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Abstract

The intersection of learning to rank and choice
modeling is an active area of research with applica-
tions in e-commerce, information retrieval and the
social sciences. In some applications such as rec-
ommendation systems, the statistician is primarily
interested in recovering the set of the top ranked
items from a large pool of items as efficiently as
possible using passively collected discrete choice
data, i.e., the user picks one item from a set of
multiple items. Motivated by this practical consid-
eration, we propose the choice-based Borda count
algorithm as a fast and accurate ranking algorithm
for top K-recovery i.e., correctly identifying all of
the top K items. We show that the choice-based
Borda count algorithm has optimal sample com-
plexity for top-K recovery under a broad class of
random utility models. We prove that in the limit,
the choice-based Borda count algorithm produces
the same top-K estimate as the commonly used
Maximum Likelihood Estimate method but the for-
mer’s speed and simplicity brings considerable ad-
vantages in practice. Experiments on both synthetic
and real datasets show that the counting algorithm
is competitive with commonly used ranking algo-
rithms in terms of accuracy while being several
orders of magnitude faster.

1 INTRODUCTION

The research on discrete choice modeling and learning to
rank has received a lot of interest in recent years thanks to
the growing availability of discrete choice data generated
by e-commerce platforms, search engines and the social
sciences. In the discrete choice setting, when presented with
a set of items, also referred to as menu, the user picks the
most preferred item. Discrete choice data is an intermediate

between pairwise comparison data and full ranking data. In
many settings such as e-commerce and political surveys,
a large quantity of passively collected data is in the form
of discrete choice data, e.g., consumers choosing to buy a
product when presented with a catalogue of items, voters
picking a favorite candidate from a pool of candidates.

In this paper, we focus on the problem of learning to rank
using choice data. Specifically, we are interested in the top-
K recovery problem, i.e., identifying the set of the top K
items out of a universe of n items, using passively collected
choice data. This problem has many useful applications.
For example, in e-commerce applications, marketers are
interested in finding the set of the best items based on how
consumers make purchasing decisions. In the social sci-
ences, political scientists are interested in determining the
most preferred candidates among a pool of candidates using
survey questionnaires.

To ground our theoretical discussions, we posit that the
choice data is generated according to a probabilistic choice
model- when presented with a menu of items S, the user
makes a non-deterministic decision, picking a single item i
from S with some probability pi|S . More specifically, we as-
sume our choice model falls within the class of Random Util-
ity Models with Independently and Identically Distributed
noise (IID-RUMs), described in detail in section (2). IID-
RUMs are an expressive and flexible framework that can
be used to model pairwise comparison data, discrete choice
data as well as full ranking data. For example, the Multino-
mial Logit (MNL) model is one of the most commonly used
IID-RUMs to model discrete choice data [Train, 2009].

Our motivation: While expressive, random utility mod-
els also pose hard computational problems. For example,
many models within the class of IID-RUMs with the few
exceptions such as the MNL model do not admit analytical
expression for the choice probabilities (while the pairwise
comparison probabilities can be evaluated easily), limiting
inference to MCMC-based algorithms. However, sampling-
based algorithms can be time inefficient when running on
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large choice datasets with many items and menus. Further-
more, most classical inference algorithms assume a paramet-
ric model generating the choice data. In practice, it is often
hard to verify if the data comes from a specific parametric
model. Therefore, developing efficient ranking algorithms
that are robust to model misspecification is of timely inter-
est.

Motivated by these considerations, we study the general-
ization of a simple yet powerful counting algorithm for
ranking- Borda count - to the discrete choice setting. The
Borda count algorithm itself has a long history, dating back
to the 18th century and its analysis has been instantiated in
various contexts such ranking from pairwise comparisons
in Rajkumar and Agarwal [2014], Shah and Wainwright
[2017]. Our work, however, is the first to study the theoreti-
cal guarantees of Borda count in the discrete choice setting
under a broad class of discrete choice models.

Our contributions:

• In Section 4 and Section 5, we show that the choice-
based Borda count algorithm needs θ(n log n) samples
in order to exactly recover all of the top K items using
choice data. We further show that this sample com-
plexity is optimal for a broad class of IID-RUMs. This
hinges on a fundamental property shared by many IID-
RUMs which we term Borda consistency.

• In Section 6, we study the effect of the menu size
m on the sample complexity for top K recovery. For
the special case of the MNL model, which is a com-
mon assumption in the ranking literature, we present
an asymptotic characterization of the optimal sample
complexity for top K recovery in terms of m. This
bound monotonically decreases, but at a decreasing
rate, with m. This suggests that there is a benefit to
increasing the menu size but such benefit comes with
diminishing returns. To the best of our knowledge, this
result is the first of its kind in the choice modeling and
ranking literature.

• In Section 7, we study the connections between the
choice-based Borda count algorithm and two com-
monly used top-K recovery algorithms: Maximum
Likelihood Estimate under MNL assumption (MNL-
MLE) and Spectral Ranking [Negahban et al., 2017,
Maystre and Grossglauser, 2015, Agarwal et al., 2018].
We prove that the choice-based Borda count algorithm
and MNL-MLE produce the same top-K estimate in
the limit of infinite data, even if the data has not been
generated by an IID-RUM. On the other hand, Spectral
Ranking does not in general give the same estimate as
the choice-based Borda count algorithm/MNL-MLE
even with infinite data.

• In Section 8, We show through empirical experiments
that the choice-based Borda count algorithm is com-
petitive in terms of accuracy with both MNL-MLE and

Spectral Ranking while being several orders of magni-
tude faster. This highlights the advantage of the choice-
based Borda count algorithm in applications where
the statistician is primarily interested in efficiently and
accurately identifying the top items.

1.1 RELATED WORKS

Our work falls within the literature on learning to rank under
Random Utility Models (RUMs). There has been a substan-
tial amount of work on learning to rank under Random
Utility Models and mixtures of Random Utility Models us-
ing full ranking data [Parkes et al., 2012, Azari Soufiani
et al., 2013b,a, Soufiani et al., 2014, Zhao et al., 2016, Zhao
and Xia, 2019]. Furthermore, most classical ranking meth-
ods assume that the data is generated by a well specified
RUM. To the best of our knowledge, our paper is the first to
propose a method for top-K ranking under a broad class of
RUMs using passively collected choice data alone.

The related literature on ranking from pairwise comparisons
is vast and we can only refer the interested reader to adja-
cent problems such as active top-K recovery from pairwise
comparisons [Busa-Fekete et al., 2013, Agarwal et al., 2017,
Mohajer et al., 2017, Falahatgar et al., 2017, 2018, Heckel
et al., 2019]; top-K recovery from pairwise comparisons
[Chen and Suh, 2015, Shah and Wainwright, 2017, Chen
et al., 2019]; top-K recovery from m-wise sorted data (full
rankings among some m items) [Jang et al., 2017, Chen
et al., 2020].

Closest to our work is the analysis of Borda count by Shah
and Wainwright [2017] who showed that it is optimal for
top-K recovery from pairwise comparisons. Our work com-
plements theirs by showing that the choice-based Borda
count is optimal even in the general choice setting. To this
end, we obtain in Section 4 sample complexity upper and
lower bounds that are both more general and refined than
those given by Shah and Wainwright [2017]. We also study
in Section 6 the effect of the menu size on the sample com-
plexity. To the best of our knowledge, our paper presents the
first asymptotic characterization of the sample complexity
for ranking from choice data in terms of the menu size under
the very commonly used MNL model. Operating on m-wise
sorted data, Jang et al. [2017] showed that the optimal sam-
ple complexity for top-K recovery under the Plackett Luce
model1 scales with O( 1

m ). Our results complement theirs
by showing that the sample complexity for top-Krecovery
from discrete choice data scales as O(1+ 1

m ). Furthermore,
the choice-based Borda count algorithm is different from the
Spectral-MLE algorithm studied there which is specialized
to the Plackett-Luce model.

1Within the ranking literature, Plackett-Luce (PL) is a class
of distributions over permutations, induced by the IID-RUM with
standard Gumbel noise.



2 NOTATIONS AND PROBLEM
FORMULATION

Let there be n items in the universe. Each item i has a
deterministic and hidden utility, also referred to as partworth,
Ui for i = 1, . . . , n. Let us assume the non-degenerate case
where no two items have identical partworths. Without loss
of generality, we also assume that Umax = U1 > U2 >
. . . > Un = Umin > 0. Let S∗

K = {1, . . . ,K} denote the
set of K items with the highest parthworths.

Items are presented to the consumer in a set S, also referred
to as menu, of size at least 2. When S is presented to the
consumer, the perceived utility of each item i ∈ S is the sum
of its parthworth and a random noise term: Xi = Ui + ϵi
where the ϵi’s are independently and identically distributed
according to an unknown universal noise distribution D. The
consumer then picks the item i with the highest perceived
utility among all the items in S. Such a choice model is
referred to as a random utility model with independent and
identically distributed noise (IID-RUM). In short, a choice
model ρ within the class of IID-RUMs is parametrized by a
set of partworths {U1, . . . Un} and noise distribution D.

As an overload of notation, we will also use ρ(i|S) to denote
the probability that a consumer picks item i from menu S
under choice model ρ. By definition, ρ(i|S) = P(Xi >
Xk ∀k ∈ S\{i}) . For simplicity, we consider a fixed menu
size m. However, our analysis can be easily extended to
account for a mixture of menu sizes.

A choice sample is a (menu, item) tuple (S, y) where the
consumer chooses item y from menu S. A choice dataset
is a set of choice samples. A top-K recovery algorithm
takes in a choice dataset and returns an estimate of the top
K items, ŜK . The goal is to exactly recover the top K
items and the performance metric of interest is the 0-1 loss:
L01(ŜK ,S∗

K) = 1[ŜK = S∗
K ] 2.

We emphasize that as opposed to the top-K ranking prob-
lem, the objective of the top-K recovery prolem is to accu-
rately identify the set of the top K items, while allowing for
mis-ranking among these items.

3 THE CHOICE-BASED BORDA COUNT
ALGORITHM

As discussed previously, the general counting approach re-
ferred to as Borda count has a long history and has been
instantiated in various contexts such as ranking from pair-
wise comparisons. Here, we instantiate the Borda count
approach to the more general discrete choice setting. This is
shown in Algorithm 1.

As would be expected, the algorithm essentially tallies the
21 is the indicator function and the equality is with respect to

set equality.

number of observed ‘wins’ by each item and finally rank-
ing the items by their number of wins, returning the top K
items. As with other versions of the Borda count approach,
the algorithm is simple and easy to implement; and very ef-
ficient in practice. This makes the choice-based Borda count
algorithm appropriate in settings where the statistician is
primarily interested in efficiently and accurately recovering
the set of the top items from a large pool of choice data.

Algorithm 1 The choice-based Borda count algorithm
Input: Choice dataset B = {(Sl, yl)}Nl=1

Output: Top-K estimate ŜK

1: For each item i = 1, . . . , n
2: Compute the number of times i gets chosen:
3: Ŵi :=

∑N
l=1 1[yl = i]

4: Return the set of K items corresponding to the highest
Ŵi’s. Ties are broken arbitrarily.

4 SAMPLE COMPLEXITY BOUND

In this section, we present the sample complexity of the
choice-based Borda count algorithm for top-K recovery. We
first formalize our sampling model in Section 4.1. In Section
4.2, we characterize the class of IID-RUMs under which
the choice-based Borda count can successfully identify all
of the top K items via a theoretical quantity we term the
generalized Borda score. The main theorems on the sample
complexity of the choice-based Borda count algorithm are
presented in Section 4.3.

4.1 THE SAMPLING MODEL

Let C(m) be the set of all menus of size m ≥ 2 (i.e.,
|C(m)| =

(
n
m

)
). Additionally, let C(m)

i be the set of all
menus of size m containing item i (i.e., |C(m)

i | =
(
n−1
m−1

)
).

We consider a multiple-round uniform sampling model with
R rounds of sampling in total. In each round r = 1, . . . , R,
each menu S ∈ C(m) is independently offered with prob-
ability p > 0. Let Ĉ(m,r) denote the set of menus of size
m that are offered in round r. If offered menu S, the user
responds with a random choice y

(r)
S , where

P(y(r)S = i) = ρ(i|S) .

It is easy to check that we have, in expectation, pR
(
n
m

)
samples over R rounds.

As a practical example, this sampling procedure can be used
to design online political surveys. Suppose that there are
R voters willing to take part in answering survey question-
naires to determine support for n political candidates. Fix
a ballot size m. For each voter, each ballot of size m is



independently presented to that user with probability p. For
each ballot, the voter picks one favourite candidate.

4.2 THE GENERALIZED BORDA SCORE

For each item i, define the following theoretical quantity,
which we term the generalized Borda score:

τ
(m)
i =

1(
n−1
m−1

) ·
∑

S∈C(m)
i

ρ(i|S) .

Intuitively, the generalized Borda score is the expected prob-
ability that an item i is chosen from a menu S where S is
uniformly sampled from C

(m)
i . Note that τ (m)

i ∈ [0, 1] for
all i ∈ [n]. The generalized Borda score is interesting to us
because for a large class of IID-RUMs, the order among the
items with respect to the generalized Borda scores is the
same as that with respect to the partworths. Therefore, it
suffices to rank the items by their generalized Borda scores
to recover the items with the highest partworths. Formally,
we can characterize this class of IID-RUMs using a property
we term Borda consistency.

Definition 1. An IID-RUM ρ satisfies Borda consistency if
for any two items i, j and any menu size m ≥ 2,

τ
(m)
i > τ

(m)
j ⇔ Ui > Uj .

The follow lemma establishes that many commonly used
IID-RUMs such as the MNL (Gumbel distributed noise) and
the Probit (Normal distributed noise) model satisfy Borda
consistency.

Lemma 4.1. All IID-RUMs whose noise distribution has
absolutely continuous density function and support on the
real line satisfy Borda consistency.

In the supplementary materials, we will show that Borda con-
sistency is satisfied by an even broader class of IID-RUMs
that include other commonly used models such as the IID-
RUM with exponentially distributed noise. Intuitively, this
stems from the property enjoyed by many IID-RUMs: for
any two items i, j where Ui > Uj , ρ(i|S) > ρ(j|S) ∀S ∈
C(m) : i, j ∈ S; and ρ(i|S ∪ {i}) > ρ(j|S ∪ {j}) ∀S ∈
C(m−1) : i, j /∈ S. To the best of our knowledge, this fun-
damental property that holds across a very broad class of
IID-RUMs has not been previously decribed in the literature
and may be useful to future works exploring the intersection
of ranking and choice modeling.

4.3 EXACT TOP-K RECOVERY

Having established Borda consistency as a property enjoyed
by many IID-RUMs, we will now present the finite sample
guarantees of the choice-based Borda count algorithm for

top-K recovery that holds for all choice models in this broad
class of IID-RUMs. To show that the choice-based Borda
count algorithm accurately identifies all of the top K items
with high probability, it suffices to bound the probability
that the algorithm mistakenly ranks an item j /∈ S∗

K higher
than another item i ∈ S∗

K . Specifically, we want to bound
the following probabilities.

P(Ŵj > Ŵi) ∀i ∈ S∗
K , j /∈ S∗

K ,

where Ŵi is defined in Algorithm (1). Considering this, the
fundamental hardness of top-K ranking lies in distinguish-
ing between the K-th and K +1-th best item, and therefore
depends on the gap between their generalized Borda scores:

∆
(m)
K = τ

(m)
K − τ

(m)
K+1 .

The smaller this gap, the more data the algorithm requires in
order to correctly separate between the top K and the bottom
n − K items. Building on this intuition and generalizing
to any pair of items (i, j) where τi > τj , we obtain the
following upper bound on P(Ŵj > Ŵi).

Lemma 4.2. Consider an IID-RUM that satisfies Borda
consistency per Definition 1. Assume input choice data with
menu size m is generated according to the sampling model
described in Section 4.1. For any two items i and j where
τ
(m)
i > τ

(m)
j , the choice-based Borda count algorithm sat-

isfies

P(Ŵj > Ŵi) ≤ exp

−3pR
(
n
m

)
m(τ

(m)
i − τ

(m)
j )

2

8n(τ
(m)
i + τ

(m)
j )

 .

The proof of Lemma 4.2 uses a standard concentration
inequality argument based on Bernstein’s inequality (cf.
Theorem 2.8.4 Vershynin [2018]). The lemma itself states
that, for each pair i ∈ S∗

K , j /∈ S∗
K , if pR

(
n
m

)
≥

8n logn(τ
(m)
i +τ

(m)
j )

m(τ
(m)
i −τ

(m)
j )2

, then P(Ŵj > Ŵi) = O( 1
n3 ). We also

have the following lemma which presents an upper bound

on the item-dependent term
τ
(m)
i +τ

(m)
j

(τ
(m)
i −τ

(m)
j )2

.

Lemma 4.3. Consider an IID-RUM that satisfies Borda
consistency per Definition 1. For any K, we have

τ
(m)
K + τ

(m)
K+1

∆
(m)
K

2 = max
i∈S∗

K ,j /∈S∗
K

{
τ
(m)
i + τ

(m)
j

(τ
(m)
i − τ

(m)
j )2

}
.

By combining the two lemmas above and applying union
bound over all pairs i ∈ S∗

K , j /∈ S∗
K , we obtain the follow-

ing sample complexity bound for exact top-K recovery:

Theorem 4.4. Assume the conditions of lemma (4.2). Given
sufficiently large p,R such that pR

(
n
m

)
≥ 8n logn

m∆
(m)
K

2 ·(∆(m)
K +



2τ
(m)
K+1), the choice-based Borda count algorithm correctly

identifies all of the top K items with probability at least
1−O( K

n2 ).

The reader may also recognize that ∆(m)
K +2τ

(m)
K+1 is simply

τ
(m)
K + τ

(m)
K+1. The former presentation is, however, useful

in highlighting the main quantities that will also reappear in
our matching lower bound. In summary, the choice-based
Borda count algorithm has the following sample complexity
for exact top-K recovery:

O

(
n log n

m∆
(m)
K

· (1 +
τ
(m)
K+1

∆
(m)
K

)

)
.

This shows that overall, we only need O(n log n) examples
to recover the top K items from choice data with high ac-
curacy. Our upper bound (and matching lower bound to be
shown) can be seen as both generalization and refinement
of Theorem 1 of Shah and Wainwright [2017]. Under the
pairwise comparison setting (m = 2), we can simply upper
bound τ

(m)
K+1 ≤ 1 and recover the (optimal) sample com-

plexity O
(
n logn

∆
(2)
K

2

)
of Borda count obtained by Shah and

Wainwright [2017]. The analysis approach there, however,
is insufficient to produce an optimal sample complexity
bound in the discrete choice setting. Note also that there
can be combinatorially many realizations of the data in the
discrete choice setting as |C(m)| =

(
n
m

)
. Our proof therefore

requires considerably more effort. Our bound also shows
that the sample complexity depends not only on the gap
∆

(m)
K between the K-th and K + 1-th item, but also the

relative ‘strength’ of the K + 1-th item, as captured by the
τ
(m)
K+1

∆
(m)
K

term.

In general, the factors τ (m)
K+1 and ∆

(m)
K don’t admit closed

form expressions because both are sums of
(
n−1
m−1

)
terms.

The reader may also recognize that these parameters also
depend on the menu size m, the partworth parameters and
the noise distribution. In the next section, we will show
a matching lower bound in terms of the same parameters,
establishing the optimality of the choice-based Borda count
algorithm, and discuss why the exact relation between ∆

(m)
K ,

τ
(m)
K+1 and the model parameters remains elusive.

Often in practice, we may tolerate some error for top-K
ranking by allowing the algorithm to misidentify, up to a
threshold, some number of items. This is known as approx-
imate top-K recovery. We include detailed discussions of
this problem in the supplementary materials and show that
the choice-based Borda count algorithm also has optimal
sample complexity for approximate top-K recovery under
the broad class of IID-RUMs that satisfy Borda consistency.

5 INFORMATION-THEORETIC LOWER
BOUND

In this section, we will show that the choice-based Borda
count algorithm enjoys optimal sample complexity by fur-
nishing a matching lower bound. To show a lower bound, we
will construct a special subclass of the MNL family where
any estimator requires Ω(n log n) examples in order to ex-
actly recover the top K items. We defer detailed descriptions
of this model to the supplementary materials while stating
the main results as follows.

Theorem 5.1. Consider the sampling model described in
Section 4.1. There exists a class of MNL models such that

for n ≥ 20, if pR
(
n
m

)
≤ n logn

8 · τ
(m)
K+1+∆

(m)
K

m∆
(m)
K

2 then any

estimator fails to correctly identify all of the top K items
with probability at least 1

12 .

The proof of Theorem (5.1) first reduces the problem of
exact top-K recovery to a multiple hypothesis testing prob-
lem and then applies Fano’s lemma [Cover, 1999]. Each
hypothesis in the testing problem corresponds to an MNL
model. Within each model, the set of the top K items al-
ways includes items 1, . . . ,K − 1. However, the index of
remaining item in the top-K set is different for each model
(i.e., there are n−K + 1 different models). We make all of
the top K items have the same partworths while the bottom
n − K items have the same (and lower) partworths. The
key challenge then is to obtain a tight upper bound on the
KL divergence between any two hypothesis models. In sum-
mary, Theorem (5.1) implies the following minimum sample
complexity for any algorithm for top-K recovery:

Ω

(
n log n

m∆
(m)
K

·
(
1 +

τ
(m)
K+1

∆
(m)
K

))
.

Comparing with the bound in Theorem 4.4, one can see that
the sample complexity of Borda Count is optimal in terms
of both m, n as well as the model dependent parameters
∆

(m)
K and τ

(m)
K+1.

6 THE ROLE OF THE MENU SIZE m

The effect of the menu size on the performance of top-K
recovery algorithms is an aspect of both theoretical and
practical importance. In real life applications, the menu size
could range from 2 to hundreds of items. One may suspect
that increasing the menu size means the data carries more
information per data point, and thereby reduces the sample
complexity for top-K recovery. However, to the best of our
knowledge, such a relationship has not been theoretically
established in the literature on choice modeling, even for
the very commonly used MNL model.

As seen in the matching lower and upper bound for the
sample complexity of top-K recovery, the menu size enters



in complex ways through the factors ∆(m)
K and τ

(m)
K+1. Both

factors can vary in subtle ways with m, depending on the
underlying choice model. Even for the class of MNL models
which admit closed form choice probabilities, these factors
don’t seem to have a closed form expression as each of them
is a sum of

(
n−1
m−1

)
terms. To bypass the difficulty of exactly

evaluating ∆
(m)
K and τ

(m)
K+1, we characterize the asymptotic

dependency of 1

m∆
(m)
K

and
τ
(m)
K+1

∆
(m)
K

on m under the MNL class

of models and show that both of these factors monotonically
decrease with m but at a decreasing rate. This implies that
while there is an advantage to using choice data of larger
menu sizes, there is a diminishing return to increasing the
menu size.

Theorem 6.1. For any MNL model and a fixed K,

1

m∆
(m)
K

= θ

(
1

eUK − eUK+1
·
(
1 +

1

m− 1

))
,

τ
(m)
K+1

∆
(m)
K

= θ

(
eUK+1

eUK − eUK+1
·
(
1 +

1

m− 1

))
.

It can be seen in both 1

m∆
(m)
K

and
τ
(m)
K+1

∆
(m)
K

that the term which

depends on m, 1 + 1
m−1 , montonically decreases with m

but at a diminishing rate. Combining the above theorem and
the matching sample complexity bounds obtained earlier,
one can see that the optimal sample complexity for top-K
recovery from choice data scales as θ(1 + 1

m ).

Outside of the MNL family of models, we are not aware
of any IID-RUM that admits a closed form expression for
the choice probabilities. However, suppose that we know
all of the partworths and the noise distribution, we can
still approximate the choice probabilities via Monte Carlo
sampling. Given these (approximated) choice probabilities,

one can then evaluate 1

m∆
(m)
K

and
τ
(m)
K+1

∆
(m)
K

. As an example,

Figure 1 shows how these quantities vary with m under a
randomly generated MNL and Probit model (IID-RUM with
standard normal noise) [Train, 2009] with n = 15, K = 3.
The partworths were independently generated from a zero-
mean normal distribution which is also a commonly chosen
prior in the literature [Parkes et al., 2012, Train, 2009]. The

curves for 1

m∆
(m)
K

and
τ
(m)
K+1

∆
(m)
K

decrease at a rate approximately

similar to those of the MNL model as stated in Theorem 6.1.
Ranking from choice data under MNL model assumptions
remains an active area of research [Agarwal et al., 2018,
2020] and to the best of our knowledge, our work presents
the first asymptotic characterization of the optimal sample
complexity for top-K recovery in terms of the menu size m
under this often used class of choice models.

Figure 1: 1

m∆
(m)
K

and
τ
(m)
K+1

∆
(m)
K

decrease with larger m under a

randomly generated MNL and Probit model. This suggests
that there is an advantage, albeit with dimnishing return, to
using larger menu sizes.

7 CONNECTIONS TO COMMONLY
USED RANKING ALGORITHMS

In this section, we establish close connections among choice-
based Borda count, the method of maximum likelihood esti-
mate under MNL assumptions (MNL-MLE) [Train, 2009]
and Spectral Ranking [Negahban et al., 2017, Maystre and
Grossglauser, 2015, Agarwal et al., 2018] which will explain
many experimental results we present in later sections.

Firstly, one can prove that choice-based Borda count and
MNL-MLE are ‘equivalent’ top-K recovery algorithms in
the limit of infinite data. This connection is formalized as
follows.

Theorem 7.1. Consider the sampling model described in
Section 4.1, for any p > 0, in the limit as R → ∞, MNL-
MLE and choice-based Borda count will produce the same
top-K estimate. Moreover, this holds even if the data does
not come from the MNL model or any IID-RUM.

A similar observation was made in Rajkumar and Agarwal
[2014]: under the pairwise comparison setting the Borda
count algorithm and MNL-MLE are both consistent for
full ranking under a class of pairwise comparison models
that is strictly more general than the BTL model 3. Our
results generalize the relation between the two algorithms
to the choice setting and show that in fact the Borda count
algorithm and MNL-MLE produce the same estimate in
the limit of infinite data under any choice models. This
connection between the two methods is reflected in our
experiments where the performance of the choice-based
Borda count algorithm is almost identical to that of MLE,
when the sample size is large. While performing similarly
to MNL-MLE, the choice-based Borda count algorithm is

3The BTL model is the instantiation of the MNL to the pairwise
comparison setting



several orders of magnitude faster thanks to its simplicity.
This suggests that if the statistician is mostly concerned
with recovering a small number of top items, the choice-
based Borda count algorithm should be seriously considered
due to its speed, simplicity and guaranteed optimal sample
complexity.

The above result also means that MNL-MLE is a consis-
tent top-K ranking algorithm under the broad class of IID-
RUMs, since the choice-based Borda count algorithm is
consistent in recovering the top K items. This shows that
MNL-MLE may be used for ranking applications even when
the data does not satisfy the MNL assumption. Consistency
of MLE under model misspecification is an underexplored
question and we leave the careful characterization of the
sample complexity of MNL-MLE when the data comes
from a non-MNL distribution as a subject of future studies.

On the other hand, Spectral Ranking does not in general
produce the same top-K estimate as MNL-MLE/choice-
based Borda count. However, when the underlying choice
model falls within a broad class of IID-RUMs which include
many commonly used choice models such as the MNL and
Probit model, all three algorithms produce the same estimate
given infinite data.

Theorem 7.2. Consider the sampling model described in
Section 4.1. Assume that the underlying choice model gen-
erating the data is in the class of IID-RUMs whose noise
distribution has absolutely continuous density function with
support on the real line. For any p > 0, in the limit as
R → ∞, then Spectral Ranking, MNL-MLE and choice-
based Borda count produce the same top-K estimate.

On the other hand, there exists a choice model where in the
limit as R → ∞, the Spectral Ranking algorithm produces
a different top-K estimate from MNL-MLE/Borda count.

8 EXPERIMENTS

In this section, we present experiment results on both syn-
thetic and real datasets. The main performance metric is
top-K accuracy. More specifically, we measure top-K ac-
curacy as the frequency at which the respective algorithm
correctly identifies all of the true top K items, over 100
trials.

8.1 SYNTHETIC DATA

We verify, via synthetic experiments, the efficacy of the
choice-based Borda count algorithm and the effect of the
menu size m on its performance. Let there be n = 50 items
in the universe. We experiment with 3 different noise distri-
butions: standard Normal noise (Probit), standard Gumbel
noise (MNL) and standard Exponential noise. We vary the
menu size m = 2, 4, 6, 8 and K = 1, 3, 5. Figure 2 shows
top-K accuracy against the sample size. In all experiments,

choice-based Borda count successfully identifies the top K
items with high probability given sufficiently large sample
size. Furthermore, using larger menu sizes improves the per-
formance of Borda Count. However, it can be seen that there
is a diminishing return in performance gains from using
larger menu sizes, agreeing with our theoretical analysis in
Section 5.

Figure 2: Synthetic data: Exact top K accuracy of choice-
based Borda count against sample size for different menu
sizes 2 (blue), 4 (orange), 6 (green), 8 (red) with K = 1, 3, 5
and n = 50. Increasing the menu size improves performance
but with a diminishing return.

8.2 REAL DATA

Baseline algorithms: We compare choice-based Borda
count against Accelerated Spectral Ranking (ASR) [Agar-
wal et al., 2018] and Maximum Likelihood Estimate (MLE)
under MNL assumptions [Train, 2009] in terms of top K
accuracy. We implement MLE using Scipy’s L-BFGS opti-
mizer [Virtanen et al., 2020].

Data description: We follow standard procedures com-
monly used in previous works such as Rajkumar and Agar-
wal [2014], Agarwal et al. [2020]. Operating on full ranking
datasets, we can estimate the choice probabilities for any
menu S, i.e., choice probability ρ(i|S) is the proportion of
rankings that ranks item i highest among all them items in
S. Given these probabilities, we can simulate the sampling
model as described in Section 4.1. Our datasets include
SUSHI [Kamishima, 2003], APA election dataset [Diaconis,
1989], 3 Irish election datsets and F1 race dataset included



Figure 3: F1 dataset (n = 22): Average training time (sec-
onds) against sample size for m = 2, 4, 8. Choice-based
Borda count (blue) is several orders of magnitude faster
than its competitors.

in the library PrefLib [Mattei and Walsh, 2013]. Notably,
the induced pairwise choice probabilities of these datasets
all satisfy stochastic transitivity. Therefore, there exists a
universal ordering of the items which we can use as a true
global ranking over the items. Due to space constraint, we
can only present a few representative experimental findings
and leave additional results with detailed descriptions of
data processing in the supplementary materials.

Speed advantage: Across all experiments, choice-based
Borda count is several orders of magnitude faster than
ASR and MLE. This difference is especially pronounced in
datasets with more items such as the F1 dataset, as shown
in Figure 3.

Competitive accuracy: Figure 4 show the performance of
the algorithms under the Irish-Meath dataset and Figure 5
shows the results for the Irish-West dataset. Our theoretical
analysis in Section 7 is reflected in our experimental find-
ings: the performance of MNL-MLE and the Borda count
algorithm are very similar given sufficiently large sample
size. Spectral Ranking, on the other hand, may perform
better or worse than MLE/Borda count depending on the
dataset and the choice of m and K. For many combinations
of m and K, we observe that the choice-based Borda count
algorithm accurately recovers the top K items and is highly
competitive with MNL-MLE and Spectral Ranking. Notably,
in most datasets, for smaller K and large m, ithe Borda
count algorithm has considerable advantages thanks to its
accuracy and faster running time. In practice, this means
choice-based Borda count is appropriate for applications
where the statistician is interested in quickly determining
a single (or a few) top candidate(s) from a large amount of
data such as aggregating political surveys.

9 CONCLUSION

Ranking under Random Utility Models is a promising area
of research with many practical applications. Our work
shows how an efficient algorithm can perform very well

Figure 4: Irish-Meath dataset (n = 14): Exact top-K ac-
curacy against sample size. choice-based Borda count (blue)
is competitive with baseline algorithms. Using larger menu
sizes generally improves the performance of the algorithms.

Figure 5: Irish West dataset (n = 9): choice-based Borda
count (blue) performs very similarly to MNL-MLE (gray)
while the performance of ASR (orange) may diverge from
MNL-MLE/choice-based Borda count.



under a broad family of RUMs. That being said, the class
of IID-RUMs constitutes only a subset of models within
the class of general RUMs. Beyond IID-RUMs, not much is
known in terms of efficient inference and ranking algorithms.
In the future, we hope to see more ranking methods devel-
oped for more expressive RUMs which have non-identical
noise distributions or dependent noise distributions.
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