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Abstract

With the widespread application of Large Lan-001
guage Models (LLMs) in the field of Natural002
Language Processing (NLP), enhancing their003
performance has become a research hotspot.004
This paper presents a novel multi-prompt en-005
semble decoding approach designed to bolster006
the generation quality of LLMs by leverag-007
ing the aggregation of outcomes from multiple008
prompts. Given a unique input X , we sub-009
mit n variations of prompts with X to LLMs010
in batch mode to decode and derive probabil-011
ity distributions. For each token prediction,012
we calculate the ensemble probability by av-013
eraging the n probability distributions within014
the batch, utilizing this aggregated probabil-015
ity to generate the token. This technique is016
dubbed Inner-Batch Ensemble. To facilitate017
efficient batch inference, we implement a Left-018
Padding strategy to maintain uniform input019
lengths across the n prompts. Through exten-020
sive experimentation on diverse NLP tasks, in-021
cluding code generation, text simplification and022
machine translation, we demonstrate the effi-023
cacy of our method in enhancing LLM per-024
formance. The results show substantial im-025
provements in pass@k rates, LENS metrics026
and BLEU scores over conventional methods.027

1 Introduction028

Large Language Models (LLMs) (OpenAI, 2023;029

Touvron et al., 2023a,b; Bai et al., 2023; Yang et al.,030

2024) have demonstrated exceptional capabilities031

in understanding and generating natural language032

through extensive data pre-training, becoming the033

core driving force in the field of Natural Language034

Processing (NLP). Prompt technology (Jiang et al.,035

2020; Liu et al., 2023; Pitis et al., 2023; Zhao et al.,036

2023; Heineman et al., 2024; Wei et al., 2022;037

Wang et al., 2023b), as a key to enhancing LLMs’038

performance, can strengthen the model’s effects039

without altering model parameters, achieving seam-040

less integration with downstream tasks. However,041

in the practical application of LLMs, the output re- 042

sults are closely related to the quality of the Prompt, 043

and a precise and effective Prompt is crucial for im- 044

proving the model’s response quality. How to use 045

Prompts more efficiently to fully leverage the po- 046

tential of LLMs has become a hot issue of common 047

concern in academia and industry. 048

Ensemble decoding(Lakshminarayanan et al., 049

2017; Ganaie et al., 2022; Zhou et al., 2002) is a 050

widely employed technique for enhancing the qual- 051

ity of model-generated outputs. Typically, standard 052

ensemble decoding refers to the process of com- 053

bining the outputs of multiple distinct models on 054

the same input. This approach, often termed model 055

ensemble, leverages the diversity among models 056

to reduce uncertainty and improve overall predic- 057

tive performance. In theory, ensemble decoding 058

could be applied to large language models (LLMs). 059

However, LLMs already demand considerable 060

memory resources, and implementing ensemble 061

decoding with multiple LLMs presents signifi- 062

cant challenges in terms of memory usage. 063

In this paper, we introduce a particularly sim- 064

ple yet effective method: Multi-Prompt Ensemble 065

Decoding (M-Ped). This approach constructs n 066

distinct prompts for a single query, generating n 067

diverse input samples that are batched together and 068

submitted to LLMs for inference. During the in- 069

ference process, we average the prediction proba- 070

bilities within the batch for each word prediction. 071

To ensure batched inference is feasible, we specifi- 072

cally propose the use of left-padding technology to 073

address the issue of varying prompt lengths within 074

a batch. Compared to traditional model ensem- 075

ble methods, our approach shifts the focus of 076

diversity from using different models to using 077

different prompts. We have validated the effec- 078

tiveness of this method across various tasks and 079

multiple models, including extensive experiments 080

on multiple test sets for code generation, text sim- 081

plification and machine translation tasks. The re- 082
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Figure 1: The overall process of Our Multi-Prompt Ensemble Decoding.

sults demonstrate improvements in pass@k scores083

for code generation(Chen et al., 2021; Jiang et al.,084

2024; Dehaerne et al., 2022), LENS scores for text085

simplification tasks(Nakamachi et al., 2020; Mad-086

dela et al., 2023) and BLEU scores for machine087

translation(Papineni et al., 2002; Vaswani et al.,088

2017; Sennrich et al., 2016; Wei et al., 2023; Gu089

et al., 2018).090

Our approach differs significantly from other091

multi-prompt methods, such as self-consistency092

(Wang et al., 2023a) and best-of-n(Jinnai et al.,093

2025). Specifically, our method operates dur-094

ing the inference process, whereas other methods095

are applied after inference is completed. More-096

over, these alternative methods often require task-097

specific evaluation metrics to be integrated into098

their post-inference processes. In contrast, our ap-099

proach is metric-agnostic and does not rely on100

specific evaluation metrics. These other methods101

can be collectively categorized under Minimum102

Bayes Risk (MBR) (Bertsch et al., 2023) decod-103

ing. We provide an ablation study on MBR in the104

Appendix.105

2 Multi-Prompt Ensemble Decoding106

The overall process of our proposed multi-prompt107

ensemble decoding is depicted in Figure 1. For108

a given distinct input X = {x1, x2, ..., xk} with109

a prompt P , we first generate a list of prompts110

{P1, P2, ..., Pn}. Then, we submit these n prompts111

and the input X to LLMs in batch for decoding to112

obtain probability distributions. We average the n113

probability distributions generated at the j-th posi-114

tion prediction within the batch to get the ensemble115

probability, and ultimately determine the output 116

Y ’s yj . To ensure efficient batched inference is 117

possible, we employ a Left-Padding strategy to 118

ensure the lengths of the n inputs are consistent. 119

2.1 Inner-Batch Ensemble 120

Most LLMs adopt a Decoder-only architecture 121

and utilize an autoregressive decoding strategy, 122

generating output tokens one by one. Given the 123

source sentence X = {x1, x2, ..., xk}, LLMs fac- 124

tor the distribution over possible output sentence 125

Y = {y1, y2..., yj} into a chain of conditional prob- 126

abilities, satisfying the following formula: 127

P(Y |X) =

j∏
i=1

P(yi|y0:i−1, X) (1) 128

For the standard Model Ensemble, during the 129

prediction of yj , we average the probability distri- 130

butions provided by n models. We define these 131

n models as {θ1, θ2, ..., θn}, and the formula is as 132

follows: 133

P(yj |y0:j−1, X) =
1

n

n∑
i=0

P(yj |y0:j−1, X, P ; θi)

(2) 134

which P is a distinct prompt. This method lever- 135

ages the diversity among models, aiming to reduce 136

uncertainty and improve overall predictive perfor- 137

mance. 138

For our method, we shift the focus of diversity 139

from n models to n prompts, and the formula is as 140
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follows:141

P(yj |y0:j−1, X) =
1

n

n∑
i=0

P(yj |y0:j−1, X, Pi; θ)

(3)142

which {P1, P2, ...Pn} is a list of prompts having143

the same meaning with P . As shown in right side144

of Figure 1, inputs constructed by these n prompts145

and X are submitted to LLMs in batches for de-146

coding. We average the predicted probability distri-147

butions within the batch at each step of prediction,148

a process we term Inner-Batch Ensemble. Here,149

we use the most straightforward uniform average150

method. Of course, in the future, strategies like151

weighted average could also be considered. This152

approach mitigates biases potentially introduced153

by any single prompt and enhances the model’s154

robustness against varying inputs.155

2.2 Efficiency decoding using Left-Padding156

In the decoding process of LLMs, the inconsis-157

tency in prompt lengths poses challenges for batch158

processing. To address this issue, we employ159

Left-Padding technology to preprocess the input160

prompts, ensuring uniformity in length to accom-161

modate the model’s batch processing requirements.162

In practice, we pad shorter prompts with a specific163

token pad until they match the length of the longest164

prompt. This padding token is a special token with165

no semantic meaning, used solely for padding. This166

padding does not interfere with the model’s under-167

standing and processing, as the model is trained to168

recognize and ignore these special padding charac-169

ters.170

Padding is a common technique for handling171

sequences of varying lengths during batch process-172

ing, typically used in the training phase with Right-173

Padding. However, Right-Padding can disrupt the174

direct connection between input and output for175

shorter prompts, leading to decoding anomalies.176

Meanwhile, Left-Padding in LLMs may risk de-177

grading the quality of padded requests. In our ap-178

proach, since we average the probabilities of dif-179

ferent requests within a batch, the potential risk180

of low-quality outputs from padded requests can181

be safely ignored. By doing so, we can standard-182

ize prompts of varying lengths, enabling the model183

to process them in a single pass and fully leverage184

parallel computing resources.185

3 Main Experiments 186

We validated our approach across three tasks: code 187

generation, text simplification, and machine trans- 188

lation. This experimental setup aligns with prior 189

work on multi-prompts (Heineman et al., 2024) to 190

ensure consistency. Additionally, in the ablation 191

study in Appendix A, we analyzed the integration 192

of this prior work and observed further improve- 193

ments in performance. Our primary experiments 194

are based on two prompts. In the ablation study, 195

we investigate the effects of using a larger number 196

of prompts. For detailed settings regarding Multi- 197

Prompt, please refer to Appendix B.1. 198

3.1 Application to Code Generation Task 199

In the code generation task, we utilize the widely- 200

used benchmark dataset HumanEval1, evaluating 201

performance using the Pass@k (Chen et al., 2021) 202

metric. For our experiments, we employ the pop- 203

ular CodeLlama-7B-Python-hf2 model. Addition- 204

ally, in Appendix A.2, we conduct further exper- 205

iments comparing models of different sizes, such 206

as the 13B3 model. Since the dataset provides a 207

prompt for each problem, we refer to this origi- 208

nal prompt as p1. We also construct an alternative 209

prompt p2 by adding p1 a simple prefix, such as 210

"""This is a good code.. For detailed examples of 211

these prompts, please refer to Appendix B.2. 212

pass@k k=1 k=5 k=10
p1 32.11% 58.13% 67.17%
p2 30.74% 58.03% 67.26%
Our M-Ped 33.12% 59.07% 68.11%

Table 1: Results for Code Generation Task.

The experimental outcomes demonstrate that our 213

technical solution markedly enhances the pass rate 214

across various settings of k. As shown is Table 1, 215

regardless of whether k is set to 1, 5, or 10, our so- 216

lution consistently boosts the pass@k pass rate by 217

1% point. This improvement not only underscores 218

the effectiveness of our technical solution in code 219

generation tasks but also highlights its robustness 220

across different evaluation metrics, ensuring the de- 221

livery of higher quality code generation outcomes. 222

1https://github.com/openai/human-eval
2https://huggingface.co/codellama/CodeLlama-7b-

Python-hf
3https://huggingface.co/codellama/CodeLlama-13b-

Python-hf
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d-BLEU en→de en→fr en→zh en→ja de→en fr→en zh→en ja→en
p1 27.40 37.59 17.37 9.35 32.89 41.38 24.39 6.72
p2 27.05 37.14 17.23 9.61 32.74 41.60 24.39 6.75
Ours 27.88 38.16 18.88 11.44 33.11 42.25 24.85 8.37

Table 2: Results for Machine Translation Task.

3.2 Application to Text Simplification Task223

In the text simplification task, we conducted exper-224

iments on the challenging SimpEval_20224 testset,225

using LENS (Maddela et al., 2023) as the evalua-226

tion metric. LENS supports two evaluation condi-227

tions: with reference (w/ ref) and without reference228

(w/o ref). We used the Llama-3.1-8B-Instruct5229

model for our experiments. We randomly selected230

two prompts from Heineman et al. (2024) as p1 and231

p2. Test samples can been see in Appendix B.3.232

LENS w/ ref w/o ref
p1 75.08 81.54
p2 74.76 81.63
Ours 77.18 82.08

Table 3: Results for Text Simplification Task.

As shown in Table 3, whether under with-233

reference or without-reference evaluation condi-234

tions, our solution can steadily enhance the qual-235

ity of text simplification. Notably, under with-236

reference evaluation conditions, our method out-237

performs the best results obtained using only p1238

or p2 by nearly 1.5 points. This result confirms239

the effectiveness and applicability of our techni-240

cal solution in text simplification tasks, delivering241

higher quality text simplification results under di-242

verse evaluation criteria.243

3.3 Application to Machine Translation Task244

In the field of machine translation, we tackle the245

challenging task of document-level translation. We246

use the IWSLT 20176 dataset as our test set and247

conduct experiments on eight language pairs: En-248

glish (En) ↔ Chinese (Zh), German (De), French249

(Fr), and Japanese (Ja). The model we employ250

is Llama-3.1-8B-Instruct7, which excels in multi-251

lingual translation. We evaluate our results using252

4https://github.com/Yao-Dou/LENS/blob/master/data-
/simpeval_2022.csv

5https://huggingface.co/meta-llama/Llama-3.1-8B-
Instruct

6https://huggingface.co/datasets/IWSLT/iwslt2017
7https://huggingface.co/meta-llama/Llama-3.1-8B-

Instruct

the d-BLEU (document-level BLEU) metric (Pap- 253

ineni et al., 2002). Although other metrics such as 254

BertScore (Zhang et al., 2020) and COMET (Rei 255

et al., 2020) are commonly used in machine trans- 256

lation, they are typically designed for sentence- 257

level evaluation. For our experiments, we con- 258

struct a translation prompt and randomly select two 259

prompts as p1 and p2. 260

As shown in Table 2, our experimental results 261

show that in the English to Chinese and to Japanese 262

directions, compared to the best results with a sin- 263

gle prompt, our method can approximately increase 264

by 1.5 points on the d-BLEU scale; there is also an 265

improvement of about 0.5 points in other directions. 266

We speculate that our use of LLMs, Llama-3.1-8B- 267

Instruct, which was trained on a vast amount of 268

English data, results in more stable translations 269

into English, thus limiting the improvement of our 270

method. However, in other language directions, the 271

improvement is more pronounced. 272

4 Conclusions 273

This study set out to address the challenge of en- 274

hancing the performance of LLMs in NLP tasks 275

through the introduction of a multi-prompt ensem- 276

ble decoding approach. Our method, termed Inner- 277

Batch Ensemble, leverages the diversity of multi- 278

ple prompts to aggregate their outcomes, thereby 279

improving the generation quality of LLMs. The im- 280

plementation of a Left-Padding strategy ensured ef- 281

ficient batch inference, allowing for uniform input 282

lengths across various prompts. Our extensive ex- 283

periments across a range of NLP tasks—spanning 284

code generation, text simplification and machine 285

translation—demonstrated the effectiveness of our 286

Inner-Batch Ensemble method. The results were 287

particularly compelling, with significant improve- 288

ments observed in pass@k rates, LENS metrics and 289

BLEU scores when compared to standard methods. 290

The consistent enhancements across different tasks 291

and metrics underscore the robustness and versatil- 292

ity of our approach. 293
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5 Limitations294

This study acknowledges several limitations.295

Firstly, our method is closely tied to the quality of296

the prompts used. A poorly constructed prompt297

may render our approach ineffective, as high-298

quality prompts are essential for guiding LLMs299

to produce accurate outputs. Secondly, due to con-300

straints in time and computational resources, the ef-301

fectiveness of our method across a broader range of302

tasks requires further validation. Additionally, we303

did not experiment with the state-of-the-art GPT-4304

series interfaces, as they are proprietary and do not305

support embedding or modification of their decod-306

ing strategies, limiting our ability to test and refine307

our method on cutting-edge models.308
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A Ablation Study538

A.1 Effectiveness Analysis under Various539

Decoding Strategies540

pass@k Top-p Top-k
p1 67.17% 66.94%
p2 67.26% 67.11%
Ours 68.11% 67.85%*

Table 4: Study under Various Decoding Strategies for
Code Generation Task where pass@k=10.

In this section, we conducted an in-depth anal-541

ysis of the effects of multi-prompt ensemble de-542

coding methods under various decoding strategies,543

including Top-p (Finlayson et al., 2024), Top-k544

(Xie et al., 2020), and Beam Search. Among them,545

Top-p is the decoding method we used for various546

tasks in Section 3. We expanded this experiment547

based on our previous work in code generation and548

machine translation tasks.549

For code generation tasks, due to the character-550

istics of the task evaluation, we could only adopt551

sampling search decoding strategies (Top-p or Top-552

k). As shown in Table 4, regardless of whether553

based on Top-k or Top-p, our method consistently554

improved pass@k. This conclusion is consistent555

with Section 3.1.556

d-BLEU Top-p Top-k Beam
En→De

p1 27.40 26.92 27.64
p2 27.05 27.22 27.81
Ours 27.88 27.52 27.81

En→Zh
p1 17.37 17.56 18.34
p2 17.23 16.79 18.42
Ours 18.88 18.87 18.51

Table 5: Study under Various Decoding Strategies for
Machine Translation Task

For machine translation tasks, we conducted ex-557

periments in the English to German (en→de) and558

English to Chinese (en→zh) directions, as shown559

in Table 5. We found that with Top-k and Top-p560

decoding methods, our approach showed improve-561

ments compared to single prompt. With Beam562

Search decoding, our method’s results are close563

to the best results of p1 or p2, and higher than the564

average of these two.565

A.2 Study across Varying LLM Sizes 566

In this section, we investigate the effectiveness of 567

our method across different sizes of LLMs. Our 568

main experiments in Section 3 were conducted on 569

models of size 7-8B. Building on our previous code 570

generation tasks, we extended our experiments to 571

a 13B model, using CodeLlama-13B-Python-hf8. 572

We ensured that all experimental settings remained 573

consistent with Section 3.1, except for the model 574

itself. 575

pass@k k=1 k=5 k=10
p1 39.6% 67.53% 78.02%
p2 39.48% 67.6% 77.88%
Ours 41.52% 69.54% 79.80%

Table 6: Results for Code Generation Task using
CodeLlama-13B-Python-hf.

As shown in Table 6, larger models demonstrate 576

superior code generation capabilities, with signifi- 577

cant improvements in the pass@k metric for k=1, 578

5 and 10. Our method also shows consistent im- 579

provements on the 13B model, achieving similar 580

enhancements as on the 7B model. Moreover, on 581

the 13B model, the improvement is more substan- 582

tial, with pass@10 increasing by nearly 2 points; 583

whereas the pass@10 on the 7B model (see Table 584

1) only improved by about 1 point. The experimen- 585

tal results confirm the effectiveness of our method 586

across various sizes of LLMs. 587

A.3 Study on the Relationship between 588

Prompt Count n and Output Quality 589

In this section, we investigate the relationship be- 590

tween the number of prompts and the quality of 591

results. Building on our previous experiments on 592

code generation and text simplification tasks, we 593

conducted extended tests with varying numbers of 594

prompts. The settings for the extended prompts are 595

detailed in Appendix D.2. 596

n 1 2 3 4
p1 67.17% - - -
Ours - 68.11% 68.15% 67.85%

Table 7: Pass@10 rate under different Prompt Count n
for Code Generation Task.

As shown in Tables 7 and 8, the experimental re- 597

sults indicate that increasing the number of prompts 598

8https://huggingface.co/codellama/CodeLlama-13b-
Python-hf
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n 1 2 3 4
p1 75.08 - - -
Ours - 77.18 77.08 76.88

Table 8: LENS w/ ref under different Prompt Count n
for Text Simplification Task.

can enhance the quality of generated output for599

both code generation and text simplification tasks.600

However, we observed that when the number of601

prompts increased from 2 to 3, the improvement602

in result quality began to plateau. This trend sug-603

gests that 2-3 prompts are essentially sufficient to604

achieve optimal results, and beyond this range, ad-605

ditional prompts have a limited effect on enhancing606

result quality. Therefore, in our previous baseline607

experiments in Section 3, we opted for two prompts608

as the standard configuration.609

A.4 Exploration of Multilingual Prompts610

Effects611

In this section, we explore the effectiveness of612

our method under Multilingual Prompts. Build-613

ing on our previous experiments in machine trans-614

lation tasks, we extended this experiment to the615

Chinese to English (zh→en) and English to Chi-616

nese (en→zh) directions. We utilized the Qwen2.5-617

7B-Instruct9 model, which provides better support618

for instructions in both Chinese and English. For619

one of the prompts, p1, we maintained consistency620

with Section 3.3, setting it as "Translate the fol-621

lowing paragraph from source language to target622

language, ensuring that no part of the sentence is623

omitted." For the other prompt, p2, we set it as624

the Chinese specification "将下面这一段从{源625

语种}翻译成{目标语种}，确保没有句子被漏626

掉。"627

d-BLEU En→Zh Zh→En
p1 21.6 23.89
p2 20.83 24.07
Ours 23.45 24.53

Table 9: Study on Multilingual Prompts using Qwen2.5-
7B-Instruct for Machine Translation Task.

As shown in Table 9, under the Multilingual628

Prompts setup, our method shows improvements629

compared to using a single prompt.630

9https://huggingface.co/Qwen/Qwen2.5-7B-Instruct

A.5 Effect of Combination with MBR 631

Heineman et al. (2024) proposed a multi-prompt 632

decoding approach that improves Minimum Bayes 633

Risk (MBR) decoding by decoding multiple can- 634

didate generations from a prompt library during 635

inference. This method uses a trained value met- 636

ric to select the final output, demonstrating that 637

multi-prompt can improve MBR performance in a 638

range of conditional generation tasks by estimat- 639

ing a more diverse and higher-quality candidate 640

space. The core of this paper lies in the MBR 641

strategy, which generates multiple candidate re- 642

sults during inference and selects the final outcome 643

using specific metrics. They construct a sufficiently 644

large and diverse set of candidates through multi- 645

prompting, which can be seen as an ensemble in the 646

result space. However our method is an ensemble 647

during the inference process. 648

We validate the effectiveness of combining our 649

multi-prompt ensemble decoding strategy with 650

MBR in text simplification tasks. We sampled 651

and generated 50 candidate results for both sim- 652

ple prompts p1 and p2, then used MBR to select 653

the optimal outcome. For our multi-prompt en- 654

semble decoding, we also sampled and generated 655

50 candidate results and chose the best one using 656

MBR. 657

LENS Original MBR
p1 75.08 77.04
p2 74.76 76.87
Ours 77.18 77.72

Table 10: LENS w/ reference results compared between
Original and MBR for Text Simplification Task.

As shown in Table 10, the MBR strategy is a 658

universal approach that significantly improves re- 659

sults under various conditions. When combined 660

with our multi-prompt ensemble decoding strategy, 661

it still manages to enhance the results by more than 662

0.5 points. 663
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B Prompts Design664

B.1 All Prompts665

[p1]

### This is a good code
[p1]

### This is a piece of code written by an expert that is very ingenious.
[p1]

### Author: a coder expert
[p1]

### The code is of high quality
[p1]

### The code is robust and reliable
[p1]

### This is a solid piece of code.
[p1]

### The code performs well and is easy to read.
[p1]

Table 11: All prompts for code generation task

Please simplify the following sentence so that it is easy to understand by people with disabilities or
those who are unfamiliar with English. Try to use shorter words, fewer clauses, and a simpler structure.
Create a simpler version of the sentence below so that it can be better understood by non-English
speakers or individuals with disabilities.
Rewrite this sentence in a simple and easy to understand way. Make sure to retain the meaning and
ideas of the original sentence while using shorter words and sentences.
Express this sentence in simpler terms, keeping its meaning and ideas intact, and use shorter words and
sentences.
Make this sentence simple and clear, keeping its main idea. Use short words and sentences.
Rewrite the sentence simply. Keep the main meaning but use shorter words and simpler sentences.
Turn this sentence into an easier version. Make sure it’s clear for people who don’t speak English well
or have disabilities.
Simplify the sentence below so it’s easy for everyone to understand. Use short words and a simple
structure.

Table 12: All prompts for text simplification task
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You are a great translation assistant! Translate the following paragraph from {source language} to
{target language}, ensuring that no part of the sentence is omitted.
You are a helpful assistant! You’re a very professional translator. Please help me translate the following
paragraph from {source language} to {target language}.
You’re amazing at translating! Please translate this paragraph from source language to target language.
You’re a fantastic translator! Could you translate this paragraph from source language to target
language?
You’re really good at what you do! Please help translate this paragraph from source language to target
language.
You’re a top-notch translation assistant! Please translate this paragraph from source language to target
language.
You’re incredibly skilled at translating! Can you help me with this paragraph from source language to
target language?
You’re a wonderful translation assistant! Please translate this paragraph from source language to target
language.

Table 13: All prompts for machine translation task

11



B.2 Prompts for Code Generation Task666

For Code Generation Task, since the dataset provides a prompt for each problem, we define this original667

prompt as p1. For prompt p2, we construct a simple prefix based on p1. Examples of this prompts used in668

Section 3.1 are as following:669

p1
def specialFilter(nums):

"""Write a function that takes an array of numbers as input and returns the number of elements in
the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9).

For example:
specialFilter([15, -73, 14, -15]) => 1
specialFilter([33, -2, -3, 45, 21, 109]) => 2
"""

p2
""" This is a good code.
def specialFilter(nums):

"""Write a function that takes an array of numbers as input and returns the number of elements in
the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9).

For example:
specialFilter([15, -73, 14, -15]) => 1
specialFilter([33, -2, -3, 45, 21, 109]) => 2
"""

Table 14: Prompts of ID 146 for Code Generation Task

p1
from typing import List, Tuple

def rolling_max(numbers: List[int]) -> List[int]:
""" From a given list of integers, generate a list of rolling maximum element found until given

moment in the sequence.
rolling_max([1, 2, 3, 2, 3, 4, 2])

[1, 2, 3, 3, 3, 4, 4]
"""

p2
""" This is a good code.
from typing import List, Tuple

def rolling_max(numbers: List[int]) -> List[int]:
""" From a given list of integers, generate a list of rolling maximum element found until given

moment in the sequence.
rolling_max([1, 2, 3, 2, 3, 4, 2])

[1, 2, 3, 3, 3, 4, 4]
"""

Table 15: Prompts of ID 9 for Code Generation Task
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B.3 Prompts for Text Simplification Task 670

The designed prompts for Text Simplification used in Section 3.2 are as following: 671

p1
User Prompt:
Please simplify the following sentence so that it is easy to understand by people with disabilities or
those who are unfamiliar with English. Try to use shorter words, fewer clauses, and a simpler structure.
Original: {input text}

p2
User Prompt:
Create a simpler version of the sentence below so that it can be better understood by non-English
speakers or individuals with disabilities.
Original: {input text}

Table 16: Designed Prompts for Text Simplification Task
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B.4 Prompts for Machine Translation Task672

The designed prompts for Machine Translation Task used in Section 3.3 are as following:673

p1
System Prompt:
You are a great translation assistant!

User Prompt:
Translate the following paragraph from {source language} to {target language}, ensuring that no part
of the sentence is omitted.
{source language}: {source text}

p2
System Prompt:
You are a helpful assistant!

User Prompt:
You’re a very professional translator. Please help me translate the following paragraph from {source
language} to {target language}.
{source language}: {source text}

Table 17: Designed Prompts for Machine Translation Task.
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C Detailed Main Experimental Results 674

C.1 Detailed Results for Code Generation Task 675

The specific outcomes for various seed settings in the Code Generation Task, as discussed in Section 3.1, 676

are presented below in Table 18: 677

pass@k k=1 k=5 k=10
p1

0 30.41% 56.78% 67.67%
1 31.94% 58.73% 66.68%
2 32.32% 58.03% 67.92%
3 39.24% 59.19% 66.39%
4 30.44% 59.17% 67.42%
5 39.2% 58.97% 66.32%
6 28.02% 57.13% 67.72%
7 30.71% 57.81% 67.53%
8 28.42% 57.63% 67.76%
9 30.37% 57.88% 66.33%
AVG 32.11% 58.13% 67.17%

p2
0 30.11% 58.64% 67.34%
1 32.12% 58.73% 67.13%
2 32.31% 57.62% 67.88%
3 33.39% 58.97% 67.41%
4 28.05% 56.39% 67%
5 33.1% 57.9% 66.92%
6 30.1% 58.58% 67.71%
7 27.95% 58.47% 66.69%
8 30.35% 58.67% 67.16%
9 29.96% 56.3% 67.35%
AVG 30.74% 58.03% 67.26%

Ours
0 32.66% 58.9% 67.2%
1 37.1% 58.86% 69.12%
2 37.06% 57.89% 67.68%
3 32.97% 60.05% 67.76%
4 31.8% 58.9% 67.27%
5 33.03% 59.21% 68.5%
6 32.16% 59.19% 68.05%
7 33.26% 57.93% 69.27%
8 30.59% 59.37% 67.62%
9 30.57% 60.41% 68.62%
AVG 33.12% 59.07% 68.11%

Table 18: Detailed Results for Code Generation Task.
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C.2 Detailed Results for Text Simplification Task678

The specific outcomes for various seed settings in the Text Simplification Task, as discussed in Section679

3.2, are presented below in Table 19:680

LENS w/ ref w/o ref
p1

0 75.32 80.76
1 75.93 82.04
2 75.65 82.58
3 74.47 81.02
4 75.71 82.2
5 74.43 81.4
6 75.37 82.36
7 75.36 80.26
8 74.59 82.5
9 73.98 80.27
AVG 75.08 81.54

p2
0 74.54 81.79
1 75.81 80.62
2 72.83 82.44
3 74.48 81.61
4 73.31 82.36
5 75.68 80.91
6 74.92 81.65
7 75.35 81.23
8 74.63 81.7
9 76.05 81.99
AVG 74.76 81.63

Ours
0 76.71 82.21
1 76.03 81.88
2 77.26 81.68
3 77.22 81.98
4 77.38 82.36
5 78.69 82.61
6 78.02 82.12
7 76.17 81.63
8 77.96 82.64
9 76.32 81.69
AVG 77.18 82.08

Table 19: Results for Text Simplification Task.
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C.3 Detailed Results for Machine Translation Task 681

The specific outcomes for various seed settings in the Machine Translation Task, as discussed in Section 682

3.3, are presented below in Table 20: 683

d-BLEU en→de en→fr en→zh en→ja de→en fr→en zh→en ja→en
p1

0 27.18 38.57 22.53 13.36 34.74 42.27 21.95 9.21
1 27.82 37.6 16.43 7.23 34.87 42.22 25.84 7.26
2 27.4 35.94 16.58 5.52 31.78 39.12 24.3 5.58
3 28.2 37.6 15.53 12.08 30.99 41.81 25.06 5.58
4 26.54 37.88 16.93 11.7 32.02 41.96 24.31 4.69
5 27.2 36.83 15.61 7.87 32.22 41.88 21.9 9.31
6 27.1 38.43 15.79 6.85 31.19 41.17 25.17 6.95
7 28 37.79 22.44 8.47 34.92 42.36 24.82 5.21
8 26.69 37.61 15.56 14.02 32.45 39.5 26.24 6.88
9 27.86 37.33 16.3 6.39 33.7 41.49 24.35 6.51
AVG 27.40 37.59 17.37 9.35 32.89 41.38 24.39 6.72

p2
0 26.99 35.85 15.14 14.03 35.21 41.88 24.94 6.76
1 26.04 37.68 16.74 12.29 33.84 42.63 24.63 6.76
2 26.57 38.5 16.09 6.19 31.73 42.61 26.39 5.1
3 26.15 37.12 16.47 6.46 34.89 42.42 21.68 5.2
4 27.08 37.61 21.57 14.14 31.29 39.37 22.02 6.87
5 26.36 37.01 14.85 7.73 30.28 41.8 24.49 9.45
6 26.96 36.59 16.65 12.3 31.61 41.87 24.75 5.13
7 27.9 35.82 21.43 6.37 31.74 42.06 25.17 5.24
8 27.61 37.24 17.38 8.82 34.81 42.3 25.28 6.76
9 28.79 37.97 16 7.81 31.97 39.01 24.5 10.25
AVG 27.05 37.14 17.23 9.61 32.74 41.60 24.39 6.75

Ours
0 28.58 37.79 18.86 9.01 32.01 43.21 26.06 7.93
1 27.66 38.84 16.23 14.94 34.74 42.8 26.13 7.74
2 28.59 39.04 23.06 11.06 34.79 42.86 25.18 10.79
3 28.29 39.15 18.75 12.71 35.15 39.87 26.09 6.82
4 27.55 37.94 17.82 14.66 33.4 42.83 25.61 7.35
5 28.82 36.84 17.02 8.87 32.61 42.71 24.66 7.95
6 26.66 37.96 22.83 12.74 31.86 42.74 21.98 7.98
7 26.59 39.16 19.08 9.56 32.18 42.75 23.81 10.9
8 27.97 37.19 18.9 9.89 32.61 39.69 22.92 8.08
9 28.07 37.72 16.29 10.91 31.73 43.06 26.04 8.11
AVG 27.88 38.16 18.38 11.44 33.11 42.25 24.85 8.37

Table 20: Detailed results for Machine Translation Task.
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D Appendix for Study684

D.1 Detailed Results for Study under Various685

Decoding Strategies686

The specific outcomes for various seed settings687

in the Machine Translation Task under Top-k de-688

coding strategy, as discussed in Section A.1, are689

presented below in Table 21:690

d-BLEU en→de en→zh
p1

0 25.88 21.43
1 27.92 15.99
2 26.15 15.62
3 26.99 20.85
4 26.03 16.34
5 27.73 14.90
6 28.04 16.12
7 26.80 15.73
8 26.71 22.51
9 26.90 16.15
AVG 26.92 17.56

p2
0 28.79 17.70
1 26.60 16.99
2 28.26 16.55
3 27.28 15.37
4 26.77 16.67
5 27.82 15.20
6 27.16 14.88
7 25.64 16.15
8 27.56 15.51
9 26.36 21.94
AVG 27.22 16.70

Ours
0 28.60 18.79
1 28.24 18.57
2 25.54 17.61
3 27.49 19.43
4 25.92 16.40
5 26.75 19.76
6 28.66 17.57
7 27.93 17.10
8 28.58 22.24
9 27.46 21.20
AVG 27.52 18.87

Table 21: Detailed results for Machine Translation Task
under Top-k decoding strategy.

The specific outcomes for various seed settings 691

in the Code Generation Task under Top-k decoding 692

strategy, as discussed in Section A.1, are presented 693

below in Table 22: 694

pass-k k=10
p1

0 66.99%
1 66.31%
2 67.57%
3 66.25%
4 67.25%
5 65.83%
6 67.66%
7 67.84%
8 67.71%
9 65.99%
AVG 66.94%

p2
0 66.91%
1 66.75%
2 67.5%
3 67.34%
4 66.83%
5 66.62%
6 67.82%
7 66.43%
8 67.21%
9 67.7%
AVG 67.11%

Ours
0 67.44%
1 67.3%
2 67.32%
3 67.16%
4 67.75%
5 69.05%
6 68.57%
7 67.85%
8 67.6%
9 68.46%
AVG 67.85%

Table 22: Detailed results for Code Generation Task
under Top-k decoding strategy.
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D.2 Additional Prompts for Study on Prompt Count n 695

Additional Prompts for Study on Prompt Count n used in Section A.3 are as following in Table 23 and 696

Table 24:

p3
""" This is a piece of code written by an expert that is very ingenious.
def specialFilter(nums):

"""Write a function that takes an array of numbers as input and returns the number of elements in
the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9).

For example:
specialFilter([15, -73, 14, -15]) => 1
specialFilter([33, -2, -3, 45, 21, 109]) => 2
"""

p4
""" Author: a coder expert
def specialFilter(nums):

"""Write a function that takes an array of numbers as input and returns the number of elements in
the array that are greater than 10 and both first and last digits of a number are odd (1, 3, 5, 7, 9).

For example:
specialFilter([15, -73, 14, -15]) => 1
specialFilter([33, -2, -3, 45, 21, 109]) => 2
"""

Table 23: Additional Prompts of ID 146 for Code Generation Task

697

p3
User Prompt:
Rewrite this sentence in a simple and easy to understand way. Make sure to retain the meaning and
ideas of the original sentence while using shorter words and sentences.
Original: {input text}

p4
User Prompt:
Express this sentence in simpler terms, keeping its meaning and ideas intact, and use shorter words and
sentences.
Original: {input text}

Table 24: Additional Prompts for Text Simplification Task
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