertsch et al., 2023) decod-
ing. We provide an ablation study on MBR in the
Appendix.

2 Multi-Prompt Ensemble Decoding

The overall process of our proposed multi-prompt
ensemble decoding is depicted in Figure 1. For
a given distinct input X = {z1,x9, ..., z;} with
a prompt P, we first generate a list of prompts
{P1, Py, ..., P, }. Then, we submit these n prompts
and the input X to LLMs in batch for decoding to
obtain probability distributions. We average the n
probability distributions generated at the j-th posi-
tion prediction within the batch to get the ensemble

probability, and ultimately determine the output
Y’s y;. To ensure efficient batched inference is
possible, we employ a Left-Padding strategy to
ensure the lengths of the n inputs are consistent.

2.1 Inner-Batch Ensemble

Most LLMs adopt a Decoder-only architecture
and utilize an autoregressive decoding strategy,
generating output tokens one by one. Given the
source sentence X = {x1, 2, ..., 2}, LLMs fac-
tor the distribution over possible output sentence
Y = {y1,¥2..., y;} into a chain of conditional prob-
abilities, satisfying the following formula:

J
P(Y|X) = [ [ P(wilyosi-1, X) 1)
=1

For the standard Model Ensemble, during the
prediction of y;, we average the probability distri-
butions provided by n models. We define these
n models as {01, 0o, ..., 0, }, and the formula is as
follows:

n

1
P(yslyo;j-1,X) = — > P(yslyo1, X, P;6;)

i=0

2)
which P is a distinct prompt. This method lever-
ages the diversity among models, aiming to reduce
uncertainty and improve overall predictive perfor-

mance.
For our method, we shift the focus of diversity
from n models to n prompts, and the formula is as



follows:

n

1
P(y;lyo -1, X) = ~ > P(y;lyo;-1, X, P 0)
=0
3)

which { P}, Py, ...P,} is alist of prompts having
the same meaning with P. As shown in right side
of Figure 1, inputs constructed by these n prompts
and X are submitted to LLMs in batches for de-
coding. We average the predicted probability distri-
butions within the batch at each step of prediction,
a process we term Inner-Batch Ensemble. Here,
we use the most straightforward uniform average
method. Of course, in the future, strategies like
weighted average could also be considered. This
approach mitigates biases potentially introduced
by any single prompt and enhances the model’s
robustness against varying inputs.

2.2 Efficiency decoding using Left-Padding

In the decoding process of LLMs, the inconsis-
tency in prompt lengths poses challenges for batch
processing. To address this issue, we employ
Left-Padding technology to preprocess the input
prompts, ensuring uniformity in length to accom-
modate the model’s batch processing requirements.
In practice, we pad shorter prompts with a specific
token pad until they match the length of the longest
prompt. This padding token is a special token with
no semantic meaning, used solely for padding. This
padding does not interfere with the model’s under-
standing and processing, as the model is trained to
recognize and ignore these special padding charac-
ters.

Padding is a common technique for handling
sequences of varying lengths during batch process-
ing, typically used in the training phase with Right-
Padding. However, Right-Padding can disrupt the
direct connection between input and output for
shorter prompts, leading to decoding anomalies.
Meanwhile, Left-Padding in LLMs may risk de-
grading the quality of padded requests. In our ap-
proach, since we average the probabilities of dif-
ferent requests within a batch, the potential risk
of low-quality outputs from padded requests can
be safely ignored. By doing so, we can standard-
ize prompts of varying lengths, enabling the model
to process them in a single pass and fully leverage
parallel computing resources.

3 Main Experiments

We validated our approach across three tasks: code
generation, text simplification, and machine trans-
lation. This experimental setup aligns with prior
work on multi-prompts (Heineman et al., 2024) to
ensure consistency. Additionally, in the ablation
study in Appendix A, we analyzed the integration
of this prior work and observed further improve-
ments in performance. Our primary experiments
are based on two prompts. In the ablation study,
we investigate the effects of using a larger number
of prompts. For detailed settings regarding Multi-
Prompt, please refer to Appendix B.1.

3.1 Application to Code Generation Task

In the code generation task, we utilize the widely-
used benchmark dataset HumanEval', evaluating
performance using the Pass@k (Chen et al., 2021)
metric. For our experiments, we employ the pop-
ular CodeLlama-7B-Python-hf? model. Addition-
ally, in Appendix A.2, we conduct further exper-
iments comparing models of different sizes, such
as the 13B3 model. Since the dataset provides a
prompt for each problem, we refer to this origi-
nal prompt as p;. We also construct an alternative
prompt p2 by adding p; a simple prefix, such as
"""This is a good code.. For detailed examples of
these prompts, please refer to Appendix B.2.

pass@k k=1 k=5 k=10
P1 32.11% 58.13% 67.17%
D2 30.74% 58.03% 67.26%

" OQurM-Ped  33.12% 59.07% 68.11%

Table 1: Results for Code Generation Task.

The experimental outcomes demonstrate that our
technical solution markedly enhances the pass rate
across various settings of k. As shown is Table 1,
regardless of whether k is set to 1, 5, or 10, our so-
lution consistently boosts the pass@k pass rate by
1% point. This improvement not only underscores
the effectiveness of our technical solution in code
generation tasks but also highlights its robustness
across different evaluation metrics, ensuring the de-
livery of higher quality code generation outcomes.

"https://github.com/openai/human-eval

Zhttps://huggingface.co/codellama/CodeLlama-7b-
Python-hf

3https://huggingface.co/codellama/CodeLlama-13b-
Python-hf



d-BLEU en—de en—fr en—zh en—ja de—en fr—en zh—en ja—en

D1 2740  37.59 17.37 9.35 32.89 4138 2439 6.72

D2 27.05 37.14 17.23 9.61 32.74  41.60  24.39 6.75
Ours 27.88 38.16 18.88 1144 33.11 4225 2485 837

Table 2: Results for Machine Translation Task.

3.2 Application to Text Simplification Task

In the text simplification task, we conducted exper-
iments on the challenging SimpEval_2022* testset,
using LENS (Maddela et al., 2023) as the evalua-
tion metric. LENS supports two evaluation condi-
tions: with reference (w/ ref) and without reference
(w/o ref). We used the Llama-3.1-8B-Instruct’
model for our experiments. We randomly selected
two prompts from Heineman et al. (2024) as p; and
p2. Test samples can been see in Appendix B.3.

LENS w/ ref w/o ref

n 75.08 81.54

Do 74.76 81.63
Ours 7718  82.08

Table 3: Results for Text Simplification Task.

As shown in Table 3, whether under with-
reference or without-reference evaluation condi-
tions, our solution can steadily enhance the qual-
ity of text simplification. Notably, under with-
reference evaluation conditions, our method out-
performs the best results obtained using only p;
or pp by nearly 1.5 points. This result confirms
the effectiveness and applicability of our techni-
cal solution in text simplification tasks, delivering
higher quality text simplification results under di-
verse evaluation criteria.

3.3 Application to Machine Translation Task

In the field of machine translation, we tackle the
challenging task of document-level translation. We
use the IWSLT 2017° dataset as our test set and
conduct experiments on eight language pairs: En-
glish (En) <+ Chinese (Zh), German (De), French
(Fr), and Japanese (Ja). The model we employ
is Llama-3.1-8B-Instruct’, which excels in multi-
lingual translation. We evaluate our results using

“https://github.com/Yao-Dou/LENS/blob/master/data-
/simpeval_2022.csv

>https://huggingface.co/meta-llama/Llama-3.1-8B-
Instruct

®https://huggingface.co/datasets/TWSLT/iwsIt2017

"https://huggingface.co/meta-llama/Llama-3.1-8B-
Instruct

the d-BLEU (document-level BLEU) metric (Pap-
ineni et al., 2002). Although other metrics such as
BertScore (Zhang et al., 2020) and COMET (Rei
et al., 2020) are commonly used in machine trans-
lation, they are typically designed for sentence-
level evaluation. For our experiments, we con-
struct a translation prompt and randomly select two
prompts as p; and po.

As shown in Table 2, our experimental results
show that in the English to Chinese and to Japanese
directions, compared to the best results with a sin-
gle prompt, our method can approximately increase
by 1.5 points on the d-BLEU scale; there is also an
improvement of about 0.5 points in other directions.
We speculate that our use of LLMs, LLlama-3.1-8B-
Instruct, which was trained on a vast amount of
English data, results in more stable translations
into English, thus limiting the improvement of our
method. However, in other language directions, the
improvement is more pronounced.

4 Conclusions

This study set out to address the challenge of en-
hancing the performance of LLMs in NLP tasks
through the introduction of a multi-prompt ensem-
ble decoding approach. Our method, termed Inner-
Batch Ensemble, leverages the diversity of multi-
ple prompts to aggregate their outcomes, thereby
improving the generation quality of LLMs. The im-
plementation of a Left-Padding strategy ensured ef-
ficient batch inference, allowing for uniform input
lengths across various prompts. Our extensive ex-
periments across a range of NLP tasks—spanning
code generation, text simplification and machine
translation—demonstrated the effectiveness of our
Inner-Batch Ensemble method. The results were
particularly compelling, with significant improve-
ments observed in pass@Fk rates, LENS metrics and
BLEU scores when compared to standard methods.
The consistent enhancements across different tasks
and metrics underscore the robustness and versatil-
ity of our approach.



5 Limitations

This study acknowledges several limitations.
Firstly, our method is closely tied to the quality of
the prompts used. A poorly constructed prompt
may render our approach ineffective, as high-
quality prompts are essential for guiding LLMs
to produce accurate outputs. Secondly, due to con-
straints in time and computational resources, the ef-
fectiveness of our method across a broader range of
tasks requires further validation. Additionally, we
did not experiment with the state-of-the-art GPT-4
series interfaces, as they are proprietary and do not
support embedding or modification of their decod-
ing strategies, limiting our ability to test and refine
our method on cutting-edge models.
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A Ablation Study

A.1 Effectiveness Analysis under Various

Decoding Strategies
pass@Fk Top-p Top-k
D1 67.17% 66.94%
P2 67.26%__ _ 67.11% __
Ours 68.11% 67.85%*

Table 4: Study under Various Decoding Strategies for
Code Generation Task where pass@k=10.

In this section, we conducted an in-depth anal-
ysis of the effects of multi-prompt ensemble de-
coding methods under various decoding strategies,
including Top-p (Finlayson et al., 2024), Top-k
(Xie et al., 2020), and Beam Search. Among them,
Top-p is the decoding method we used for various
tasks in Section 3. We expanded this experiment
based on our previous work in code generation and
machine translation tasks.

For code generation tasks, due to the character-
istics of the task evaluation, we could only adopt
sampling search decoding strategies (Top-p or Top-
k). As shown in Table 4, regardless of whether
based on Top-k or Top-p, our method consistently
improved pass@Fk. This conclusion is consistent
with Section 3.1.

d-BLEU Top-p Top-k Beam
En—De
R 2740 2692 27.64
Do 27.05 2722 27.81
Ours 2788 2752 2781
En—Zh
R 1737 1756 1834
Do 1723 16,79 18.42
Ours 1888 18.87 1851

Table 5: Study under Various Decoding Strategies for
Machine Translation Task

For machine translation tasks, we conducted ex-
periments in the English to German (en—de) and
English to Chinese (en—zh) directions, as shown
in Table 5. We found that with Top-k and Top-p
decoding methods, our approach showed improve-
ments compared to single prompt. With Beam
Search decoding, our method’s results are close
to the best results of p; or po, and higher than the
average of these two.

A.2 Study across Varying LLM Sizes

In this section, we investigate the effectiveness of
our method across different sizes of LLMs. Our
main experiments in Section 3 were conducted on
models of size 7-8B. Building on our previous code
generation tasks, we extended our experiments to
a 13B model, using CodeLlama—13B—Pyth0n—hf8.
We ensured that all experimental settings remained
consistent with Section 3.1, except for the model
itself.

pass@k k=1 k=5 k=10

D1 39.6% 67.53% 78.02%

D2 3948% 67.6% 77.88%
Ours 41.52% 69.54% 79.80%

Table 6: Results for Code Generation Task using
CodeLlama-13B-Python-hf.

As shown in Table 6, larger models demonstrate
superior code generation capabilities, with signifi-
cant improvements in the pass@k metric for k=1,
5 and 10. Our method also shows consistent im-
provements on the 13B model, achieving similar
enhancements as on the 7B model. Moreover, on
the 13B model, the improvement is more substan-
tial, with pass@10 increasing by nearly 2 points;
whereas the pass@ 10 on the 7B model (see Table
1) only improved by about 1 point. The experimen-
tal results confirm the effectiveness of our method
across various sizes of LLMs.

A.3 Study on the Relationship between
Prompt Count » and Output Quality

In this section, we investigate the relationship be-
tween the number of prompts and the quality of
results. Building on our previous experiments on
code generation and text simplification tasks, we
conducted extended tests with varying numbers of
prompts. The settings for the extended prompts are

detailed in Appendix D.2.
n 1 2 3 4
e 67T1T% - .
Ours - 68.11% 68.15% 67.85%

Table 7: Pass@ 10 rate under different Prompt Count n
for Code Generation Task.

As shown in Tables 7 and 8, the experimental re-
sults indicate that increasing the number of prompts

8https://huggingface.co/codellama/CodeLlama-13b-
Python-hf



77.18 77.08 76.88

Table 8: LENS w/ ref under different Prompt Count n
for Text Simplification Task.

can enhance the quality of generated output for
both code generation and text simplification tasks.
However, we observed that when the number of
prompts increased from 2 to 3, the improvement
in result quality began to plateau. This trend sug-
gests that 2-3 prompts are essentially sufficient to
achieve optimal results, and beyond this range, ad-
ditional prompts have a limited effect on enhancing
result quality. Therefore, in our previous baseline
experiments in Section 3, we opted for two prompts
as the standard configuration.

A.4 Exploration of Multilingual Prompts
Effects

In this section, we explore the effectiveness of
our method under Multilingual Prompts. Build-
ing on our previous experiments in machine trans-
lation tasks, we extended this experiment to the
Chinese to English (zh—en) and English to Chi-
nese (en—zh) directions. We utilized the Qwen2.5-
7B-Instruct’ model, which provides better support
for instructions in both Chinese and English. For
one of the prompts, p;, we maintained consistency
with Section 3.3, setting it as "Translate the fol-
lowing paragraph from source language to target
language, ensuring that no part of the sentence is
omitted." For the other prompt, p, we set it as
the Chinese specification " | [l 1X — Bz M (R
TR VEE A B AR IR, BRORBCE AT B
o "

d-BLEU En—Zh Zh—En
pl 216  23.89
P 2083 24.07

Ours 2345 2453

Table 9: Study on Multilingual Prompts using Qwen2.5-
7B-Instruct for Machine Translation Task.

As shown in Table 9, under the Multilingual
Prompts setup, our method shows improvements
compared to using a single prompt.

*https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

A.5 Effect of Combination with MBR

Heineman et al. (2024) proposed a multi-prompt
decoding approach that improves Minimum Bayes
Risk (MBR) decoding by decoding multiple can-
didate generations from a prompt library during
inference. This method uses a trained value met-
ric to select the final output, demonstrating that
multi-prompt can improve MBR performance in a
range of conditional generation tasks by estimat-
ing a more diverse and higher-quality candidate
space. The core of this paper lies in the MBR
strategy, which generates multiple candidate re-
sults during inference and selects the final outcome
using specific metrics. They construct a sufficiently
large and diverse set of candidates through multi-
prompting, which can be seen as an ensemble in the
result space. However our method is an ensemble
during the inference process.

We validate the effectiveness of combining our
multi-prompt ensemble decoding strategy with
MBR in text simplification tasks. We sampled
and generated 50 candidate results for both sim-
ple prompts p; and p2, then used MBR to select
the optimal outcome. For our multi-prompt en-
semble decoding, we also sampled and generated
50 candidate results and chose the best one using
MBR.

LENS Original MBR

D1 75.08  77.04

D2 7476 76.87
Ours 7718 7172

Table 10: LENS w/ reference results compared between
Original and MBR for Text Simplification Task.

As shown in Table 10, the MBR strategy is a
universal approach that significantly improves re-
sults under various conditions. When combined
with our multi-prompt ensemble decoding strategy,
it still manages to enhance the results by more than
0.5 points.



B Prompts Design
B.1 All Prompts

[p1]
C### Thisisagoodcode
Ltod oo
### This is a piece of code written by an expert that is very ingenious
C D1 ]
" ### Author: a coder expert
[p1]
" ### The code is of high quality
d oo
### The code is robust and reliable
[p1]
" ### This is a solid piece of code.
Ltod oo
### The code performs well and is easy to read.
[p1]

Table 11: All prompts for code generation task

Please simplify the following sentence so that it is easy to understand by people with disabilities or
those who are unfamiliar with English. Try to use shorter words, fewer clauses, and a simpler structure.

Create a simpler version of the sentence below so that it can be better understood by non-English
speakers or individuals with disabilities.

Rewrite this sentence in a simple and easy to understand way. Make sure to retain the meaning and
ideas of the original sentence while using shorter words and sentences.

Express this sentence in simpler terms, keeping its meaning and ideas intact, and use shorter words and
sentences.

Turn this sentence into an easier version. Make sure it’s clear for people who don’t speak English well
or have disabilities.

Simplify the sentence below so it’s easy for everyone to understand. Use short words and a simple
structure.

Table 12: All prompts for text simplification task

10



You are a great translation assistant! Translate the following paragraph from {source language} to
{target language}, ensuring that no part of the sentence is omitted.

You are a helpful assistant! You’re a very professional translator. Please help me translate the following
paragraph from {source language} to {target language}.

You’re a fantastic translator! Could you translate this paragraph from source language to target
language?

You're really good at what you do! Please help translate this paragraph from source language to target
language.

You’re a top-notch translation assistant! Please translate this paragraph from source language to target
language.

You're incredibly skilled at translating! Can you help me with this paragraph from source language to
fargetlanguage? .

You’re a wonderful translation assistant! Please translate this paragraph from source language to target
language.

Table 13: All prompts for machine translation task
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B.2 Prompts for Code Generation Task

For Code Generation Task, since the dataset provides a prompt for each problem, we define this original
prompt as p;. For prompt p2, we construct a simple prefix based on p;. Examples of this prompts used in
Section 3.1 are as following:

def specialFilter(nums):

"""Write a function that takes an array of numbers as input and returns the number of elements in
the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9).

For example:

specialFilter([15, -73, 14, -15]) => 1

specialFilter([33, -2, -3, 45, 21, 109]) => 2

nmn

""" This is a good code.
def specialFilter(nums):

"""Write a function that takes an array of numbers as input and returns the number of elements in
the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9).

For example:

specialFilter([15, -73, 14, -15]) => 1

specialFilter([33, -2, -3, 45, 21, 109]) => 2

nmn

Table 14: Prompts of ID 146 for Code Generation Task

from typing import List, Tuple

def rolling_max(numbers: List[int]) -> List[int]:
""" From a given list of integers, generate a list of rolling maximum element found until given
moment in the sequence.
rolling_max([1, 2, 3, 2, 3, 4, 2])
[1,2,3,3,3,4,4]

nmn

""" This is a good code.
from typing import List, Tuple

def rolling_max(numbers: List[int]) -> List[int]:
""" From a given list of integers, generate a list of rolling maximum element found until given
moment in the sequence.
rolling_max([1, 2, 3, 2, 3, 4, 2])
[1,2,3,3,3,4,4]

nnn

Table 15: Prompts of ID 9 for Code Generation Task
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B.3 Prompts for Text Simplification Task

The designed prompts for Text Simplification used in Section 3.2 are as following:

User Prompt:

Please simplify the following sentence so that it is easy to understand by people with disabilities or
those who are unfamiliar with English. Try to use shorter words, fewer clauses, and a simpler structure.
Original: {input text}

User Prompt:

Create a simpler version of the sentence below so that it can be better understood by non-English
speakers or individuals with disabilities.

Original: {input text}

Table 16: Designed Prompts for Text Simplification Task

13



B.4 Prompts for Machine Translation Task

The designed prompts for Machine Translation Task used in Section 3.3 are as following:

System Prompt:
You are a great translation assistant!

User Prompt:

Translate the following paragraph from {source language} to {target language}, ensuring that no part
of the sentence is omitted.

{source language}: {source text}

System Prompt:
You are a helpful assistant!

User Prompt:

You’re a very professional translator. Please help me translate the following paragraph from {source
language} to {target language}.

{source language}: {source text}

Table 17: Designed Prompts for Machine Translation Task.
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C Detailed Main Experimental Results
C.1 Detailed Results for Code Generation Task

The specific outcomes for various seed settings in the Code Generation Task, as discussed in Section 3.1,
are presented below in Table 18:

pass@k =1 k=5 k=10

0 3041% 56.78% 67.67%
1 31.94% 58.73% 66.68%
2 32.32% 58.03% 67.92%
3 39.24% 59.19% 66.39%
4 30.44% 59.17% 67.42%
5 392% 58.97% 66.32%
6 28.02% 57.13% 67.72%
7 30.71% 57.81% 67.53%
8 2842% 57.63% 67.76%
9 30.37% 57.88% 66.33%

0

1 32.12% 58.73% 67.13%
2 3231% 57.62% 67.88%
3 33.39% 5897% 67.41%
4 28.05% 56.39%  67%
5 331% 579% 66.92%
6 30.1% 58.58% 67.711%
7 2795% 58.47% 66.69%
8 30.35% 58.67% 67.16%
9 29.96% 563% 67.35%

0 32.66% 589%  67.2%
1 371% 58.86% 69.12%
2 37.06% 57.89% 67.68%
3 3297% 60.05% 67.76%
4 31.8% 589% 67.27%
5 33.03% 59.21% 68.5%
6 32.16% 59.19% 68.05%
7 33.26% 57.93% 69.27%
8 30.59% 59.37% 67.62%
9 30.57% 60.41% 68.62%

Table 18: Detailed Results for Code Generation Task.
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C.2 Detailed Results for Text Simplification Task

The specific outcomes for various seed settings in the Text Simplification Task, as discussed in Section
3.2, are presented below in Table 19:

LENS w/ ref w/o ref
4!

0 7532 8076

1 75.93 82.04

2 75.65 82.58

3 74.47 81.02

4 75.71 82.2

5 74.43 81.4

6 75.37 82.36

7 75.36 80.26

8 74.59 82.5

9 73.98 80.27
AVG 75.08 8154

p2

0 7454 8179

1 75.81 80.62

2 72.83 82.44

3 74.48 81.61

4 73.31 82.36

5 75.68 80.91

6 74.92 81.65

7 75.35 81.23

8 74.63 81.7

9 76.05 81.99
AVG 7476  81.63

Ours

0 7671 8221

1 76.03 81.88

2 77.26 81.68

3 77.22 81.98

4 77.38 82.36

5 78.69 82.61

6 78.02 82.12

7 76.17 81.63

8 77.96 82.64

9 76.32 81.69
AVG 7718 8208

Table 19: Results for Text Simplification Task.
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C.3 Detailed Results for Machine Translation Task

The specific outcomes for various seed settings in the Machine Translation Task, as discussed in Section
3.3, are presented below in Table 20:

d-BLEU en—de en—fr en—zh en—ja de—en fr—en zh—en ja—en

Table 20: Detailed results for Machine Translation Task.
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D Appendix for Study The specific outcomes for various seed settings
in the Code Generation Task under Top-k decoding

D.1 Detailed Results for Study under Various strategy, as discussed in Section A.1, are presented

Decoding Strategies below in Table 22:

The specific outcomes for various seed settings

in the Machine Translation Task under Top-k de- pass-k k=10

coding strategy, as discussed in Section A.1,are b

presented below in Table 21: 0 66.99%

1 66.31%
d-BLEU en—de en—zh 2 67.57%
P1 3 66.25%

0o 2588 2143 4 67.25%
1 27.92 15.99 5 65.83%
2 26.15 15.62 6 67.66%
3 26.99 20.85 7 67.84%
4 26.03 16.34 8 67.71%
5 27.73 14.90 9 65.99%
6 28.04  16.12 CAVG 66.94%
7 26.80 15.73 Do
8 26.71 22.51 0 6691%
9 26.90 16.15 1 66.75%

“AVG 2692 1756 2 67.5%

D2 3 67.34%

I 2879 1770 4 66.83%
1 26.60 16.99 5 66.62%
2 28.26 16.55 6 67.82%
3 27.28 15.37 7 66.43%
4 26.77 16.67 8 67.21%
5 27.82 15.20 9 67.7%

6 27.16  14.88 CAVG 67.11%
7 25.64 16.15 Ours
8 27.56 15.51 0 67.44%
9 26.36 21.94 1 67.3%
“AVG 2722 1670 2 67.32%
Ours 3 67.16%

I 2860 1879 4 67.75%
1 28.24 18.57 5 69.05%
2 25.54 17.61 6 68.57%
3 27.49 19.43 7 67.85%
4 25.92 16.40 8 67.6%

5 26.75 19.76 9 68.46%
6 28.66  17.57 CAVG 67.85%
7 27.93 17.10

8 28.58 2224 Table 22: Detailed results for Code Generation Task
9 27 46 21.20 under Top-k decoding strategy.

Table 21: Detailed results for Machine Translation Task
under Top-k decoding strategy.
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D.2 Additional Prompts for Study on Prompt Count n

Additional Prompts for Study on Prompt Count n used in Section A.3 are as following in Table 23 and
Table 24:

""" This is a piece of code written by an expert that is very ingenious.
def specialFilter(nums):

"""Write a function that takes an array of numbers as input and returns the number of elements in
the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9).

For example:

specialFilter([15, -73, 14, -15]) => 1

specialFilter([33, -2, -3, 45, 21, 109]) => 2

nn

""" Author: a coder expert
def specialFilter(nums):

"""Write a function that takes an array of numbers as input and returns the number of elements in
the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9).

For example:

specialFilter([15, -73, 14, -15]) => 1

specialFilter([33, -2, -3, 45, 21, 109]) => 2

nmn

Table 23: Additional Prompts of ID 146 for Code Generation Task

User Prompt:

Rewrite this sentence in a simple and easy to understand way. Make sure to retain the meaning and
ideas of the original sentence while using shorter words and sentences.

Original: {input text}

User Prompt:

Express this sentence in simpler terms, keeping its meaning and ideas intact, and use shorter words and
sentences.

Original: {input text}

Table 24: Additional Prompts for Text Simplification Task
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