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Abstract

Imagination in world models is crucial for enabling agents to learn long-horizon
policies in a sample-efficient manner. Existing recurrent state-space model (RSSM)-
based world models depend on single-step statistical inference to capture the envi-
ronment dynamics, and, hence, they cannot effectively perform long-term imagina-
tion tasks due to the accumulation of prediction errors. Inspired by the dual-process
theory of human cognition, we propose a novel dual-mind world model (DMWM)
framework that integrates logical reasoning to enable imagination with logical
consistency. DMWM is composed of two components: an RSSM-based System 1
(RSSM-S1) component that handles state transitions in an intuitive manner and a
logic-integrated neural network-based System 2 (LINN-S2) component that guides
the imagination process through hierarchical deep logical reasoning. The inter-
system feedback mechanism is designed to ensure that the imagination process
follows the logical rules of the real environment. The proposed framework is
evaluated on benchmark tasks that require long-term planning from the DMControl
suite and the robotic platforms. Extensive experimental results demonstrate that the
proposed framework yields significant improvements in terms of logical coherence,
trial efficiency, data efficiency and long-term imagination over the state-of-the-art
world models. The code is available at https://github.com/news-vt/DMWM.

1 Introduction
Imagination is a core capability of world models that allows agents to predict and plan effectively
within internal virtual environments by using real-world knowledge [1, 2, 3, 4]. By predicting
future scenarios in latent spaces, agents can evaluate potential outcomes without frequent real-world
interactions thereby significantly improving data efficiency and minimizing trial-and-error costs. For
complex tasks requiring long-term planning, imagination capabilities allow world models to evaluate
the long-term consequences of diverse strategies and identify the optimal action plans. Consequently,
the effectiveness of model-based decision-making approaches, such as model-based reinforcement
learning (RL) [5, 6, 7, 8] and model predictive control (MPC) [9, 10, 11], can heavily depend on the
quality of their imagination abilities.

One of the most widely used frameworks for world models is the so-called recurrent state-space model
(RSSM) [2, 9, 12] and its variants [13, 14, 15, 16] that combine deterministic recurrent structures with
stochastic latent variables to model environmental dynamics in a compact latent space. By doing so,
RSSM models can capture the sequential dependencies and uncertainty of their target environment.
However, RSSM cannot provide reliable, long-term predictions over extended imagination horizons
due to the accumulation of prediction errors and the limitations of statistical inference [17, 18, 19].
In particular, although existing RSSM-based solutions can generate accurate short-term predictions
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in a single-step manner, small errors inevitably propagate over longer time horizons [20], gradually
amplifying over each step and resulting in significant deviations between the imagined and actual
states. Moreover, RSSM schemes often optimize state-space representations through reconstruction
loss or regression. This approach can lead to overfitting to observed patterns and cannot properly
capture latent dynamics [18, 20, 21], particularly in complex, dynamic environments.

Figure 1: The proposed framework for DMWM.

Several models [17, 18, 20, 22, 23,
24] have been proposed for long-term
planning. For instance, trajectory-
based models [20, 23] learn long-term
dynamics by directly predicting future
states to reduce compounding errors
compared to single-step prediction
models. Latent space-enhanced mod-
els [17, 18] incorporate abstracted
long-term information, such as high-
level goals and global knowledge, to
mitigate error propagation in each
single-step prediction. However, all
of these approaches [17, 18, 20, 22,
23] still rely on statistical inference,
which inevitably leads to prediction
error accumulation and drift over long
horizons. By skipping intermedi-
ate reasoning steps, these approaches
[17, 18, 24] lose the logical consis-
tency and interpretability required for
complex, high-precision planning. Hence, existing approaches cannot provide robust and reliable
imagination over an extended horizon size.

Motivated by the challenges of long-term imagination and the limitations of existing long-term
planning approaches, the main contribution of this paper is a novel dual-mind world model (DMWM)
framework based on the dual-process theory of human cognition [25, 26, 27]. The proposed DMWM
framework can achieve reliable and efficient imagination by synergistically combining the comple-
mentary strengths of System 1 and System 2 learning processes [28, 29]. By designing this framework
shown in Figure 1, we make the following key contributions:

• We propose DMWM, a novel world model framework that integrates the dual-process theory of
human cognition (System 1 and System 2) to endow agents with robust, long-term imagination
capabilities driven by both data and logical reasoning. Particularly, based on the RSSM-based
System 1 (RSSM-S1) component that predicts the state transitions in a fast, intuitive-driven manner,
we further propose logic-integrated neural network-based System 2 (LINN-S2) component that is
used, for the first time, to guide imagination through logical reasoning at a higher level.

• In LINN-S2, we introduce logical regularization rules to conduct logical reasoning within the state
and action spaces by using operations such as ∧, ∨, ¬ and→. The logical rules allows the logical
consistency and interpretability of the world model. Additionally, we propose a new recursive
logic reasoning framework that extends local reasoning into globally consistent long-term planning,
enabling the modeling of logical sequence dependencies in complex tasks.

• We design an effective inter-system feedback mechanism. In particular, LINN-S2 provides logical
constraints to guide RSSM-S1 so as to ensure that predicted sequences are consistent with domain-
specific logical rules. For the feedback based on real-world observations and latent representations
from RSSM-S1, it updates the domain-specific logic of LINN-S2, thereby allowing dynamic
refinement and adaptation. This novel inter-system feedback mechanism can thus allow the
human-like, dual-process cognitive abilities for agents.

• We evaluate the proposed DMWM with actor-critic based RL and MPC in extensive experiments
including DMControl and robotic tasks. Simulation results demonstrate that DMWM is able
to respectively provide 14.3%, 5.5-fold, 32% and 120% improvement in logic consistency, trial
efficiency, data efficiency and reliable imagination over an extended horizon size compared to
baselines in complex tasks.
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2 Proposed DMWM Framework
In this section, we introduce the proposed DMWM framework inspired by the dual-process theory
of human cognition. DMWM consists of RSSM-S1 and LINN-S2. First, we introduce RSSM-S1,
which builds upon the RSSM architecture to learn the environment dynamics in a latent space and
perform fast, intuitive state representations and predictions. Next, we introduce a novel LINN-S2 to
capture the intricate logical relationships between the state space and the action space. By employing
a hierarchical deep reasoning framework, LINN-S2 facilitates structured reasoning and enforces
logical consistency over extended horizons. Finally, we explain the proposed inter-system feedback
mechanism. The pipeline of the proposed DMWM framework is shown in Figure 1.

2.1 RSSM-based System 1
The RSSM-S1 component is based on DreamerV3 [7], which is represented by

Deterministic State: ht = fφ (ht−1, zt−1, at−1) ,
Encoder: zt ∼ qφ (zt | ht, ot) ,
Stochastic State: ẑt ∼ pφ (ẑt | ht) ,
Reward Predictor: r̂t ∼ pφ (r̂t | ht, zt) ,
Decoder: ôt ∼ pφ (ôt | ht, zt) ,

(1)

with the deterministic state ht, observation ot, predicted observation ôt, stochastic state zt, predicted
stochastic state ẑt, action at and the predicted reward r̂t at time step t. RSSM-S1 achieves an effective
balance between deterministic and stochastic states and enables efficient data-driven prediction similar
to the intuitive and automatic processes of System 1. The deterministic state captures data patterns,
and the stochastic state models inherent uncertainty and dynamics for complex environments.

System 1 loss. RSSM-S1 is optimized by using the loss function of DreamerV3 [7]:

LS1 (φ) = Lpred (φ) +ϖdyn Ldyn (φ) +ϖrep Lrep (φ),

Lpred (φ) = − ln pφ (ot | zt, ht)− ln pφ (rt | zt, ht) ,
Ldyn (φ) = KL [sg (qφ (zt | ht, ot)) ∥pφ (zt | ht)] ,
Lrep (φ) = KL [qφ (zt | ht, ot) ∥ sg (pφ (zt | ht))] ,

(2)

whereϖdyn andϖrep are respectively the weight factors of the dynamic lossLdyn and the representation
loss Lrep , and sg(·) represents the stop-gradient operator.

Figure 2: Logic reasoning for LINN-S2.

System 1 limitations. The RSSM framework
can be viewed as a computational counterpart
of the System 1 component in the dual-process
theory of cognition [25] characterized by fast,
intuitive-driven reasoning. However, it is inher-
ently constrained by two critical limitations: the
absence of explicit logical reasoning and the
inability to maintain coherence over extended
temporal horizons. While RSSM-S1 enables
efficient and immediate response through pat-
tern recognition and intuitive prediction, these
strengths come at the cost of enforcing logical
consistency or inferring causal relationships in
complex scenarios. Moreover, RSSM-S1’s fo-
cus on short-term processing limits its ability to
integrate information across long periods, resulting in fragmented or inconsistent predictions in
tasks that demand global planning or long-term foresight. These inherent limitations demonstrate
the need to complement the capabilities of RSSM-S1 with mechanisms of structured reasoning and
sustained temporal coherence, similar to System 2, to construct a more robust, cognitive world model
framework.

2.2 Logic-integrated neural network-based System 2

Next, we introduce the LINN-S2 component whose deep logical reasoning is shown in Figure 2.
In LINN-S2, the states and actions are encoded as logic vector inputs, enabling logical deduction
through operations such as negation (¬), conjunction (∧), disjunction (∨), and implication (→). To
establish these logical operations, the LINN framework [30] serves as the foundational module for
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System 2. We propose a novel hierarchical logical reasoning framework and extended regularization
rules for implication operations to capture and reason about structural relationships between the state
and action spaces, thus endowing the world model with logical inference capability.

Neural modules for basic logic operations. In logical reasoning for world models, it is essential
to uncover structural information and semantic relationships across different embedding spaces,
specifically the action space and the state space. In [30], the authors proposed a straightforward
concatenation-based method for LINN. However, the approach of [30] is limited by the fact that it
limits that input vectors are from the same source space. Moreover, the straightforward concatenation-
based method overlooks the semantic disparities between states and actions, risking the loss of critical
information and failing to capture complex cross-space logical relationships.

To address the need for cross-space logical reasoning in world models, we propose to explore
the action embeddings and apply the Kronecker product for cross-space feature alignment, which
preserves logic integrity and captures second-order relationships. The (imagined) state logical
embedding v and the state logical embedding m are obtained with multilayer perception (MLP) by

v = W s
2 f (W

s
1 (z) + bsw) , m = W a

2 f (W
a
1 (z ⊕ a) + baw) , (3)

where ⊕ is the operation of vector concatenation, and z ⊕ a aims to capture the action logic within
the state context. The formulations of operations (AND,OR,NOT) are respectively given by

AND(v,m) = W a
2 f
(
W d

1 (v ⊕m) + bdw
)
+Conv2D(v ⊗m,Kd) + bdk, (4)

OR(v,m) = W o
2 f (W

o
1 (v ⊕m) + bow) + Conv2D(v ⊗m,Ko) + bok, (5)

NOT(v) = v +W n
2 f (W

n
1 v + bnw) , (6)

where v ∈ Rd, m ∈ Rd, W l
1 ∈ Rd×2d,W l

2 ∈ Rd×d, blw ∈ Rd, blk ∈ Rd are the parameters of the
logical neural networks, l ∈ {d, o, n}, Conv2D(·) represents the convolution neural network, K is
the convolution core, ⊗ is the operation of Kronecker product, and f(·) is the activation function.

Logical operations capture intricate logical correlations that cannot be fully encapsulated by the
geometric properties of the embedding space. For instance, the logical independence in NOT(v),
reflected in the relationship between v and ¬v, does not correspond precisely to vector orthogonality.
Logical operations are governed by logical axioms (e.g., identity, annihilator, and Complement),
which impose algebraic constraints that transcend purely geometric interpretations, which are intro-
duced in the logic regularization part.

Implication relationship for state reasoning. Based on the basic logical operations (AND, OR,
NOT), we implement the implication operation (pφ → qφ) to enable logical reasoning within the
state and action logical embedding spaces. The implication operation is critical for assessing the
rationality of a predicted state given the current imagination and action embeddings, which is derived
through the equivalence relationship p→ q ⇐⇒ ¬p ∨ q. Hence, the operation IMPLY for v → m is
realized based on the fundamental operations of negation (¬) and conjunction (∧), represented by

IMPLY(v,m) = OR(NOT(v),m). (7)

Table 1: Partital Logical Regularizers and Rules for Implication→
Logical Rule Equation Logic Regularizer ri
Identity w → T = T r11 =

∑
w∈W 1− Sim(OR(NOT(w),T),T)

Annihilator w → F = ¬w r12 =
∑
w∈W 1− Sim(OR(NOT(w),F),NOT(w))

Idempotence w → w = T r13 =
∑
w∈W 1− Sim(OR(NOT(w), w),T)

Complement w → ¬w ≡ ¬w r14 =
∑
w∈W 1− Sim(OR(NOT(w),NOT(w)),NOT(w))

Logical regularizations. To ensure that neural modules accurately perform logical operations, the
work in [31] introduced logic regularizers {ri} that enforce adherence to fundamental logical rules,
thereby constraining module behavior. While neural networks can implicitly learn logical operations
from data, the explicit incorporation of logical constraints improves model consistency, interpretability,
and robustness while maintaining efficient neural computation. Derived from principles of AND, OR,
and NOT, logic regularizers establish a unified inference framework with fundamental and advanced
operations. This approach aligns model outputs with human-understandable reasoning, bridging
neural networks and formal logic, and enabling effective learning, representation, and inference of
logical formulas for interpretable reasoning in world models.
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We extend the foundational framework of logical regularization in [30] by introducing implication
regularizers to address advanced logical rules. As summarized in Table 1, the implication rules
refine basic logical structures to handle intricate constructs. By explicitly encoding principles
such as contraposition (w → v ≡ ¬v → ¬w) and complement (w → ¬w ≡ ¬w), LINN-S2
improves its capacity to manage compound logical expressions while ensuring consistency across
implication operations. The extended logical regularizers for IMPLY (r11-r14) are given in Table 1,
combined with the basic logical regularizers for AND, OR, and NOT (r1-r10), collectively define
the regularization loss function Lreg = 1

Nr

∑
i ri, where ri represents individual logical regularizers

and Nr presents the total number of the regularizers. The complete table of the logical regularizers is
given in Appendix G.
Proposed symbolic representation of hierarchical logical reasoning. We now present the symbolic
representation of LINN-S2 for deep logical reasoning. Specifically, the logical reasoning process is
formalized by using symbolic logic to represent logical relationships in sequences. By leveraging
logical operations (∧,→), LINN-S2 constructs a hierarchical logical reasoning framework that
facilitates systematic and interpretable reasoning over sequential dependencies. The framework of
the hierarchical logical reasoning is illustrated in Figure 2, which includes three key procedures given
as follows.

1) Local logical composition: Each (imagined) state logical embedding vt and action logical embed-
ding mt are combined by using the logical conjunction (∧) to capture the intrinsic logic as

ct : vt ∧mt, ∀t < T. (8)

The composition ct establishes localized logical features based on the existing vt and mt.

2) Recursive implication reasoning: To ensure logical consistency across (imagined) states, each
composition (ct) undergoes an implication operation (→) that aligns the logical information with the
subsequent (imagined) state

ϕt : ct → zt+1, ∀t < T. (9)

The recursive formulation (9) encodes sequential dependencies and enforces consistency in predictive
state transitions across the hierarchy. However, ϕt provides only single-step logical inference, and it
lacks reasoning depth and comprehensiveness. To address this limitation, we propose incorporating
deterministic historical information into the logical reasoning framework. The deep recursive
implication reasoning is represented by

ϕαt : ct−α · · · ∧ ct−1 ∧ ct → zt+1,∀α < t < T, (10)

where α is the inference depth. In complex scenarios with long-term dependencies, the model utilizes
logical relationships from past states to ensure coherent reasoning. Capturing logic across time steps
retains historical information, strengthens sequential dependencies and enhances global consistency.
This prevents inference bias from information loss during multi-step reasoning and ensures the
reliability of long-term imagination.

3) Global logical chain: The global reasoning process integrates local consistency and recursive
reasoning into a unified global logical chain LT within the time period T

LαT = ϕα1 ∧ ϕα2 ∧ ϕα3 · · ·ϕαT−1 → T, (11)

where T represents the consistency condition, ensuring that the (imagined) state sequences align with
the reasoning objectives. This formulation consolidates local information into a globally consistent
reasoning framework.

In this way, LINN-S2 enhances the formal interpretation and mathematical rigor of world models
along with several key features. First, the hierarchical structure encodes deep logical reasoning as a
layered process, which allows logical consistency between state and action representations. Second,
logical composition leverages logical operations for binding states and actions in a logical manner.
This composition facilitates formal logic principles and enables modular, interpretable reasoning.
Finally, the recursive implication ensures robustness and interpretability for long-term imagination.

System 2 loss. The loss function of the logic reasoning with inference depth α is given by

Lαlog=
1

T − 1

∑
t

Sim(ϕαt ,T)−Sim(ϕαt ,F)=
1

T − 1

∑
t

Sim(ϕαt ,T)−Sim(ϕαt ,NOT(T)), (12)
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where the function Sim is the logic similarity metric that takes value between 0 and 1. In practice, T
is a randomized fixed vertor, and F is obtained by NOT(T). We use the cosine similarity since the
logical information of action and state spaces has been aligned in the logical vector space, given by

Sim(v,m) = σ (κ(v ·m)/(∥v∥∥m∥)) . (13)

To ensure the logical consistency of basic operations of AND and OR by order-independence, i.e.,
v ∧m = m ∧ v and v ∨m = m ∨ v, the inputs of AND and OR are randomly disrupted. Moreover,
the ℓ2-regularization term Lv [30] is employed to prevent the vector lengths from exploding, which
could otherwise lead to trivial solutions (e.g., logical rules becoming ineffective) during optimization,
and constraint on the model parameters to mitigate the risk of overfitting, represented by

Lℓ2 =
∑
v∈V
∥v∥2F +

∑
m∈M

∥m∥2F +
∑
w∈W

∥w∥2F , (14)

whereW is the model parameter of LINN-S2. The loss function of System 2 is expressed as

LS2(w) =

Λ∑
α=0

Lαlog + βregLreg + βℓ2Lℓ2 , (15)

where βreg and βℓ2 represents the weight factors, and Λ denotes the maximum reasoning depth.

2.3 Inter-System Feedback Mechanism
Next, we develop a novel inter-system feedback mechanism to enable communications of observation
signals and logical signals between System 1 and System 2.

Feedback from S1 to S2. During the real-environment interactions, LINN-S2 updates the domain-
specific logical relationships by using the actual state transitions from RSSM-S1. Particularly, the
state-action sequence {zt, at, zt+1}Tt=0 captured by RSSM-S1 based on observations {ot}Tt=0 serves
as labeled data, which is fed into LINN-S2 with the objective of minimizing the inference loss (12).

Feedback from S2 to S1. To embed LINN-S2-inspired logical reasoning into RSSM-S1, we propose
a logic feedback that utilizes LINN-S2’s logical consistency mechanisms to guide RSSM-S1. By
unifying high-level logical structures with low-level representations, the proposed approach fosters a
more robust and coherent world model for imagination. We particularly introduce the logical rules
and rederive the variational evidence lower bound (ELBO) [5] with a logic inference term by

pφ(o1:T , z1:T | a1:T ) =
T∏
t=1

pφ(ot | zt)p̃ϕ(zt | zt−1, at−1), (16)

where p̃ϕ(zt | zt−1, at−1) ∝ pφ(zt | zt−1, at−1) · C(ϕ(zt, zt−1, at−1)) and C(ϕ) = Sim(ϕ,T) is
the logical consistency function that measures whether the logical rule ϕ is satisfied by imagination.
The logical ELBO of the observation loss can be expressed as (Derivation in Appendix C)

ln pφ (o1:T | a1:T ) =
∫
pφ(o1:T , z1:T | a1:T ) dz1:T ≥

T∑
t=1

(Eq1 [ln pφ (ot | zt)]︸ ︷︷ ︸
Decoding

+ Eq1 [ln C(ϕ(zt, zt−1, at−1))]︸ ︷︷ ︸
Logic Inference

−Eq2 [KL [qφ (zt | o≤t, a<t) ∥pφ (zt | zt−1, at−1)]]︸ ︷︷ ︸
Prediction

).
(17)

where q1 = qφ (zt | o≤t, a<t), q2 = qφ (zt−1 | o≤t−1, a<t−1), and the state priors can be approxi-
mately obtained by past observations and actions qφ(z1:T | o1:T , a1:T ) =

∏T
t=1 qφ(zt | ht, ot).

With the proposed inter-system feedback, DMWM enables the agents to think in a human-like,
dual-process cognitive way for more robust, reliable and long-term imagination.

3 Experimental Results and Analysis
In this section, we conduct extensive experiments to address the following key questions: (a) Can our
model effectively capture logical relationships in dynamic environments?, (b) Does enhanced logical
consistency enable our model to achieve higher task rewards under limited environment trials and
data?, and (c) Over an extended horizon, can our model generate reliable long-term imagination?.

Experimental setup. The training environments consist of 20 continuous control tasks from
DeepMind control (DMC) suite, 4 robotic tasks from ManiSkill2 platform, and 4 robotic tasks from
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MyoSuite platform. We evaluate DMWM using two model-based decision-making approaches: An
actor-critic reinforcement learning method and a gradient-based model predictive control (Grad-
MPC) approach [11], referred to as DMWM-AC and DMWM-GD, respectively. Training details
for DMWM-AC and DMWM-GD are provided in Appendix D. For comparison purposes and
benchmarking, we include DreamerV3 [7], Dreamer-enabled Grad-MPC [11], and TD-MPC2 [13] as
baselines. To highlight the limitations of using a single RSSM for world cognition, we compare our
method against two state-of-the-art RSSM variants: Hieros [3] and HRSSM [15]. HRSSM improves
representation robustness via masking and bisimulation to mitigate visual noise interference, while
Hieros enhances long-term modeling and exploration efficiency through S5WM and hierarchical
strategies. Details on environment and model settings are provided in Appendix E.

Figure 3: Heatmap of deep logic correlations for se-
quential imagination s0 ∧ a0 ∧ ...s29 ∧ a29 → s30
with reasoning depth α = 30. The horizontal axis
indicates the past states si and the vertical axis indi-
cates past actions aj . The color of points represents
the logical strength of long-term state-action pairs.

Logical consistency. Figure 3 shows the
logical correlations between individual state-
action pairs (si∧ aj) and the target state (s30).
The diagonal shows strong correlations for
one-step pairs si ∧ ai → s30, which is the key
path of localized reasoning. The off-diagonal
elements show interdependency across differ-
ent state-action pairs (si ∧ aj , i ̸= j) that
propagate global logical information. The ob-
served patterns highlight the need for deep
logical reasoning to capture both short-term
and long-term logical dependencies.

Table 2 compares the logical consistency of
the proposed DMWM against various base-
lines on DMC tasks. Logical consistency
data for 20 tasks with different horizon sizes
is provided in Appendix H.1. The proposed
DMWM achieves state-of-the-art logical con-
sistency in both mean logic loss and stability
across all DMC environments. DMWM re-
spectively achieves 14.3%, 2.6% and 3.3%
improvement in logic consistency compared
to Dreamer, Hieros, and HRSSM. For instance, while the masking and hierarchical strategies in
Hieros and HRSSM can reduce single-step propagation errors by mitigating environment noise, they
still have difficulty in addressing long-term imagination due to predictive deviation in statistical
inference and error accumulation. This highlights the limitations of relying solely on System 1 and
the need for logical consistency from System 2 for robust imagination.
Table 2: Performance comparison of our approach with various baselines on DMC tasks in terms of
logic consistency. The mean and variance of logical consistency are reported over 100 test episodes
with the horizon size H = 30. Complete results of logical consistency over 20 tasks with varying
horizon size are concluded in Appendix H.1.

Env Dreamer [7] Hieros [3] HRSSM [15] DMWM (Proposed)
Cartpole Balance 0.683± 0.057 0.711± 0.032 0.713± 0.041 0.727± 0.023
Pendulum Swingup 0.611± 0.137 0.709± 0.054 0.699± 0.079 0.730± 0.037
Reacher Hard 0.608± 0.121 0.702± 0.062 0.703± 0.072 0.730± 0.042
Finger Turn Hard 0.627± 0.131 0.698± 0.061 0.703± 0.073 0.725± 0.029
Cheetah Run 0.643± 0.131 0.689± 0.113 0.695± 0.087 0.725± 0.049
Cup Catch 0.652± 0.087 0.701± 0.072 0.714± 0.061 0.728± 0.021
Walker Walk 0.612± 0.140 0.696± 0.063 0.701± 0.073 0.730± 0.034
Quadruped Walk 0.656± 0.092 0.701± 0.067 0.703± 0.072 0.723± 0.039
Hopper Hop 0.633± 0.127 0.704± 0.087 0.701± 0.092 0.722± 0.038

Trial efficiency. Figure 4 presents test returns under limited environment trials. The number of
environment trials serves as the x-axis to quantify exploration efficiency by measuring performance
under the same environment exploration opportunities, which is a crucial factor for real-world
applications and high-cost simulations. The complete results for 20 DMC tasks under limited
environment trials are provided in Appendix H.2. The results show that the proposed DMWM-
AC and DMWM-MPC significantly outperform baseline methods across most tasks with limited
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environment trials, particularly in complex environments such as Cheetah Run and Finger Turn
Hard, and Quadruped Run. In contrast, Dreamer and GD-MPC exhibit limited performance in high-
dimensional control tasks with lower learning efficiency and stability. As shown in Figure 4, DMWM
approaches achieve an average 5.5-fold improvement in test return under limited environment trials
compared to baseline methods. These observations highlight that leveraging logical information
from the environment enhances exploration efficiency, especially in complex tasks, by enhancing
DMWM’s capability in long-term imagination.

Figure 4: Performance comparison of results on 4 DMC tasks under environment trials that indicate
the number of times that models explore the environments. The vertical axis indicates the average
return over 100 test episodes. Complete results on 20 DMC tasks are concluded in Appendix H.2.

Figure 5: Performance comparison on 4 DMC tasks under environment steps that indicate the number
of environment interactions. The vertical axis denotes the average test return over 100 episodes.
Complete test results on 20 DMC tasks are provided in Appendix H.3.

Figure 6: Performance comparison of test results on 4 ManiSkill2 robotic tasks under environment
steps. The vertical axis denotes the average test return over 100 episodes.

Data efficiency. Figures 5-7 present test results under limited environment steps for the purpose of
quantifying the data efficiency. The complete results for 20 DMC tasks under limited environment
steps are provided in Appendix H.3. DMWM approaches consistently outperform Dreamer and
GD-MPC across most tasks in terms of convergence speed and final returns, particularly in high-
dimensional dynamics such as Cheetah Run and Quadruped Run. These results highlight DMWM’s
superior long-term planning and dynamic modeling capabilities, enabling more efficient utilization of
environment data. For tasks that require simple dynamic modeling like Cartpole Balance and Cup
Catch, all methods converge rapidly. In contrast, for complex tasks, such as Reacher Hard and Hopper
Hop, the proposed DMWM approaches achieve stable performance and an average improvement of
32% in test return under limited data compared to Dreamer and GD-MPC.
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Figure 7: Performance comparison of test results on 4 MyoSuite robotic tasks under environment
steps. The vertical axis denotes the average test return over 100 episodes.

Figure 8: Performance comparison on 8 DMC tasks across different horizon size. Complete results
on 20 DMC tasks across varying horizon size are provided in Appendix H.4.

Imagination ability over extended horizon size. As shown in Figure 8, although a long-horizon
prediction introduces cumulative errors, DMWM-AC and DMWM-MPC consistently achieve high
test returns across most tasks and remain stable performance even over extended horizons. In stability-
critical tasks, such as Cartpole Balance and Pendulum Swingup, DMWM approaches maintain
strong performance across a wide range of prediction horizons, whereas Dreamer and GD-MPC are
more susceptible to degradation due to prediction errors. For extended horizon size of H > 30 in
complex control tasks, DMWM approaches achieve an average 120% improvement in test return
compared to Dreamer and GD-MPC. These results emphasize the crucial role of logical reasoning in
long-term imagination. Across most tasks, DMWM approaches demonstrate superior performance
over long-term horizons.

Impact of logic inference depth. Figure 9 presents test returns with inference depth α = 10, 30, 50
and the complete results for 20 DMC tasks are provided in Appendix H.5. From Figure 9, we observe
that a bigger reasoning depth α can produce performance gains in long-horizon decision making
along with diminishing marginal returns from increasing logical inference depth and increased
computational overhead. Moreover, Figure 9 also shows that the proposed deep logic inference can
effectively capture the logic over the long-horizon trajectories for more robust imagination.

4 Related Works

World models are critical components in model-based intelligent systems, which enable learning,
reasoning and decision-making in complex environments [5, 6, 7, 32, 33, 34, 35, 36, 37]. By
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Figure 9: Performance comparison of results on 4 DMC tasks under environment trials that indicate
the number of times that models explore the environments. The vertical axis indicates the average
return over 100 test episodes. Complete results on 20 DMC tasks are concluded in Appendix H.5.

simulating the environment, these models imagine future states, plan behaviors and optimize strategies
without relying heavily on real-world trial and error. Existing frameworks for world modeling, such
as RSSM [5, 6, 7], generative models [32, 33, 34], and large language models (LLM) [35, 36, 37],
have demonstrated varying strengths in tasks, such as prediction and efficient behavior planning.
The Dreamer series [5, 6, 7], for instance, has advanced model-based reinforcement learning by
improving task generalization and sample efficiency through latent space modeling and planning.
Additionally, diffusion model-based world models [32, 33, 34] can generate diverse and high-quality
outputs but cannot ensure long-term logical consistency. On the other hand, LLM-based models
[35, 36, 37] can perform limited logical reasoning and task decomposition but face challenges in
dynamic environment modeling and resource consumption.

Furthermore, logic neural reasoning is a promising approach to enhance the generalization ability
and long-term imagination of world models [38, 29, 39]. Previous research has explored logic
neural networks and probabilistic logic [40, 30, 41], but these methods have struggled with dynamic
environments and evolving logical variables. Our approach, by contrast, enables the automatical and
implicit logic inference, thus providing superior generalization and robustness in complex, dynamic
task settings. Hence, in contrast to the existing world models, our work introduces a novel dual-mind
framework that combines the efficient sampling of RSSM with logic-driven reasoning to enhance
long-term imagination with logical consistency, thus addressing a critical research gap for logic-driven
robust world models.

5 Conclusion and Limitations

Conclusion. In this paper, we have proposed DMWM, a novel world model framework for reliable
long-term imagination inspired by the dual-process theory of human cognition. The proposed
DMWM combines the fast, intuitive-driven S1 with the structured, logic inference-driven S2. We
have designed an efficient inter-system feedback mechanism that enhances the logic consistency and
adaptability of imagination trajectories. Extensive evaluations on DMControl and robotic tasks across
diverse benchmarks demonstrated significant improvements in logical consistency, data-efficiency
and reliable imagination over an extended horizon size.

Limitations and future work. A key limitation of our approach lies in its reliance on predefined
simple domain-specific logical rules, which restricts its adaptability to environments where such rules
are ambiguous or constantly evolving. This dependency limits the framework’s ability to generalize to
novel tasks. Future work could focus on enabling the model to autonomously learn and adapt logical
rules from data by exploring causal relationships. This, in turn, can reduce the need for explicit
manual definitions and enhance flexibility in dynamic and complex environments.
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A Impact Statement

Inspired by the human cognitive model, our work proposes a novel DMWM architecture that integrates
intuitive RSSM-S1 with logic-driven LINN-S2 for the first time, which addresses long-horizon
imagination for model-based RL and MPC. By enhancing logical consistency of the architecture,
DMWM improves both efficiency and robustness in complex tasks. Because of these benefits,
DMWM provides a practical and interpretable solution for real-world applications such as autonomous
driving and robotic planning.

Moreover, this work presents a generalized dual-mind framework for world models that can serve
as a solid foundation for future research on general world models. We believe this approach marks
a meaningful step toward artificial general intelligence (AGI) by bridging intuitive processes with
logical reasoning. Hence, DWMW paves the way for more robust, logical and human-like decision-
making systems.

B Background

B.1 Actor-Critic

The actor-critic model is a widely used algorithmic framework in Reinforcement Learning (RL),
which combines the advantages of policy gradient methods and value function approximation. It
addresses RL tasks through the collaborative learning of two primary components: the Actor (policy
network) and the Critic (value network), given as follows:

Action model: aτ ∼ qϑ(aτ | sτ )

Value model: vψ(sτ ) ≈ Eq(·|sτ )

(
H∑
t=τ

γt−τrτ

)
.

(18)

In the world Model, the target of the actor-critic model is to maximize the reward over the imagined
trajectories with the horizon size H . Specifically, the action model seeks to maximize an estimated
value, while the value model strives to accurately predict the value estimate, which evolves as the
action model updates. The training target of the Actor and the Value are given as follows [58, 5, 11].

ϑ∗ = max
ϑ

Eqϕ,qϑ

[
t+H∑
τ=t

Vλ(sτ )

]
(19)

ψ∗ = min
ψ

Eqϕ,qϑ

[
t+H∑
τ=t

1

2
(vψ(sτ )− Vλ(sτ ))2

]
(20)

Vλ(sτ ) = (1− λ)

(
H−1∑
n=1

λn−1V Nn (sτ )

)
+ λH−1V NH (sτ ) (21)

V Nk (sτ ) = Eqϕ,qϑ

[
h−1∑
n=τ

γn−τrn + γh−τvψ(sh)

]
, (22)

where h = min(τ + k, t+H), ϑ represents the parameters of the Actor ψ represents the parameters
of the Critic, and λ is the discount factor.

B.2 Model Predictive Control

Model predictive control (MPC) is an optimization-based control method extensively applied in
engineering and industrial control systems [13, 59, 60, 61]. By leveraging the system’s dynamic
model, MPC predicts future behavior through rolling optimization, generating optimal control inputs
at each time step to achieve the desired system objectives. However, due to the fact that MPC
strongly relies on the system model and the requirement for online optimization, it has difficulty
in effective decision-making performance if the world model fails to provide stable and reliable
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imagined trajectories [9, 11]. The gradient-based MPC framework [11] for world model is presented
as

a∗t:t+H = max
a
(j)
t:t+H

R(j), R(j) =

t+H+1∑
τ=t+1

E
[
qϕ(rτ | s(j)τ )

]
(23)

{
a
(j)
t:t+H

}J
j=1
∼ N (µt,diag(σ

2
t )) (24)

s
(j)
t:t+H+1 ∼ qϕ(st | o

(j)
1:t , a

(j)
1:t−1)

t+H+1∏
τ=t+1

pϕ(sτ | s(j)τ−1, a
(j)
τ−1) (25)

a
(j)
t:t+H = a

(j)
t:t+H −∇R

(j), (26)

where a(j)t:t+H and s(j)t:t+H are sequences of states and actions of the candidate j from the timestep t to
the timestep t+H .

C Derivation of Logical ELBO for Observation Loss

The ELBO with logic rules for the observation loss can be derived by

ln pφ (o1:T | a1:T ) =
∫
pφ(o1:T , z1:T | a1:T ) dz1:T

= Eqφ(z1:T |o1:T ,a1:T )

[
pφ(o1:T , z1:T | a1:T )
qφ(z1:T | o1:T , a1:T )

]
= lnEqφ(z1:T |o1:T ,a1:T )

[
T∏
t=1

pφ(ot | zt)pφ(zt | zt−1, at−1)C(ϕ(zt, zt−1, at−1))

qφ(zt | o≤t, a≤t)

]

≥ Eqφ(z1:T |o1:T ,a1:T )

[
T∑
t=1

ln pφ(ot | zt) + ln pφ(zt | zt−1, at−1)

+ ln C(ϕ(zt, zt−1, at−1)− ln qφ(zt | o≤t, a≤t))]

=

T∑
t=1

Eqφ(zt|o≤t,a<t) [ln pφ (ot | zt)]︸ ︷︷ ︸
Decoding

+Eqφ(zt|o≤t,a<t) [ln C(ϕ(zt, zt−1, at−1))]︸ ︷︷ ︸
Logic Inference

−Eqφ(zt−1|o≤t−1,a<t−1) [KL [qφ (zt | o≤t, a<t) ∥pφ (zt | zt−1, at−1)]]︸ ︷︷ ︸
Prediction

 ,

(27)

where C(ϕ(zt, zt−1, at−1)) = Sim(ϕ(zt, zt−1, at−1),T) is the logical consistency function that
measures whether the logical rule ϕ : zt−1 ∧ at−1 → zt is satisfied by imagination.

— Appendices continue on next page —
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D Algorithms

D.1 DMWM With Actor-Critic

The training process of DMWM with actor-critic-based decision module is shown in Algorithm 1.

Algorithm 1 DMWM With Actor-Critic
Hyper Parameters: seed episode S, training episodes N , batch size B, collect interval C,

sequence length L, imagination horizon H , learning rate η.
Initialize dataset D with S seed episodes.
Initialize DMWM parameters ϕ,w.
Initialize Actor-Critic parameters ϑ, ψ.
for Training step n→ N do

for Collect interval c→ C do
// System 1 Training
Sample B Sequences {(ot, at, rt)}k+Lt=k ∼ D.
Compute ht = fφ (ht−1, zt−1, at−1).
Predict ẑt ∼ pφ (ẑt | ht) , ôt ∼ pφ (ôt | ht, zt).
Update S1 ψ ← ψ − ηψ∇ψLS1(ψ).
// System 2 Training
Learn Logic Regularizations Lreg.
// S1’s Guidance on S2 Based on Truth {(ht, at, ht+1)}
Compute LλT = ϕλ1 ∧ ϕλ2 ∧ ϕλ3 · · ·ϕλT−1.
Update S2 w ← w − ηw∇wLS1(w).
// Actor-Critic Training
Imagine {(zτ , aτ )}t+Hτ=t from each zt.
Predict rewards E(qφ(rτ | hτ , zτ )) and values vψ(sτ ).
Compute value estimates Vλ(sτ ).
Update ϑ← ϑ+ ηϑ∇ϑ

∑t+H
τ=t Vλ(sτ ).

Update ψ ← ψ − ηψ∇ψ
∑t+H
τ=t

1
2∥vψ(sτ )− Vλ(sτ )∥

2.
// S2’s Guidance on S1 Based on Imagination {(zτ , aτ )}
Compute Logic Consistency of {(zτ , aτ )}With LλT
Update S1 ψ ← ψ − ηψ∇ψLS2(ψ).

end for
// Real Environment Interaction & Data Collection
Start a environment env.reset()
for Time step t→ T do

Compute ht = fφ (ht−1, zt−1, at−1).
Compute zt ∼ qφ (zt | ht, ot)
Obtain at ∼ qϑ(at | zt) from decision-making model.
Interact rt, ot+1 ← env.step(at).

end for
Add experience to dataset D ← D ∪ {(ot, at, rt)}Tt=1.

end for
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D.2 DMWM With MPC
The training process of DMWM with Grad-MPC for decision-making [11] is shown in Algorithm 2.

Algorithm 2 DMWM With Grad-MPC
Hyper Parameters: iterations I , candidate Size J , learning rate ηR.
Initialize dataset D with S seed episodes.
Initialize DMWM parameters ϕ,w.
for Training step n→ N do
· · ·
// Real Environment Interaction & Data Collection
Start a environment env.reset()
for Time step t→ T do

Compute ht = fφ (ht−1, zt−1, at−1).
Compute zt ∼ qφ (zt | ht, ot)
// MPC Decision Making

Sample Actions
{
a
(j)
t:t+H

}J
j=1
∼ N (µt,diag(σ

2
t )).

for Iteration i→ I do
for Candidate sequence j → J do
s
(j)
t:t+H+1 ∼ qϕ(st | o

(j)
1:t , a

(j)
1:t−1)

∏t+H+1
τ=t+1 pϕ(sτ | s

(j)
τ−1, a

(j)
τ−1).

R(j) =
∑t+H+1
τ=t+1 E

[
p(rτ | s(j)τ )

]
.

Update Action a(j)t:t+H = a
(j)
t:t+H − ηR∇R(j).

end for
end for
a∗t:t+H = max

a
(j)
t:t+H

R(j)

Interact rt, ot+1 ← env.step(a∗t ).
end for
Add experience to dataset D ← D ∪ {(ot, at, rt)}Tt=1.
· · ·

end for

E Hyperparameters

E.1 Environment Setting

The action repeat setting for different DMControl tasks and robotic tasks is presented in TABLE 2.

Table 3: Action Repeat Setting and Action Dim

Env Task Action Dim Action Repeat

DMC

Cartpole Swingup 1 8
Pendulum Swingup 1 6
Reacher Easy 2 4
Finger Spin 2 2
Cheetah Run 6 4
Cup Catch 2 6
Walker Walk 6 2
Quadruped Walk 12 2
Hopper Hop 4 2

MyoSuite

Key Turn Hard 39 1
Object Hold Hard 39 1
Pen Twirl 39 1
Reach Hard 39 1

ManiSkill2

Lift Cube 4 2
Pick Cube 4 2
Stack Cube 4 2
Turn Faucet 7 2

19



E.2 Model Setting

The hyperparameters of models are presented in TABLE 3.

Table 4: Hyperparameter Setting

Parameter Symbol Value
Dual-Mind World Model (General)
Replay memory size — 1e6
Batch size B 50
Sequence length L 64
Seed episode S 5
Training episodes N 1e3
Collect Interval C 100
Max episode length — 500
Exploration noise — 0.3
Imagination horizon H 30
Gradient clipping — 100
RSSM-S1
Activation function — Relu
Embedding size — 1024
Hidden size — 200
Belief size — 200
State size — 30
Overshooting distance — 50
Overshooting KL-beta — 0
Global KL-beta — 0
overshooting reward scale — 0
Free nats — 3
Bit-depth — 5
Weights ϖdyn , ϖrep 1
Optimizer — Adam
Adam epsilon — 1e-4
Learning rate ηψ 1e-3
LINN-S2
Reasoning depth α 30
Logic vector size |v|, |m| 64
L2 weight βℓ2 1e-5
Regularization weight βreg 1
Logic MLP number — 3
Optimizer — SGD
Learning rate ηw 1e-2
Actor-Critic [5]
Return lambda λ 0.95
Planning horizon discount — 0.99
Optimizer — Adam
Adam epsilon — 1e-4
Learning rate ηϑ, ηψ 1e-4
Grad-MPC [11]
Iterations I 40
Candidate Size J 1000
Learning Rate ηR 0.1-0.01-0.005-0.0001
TD-MPC2 (refer to [13])
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F Further Related Work

F.1 World Model

World models are fundamental building blocks for model-based intelligent systems to make decisions,
learn, and reason in complex environments. It enables prediction, efficient behavior planning through
environment simulation, and strategy optimization using virtual simulations, thus reducing reliance
on real-world trial and error [5, 6, 7, 62, 63]. Existing world modeling frameworks can be categorized
as recurrent state space models (RSSMs) [2, 5, 6, 7, 10, 64, 65, 13, 66, 3, 15, 67], generative models
[32, 33, 68, 69, 70, 34, 71, 72, 12, 73], and large language model (LLM) [35, 36, 74, 75, 37, 76].

The Dreamer series [5, 6, 7] lays an important foundation for general model-based reinforcement
learning (MBRL) by continuously improving sample efficiency and task generalization ability through
dynamic modeling and planning in the latent space. To adapt the RSSM-based world model for real-
world environments, [2] optimized confidence and entropy regularization for the gradient to mitigate
discrepancies between virtual simulations and real-world environments. [1] studied an object-centric
world model, and introduced an object-state recurrent neural network (OS-RNN) to follow the object
states. [12] extended multimodal RSSM to support joint text and visual inputs. [7, 13, 67] explored
the multiple tasks with RSSM-based world models. [13] utilized SimNorm to sparse and normalize
the potential states, which projected the latent representations to simplices of fixed dimensions, thus
mitigating the gradient explosion and improving the training stability. [15] introduced masking-based
latent reconstruction with a dual branch structure to handle the exogenous noise in the complex
environment. [3] introduced the hierarchical imagination with parallel processing and proposed
efficient time-balanced sampling.

The diffusion model-based world model offers high-quality and diverse generations with tem-
poral smoothness and consistency, achieved through denoising and time inversion processes
[32, 33, 68, 69, 70, 34, 12]. However, its reliance on multi-step denoising significantly slows
downsampling, inference, and computation compared to RSSM, making it less suitable for real-
time tasks and challenging to maintain long-term consistency [68, 69, 70, 12]. Additionally, unlike
RSSM’s latent space modeling, diffusion models cannot extract task-relevant features and accurately
capture environment dynamics, particularly in complex environments with long-tailed distributions
[32, 68, 70, 71, 12]. The LLM-based world model serves as a powerful tool for complex task planning
and execution through its logical reasoning capability and dynamic controllability [35, 36, 74], and is
able to realize task decomposition and cross-domain knowledge transfer through natural language
instructions [76]. However, the model cannot perform in dynamic modeling, and the generated states
and actions often cannot accurately reflect the dynamic changes in the environment. In addition,
its high reliance on linguistic representation may lead to insufficient quality of modal alignment,
posing the risk of information loss or misinterpretation, while the significant consumption of compu-
tational resources during training and inference limits the application of LLM-based world models in
resource-constrained environments [35, 36, 74, 75].

Unlike all of the aforementioned works, we focus on the long-term imagination of world models
and proposes to enable the logical consistency of state representations and predictions over an
extended horizon for the first time. We retain the efficient sampling and representation capabilities of
RSSM as System 1 and integrate a logic-integrated neural network (LINN) as System 2 to imbue
the world model with logic reasoning capabilities. The proposed DMWM thus delivers reliable and
efficient long-term imagination with logical consistency, addressing a critical research gap in existing
approaches.

F.2 Logic Neural Reasoning

Logic neural reasoning enhances the logical consistency, long-term imagination, and generalization
ability of world models by embedding logical rules and reasoning capabilities [38, 29]. By combining
the interpretability of symbolic logic with the expressive power of neural networks, it provides robust
and rapid reasoning for complex task planning [39, 40, 30, 41, 31, 77, 78]. However, explicitly
modeling the logical structure of the world presents significant challenges due to the inherent
ambiguity of logical rules, the prevalence of noisy data, and the dynamic and complex nature of
logical interactions. [39] converted first-order logic rules into computational graphs for neural
networks, enhancing their learning capabilities in low-data environments while providing limited
support for complex temporal logic. [40] integrated Markov logic networks with knowledge graph
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embeddings to address uncertainty in logical reasoning. In a logical neural network (LNN) [41],
neurons are mapped neurons to logical formulas, enabling each neuron to function as a logical operator.
However, LNNs rely on predefined and static logical rules, facing limitations in generalization when
confronted with uncertainty or evolving logical variables. The work in [78] introduced inductive logic
programming and automatically learned logic rules. However, the aforementioned approaches make
it hard to capture the environment dynamics and extend the long-term imagination capability of the
world model. In contrast, the concept of a LINN [30, 31] introduces a paradigm shift by dynamically
constructing computational graphs and employing neural modules to learn logical operations. Thus,
LINN can automatically infer implicit logical rules, circumventing the need for explicit specification.
By integrating neural flexibility with logical rigor [30, 31], LINN achieves superior generalization
capacity and enhanced robustness to noise, making it well-suited for reasoning tasks in dynamic and
complex environments.

In this work, we enhance the long-term imagination capabilities of world models through logical
reasoning, a critical yet unexplored area in world model research, with significant implications for
creating advanced and general artificial intelligence (AGI).

— Appendices continue on next page —
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G Complete Logic Regularization and Rules Table
The complete logic rules and the corresponding regularizers are given in TABLE 5 [30] for negation
¬, conjunction ∧, disjunction ∨ and implication→.

Table 5: Complete Logical Regularizers and Rules for System 2
Logical Rule Equation Logic Regularizer ri

¬ Negation w → T = T r1=
∑
w∈W∪{T} Sim(NOT(w), w)

Negations ¬(¬w) = w r2=
∑
w∈W 1− Sim(NOT(NOT(w)), w)

∧
Identity w ∧T = w r3=

∑
w∈W 1− Sim(AND(w,T), w)

Annihilator w ∧T = w r4=
∑
w∈W 1− Sim(AND(w,F),F)

Idempotence w ∧ F = F r5=
∑
w∈W 1− Sim(AND(w,w), w)

Complement w ∧ w = w r6=
∑
w∈W 1− Sim(AND(w,NOT(w)),F)

∨
Identity w ∨ F = w r7=

∑
w∈W 1− Sim(OR(w,F), w)

Annihilator w ∨T = T r8=
∑
w∈W 1− Sim(OR(w,T),T)

Idempotence w ∨ w = w r9=
∑
w∈W 1− Sim(OR(w,w), w)

Complement w ∨ ¬w = T r10=
∑
w∈W 1− Sim(OR(w,NOT(w)),T)

→

Identity w → T = T r11=
∑
w∈W 1− Sim(OR(NOT(w),T),T)

Annihilator w → F = ¬w r12=
∑
w∈W 1− Sim(OR(NOT(w),F),NOT(w))

Idempotence w → w = T r13=
∑
w∈W 1− Sim(OR(NOT(w), w),T)

Complement w → ¬w ≡ ¬w r14=
∑
w∈W 1− Sim(OR(NOT(w),NOT(w)),NOT(w))

H Additional Experiments
H.1 Logical Consistency

Table 6: Logical consistency comparison between our proposed DMWM and various RSSM baselines
across 20 DMC tasks. We report the mean and variance of logical consistency from imagination over
100 test episodes with the horizon size of H = 10, 30, 50, 100.

Env H Dreamer Hieros HRSSM DMWM (Ours)

Acrobot Swingup

10 0.713± 0.031 0.730± 0.012 0.722± 0.017 0.733± 0.007
30 0.667± 0.063 0.704± 0.032 0.712± 0.044 0.731± 0.017
50 0.568± 0.129 0.692± 0.058 0.687± 0.083 0.715± 0.032

100 0.485± 0.167 0.672± 0.112 0.651± 0.132 0.699± 0.078

Cartpole Balance

10 0.721± 0.023 0.730± 0.009 0.729± 0.011 0.730± 0.008
30 0.683± 0.057 0.711± 0.032 0.713± 0.041 0.727± 0.023
50 0.574± 0.112 0.687± 0.084 0.695± 0.072 0.717± 0.045

100 0.491± 0.171 0.663± 0.142 0.655± 0.121 0.701± 0.092

Cartpole Balance
Sparse

10 0.705± 0.132 0.719± 0.032 0.722± 0.034 0.722± 0.026
30 0.602± 0.167 0.682± 0.101 0.693± 0.081 0.695± 0.093
50 0.432± 0.203 0.632± 0.178 0.643± 0.162 0.652± 0.135

100 0.321± 0.286 0.571± 0.232 0.589± 0.213 0.603± 0.182

Cartpole Swingup

10 0.719± 0.031 0.729± 0.011 0.723± 0.023 0.730± 0.011
30 0.678± 0.062 0.698± 0.043 0.703± 0.082 0.723± 0.032
50 0.563± 0.091 0.672± 0.124 0.662± 0.145 0.702± 0.078

100 0.474± 0.158 0.621± 0.191 0.602± 0.191 0.672± 0.152

Cartpole Swingup
Sparse

10 0.703± 0.142 0.717± 0.036 0.715± 0.052 0.720± 0.030
30 0.613± 0.187 0.669± 0.121 0.671± 0.098 0.699± 0.087
50 0.443± 0.213 0.621± 0.185 0.621± 0.173 0.669± 0.121

100 0.403± 0.252 0.532± 0.241 0.559± 0.231 0.627± 0.162

Cheetah Run

10 0.709± 0.085 0.723± 0.031 0.721± 0.023 0.730± 0.016
30 0.643± 0.131 0.689± 0.113 0.695± 0.087 0.725± 0.049
50 0.527± 0.165 0.651± 0.147 0.667± 0.131 0.703± 0.092

100 0.428± 0.221 0.606± 0.186 0.627± 0.183 0.676± 0.142

Cup Catch

10 0.711± 0.049 0.728± 0.010 0.726± 0.014 0.732± 0.008
30 0.652± 0.087 0.701± 0.072 0.714± 0.061 0.728± 0.021
50 0.534± 0.113 0.681± 0.098 0.683± 0.112 0.712± 0.053

100 0.465± 0.181 0.647± 0.182 0.633± 0.172 0.692± 0.112
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Finger Spin

10 0.712± 0.075 0.727± 0.011 0.728± 0.017 0.733± 0.009
30 0.647± 0.102 0.705± 0.052 0.712± 0.057 0.729± 0.017
50 0.517± 0.131 0.687± 0.091 0.679± 0.136 0.710± 0.062

100 0.435± 0.211 0.636± 0.165 0.645± 0.185 0.684± 0.127

Finger Turn Easy

10 0.708± 0.098 0.726± 0.013 0.724± 0.018 0.732± 0.015
30 0.634± 0.113 0.702± 0.051 0.705± 0.067 0.728± 0.023
50 0.512± 0.157 0.681± 0.117 0.682± 0.132 0.712± 0.067

100 0.412± 0.191 0.644± 0.194 0.617± 0.197 0.683± 0.148

Finger Turn Hard

10 0.704± 0.118 0.723± 0.014 0.724± 0.021 0.731± 0.011
30 0.627± 0.131 0.698± 0.061 0.703± 0.073 0.725± 0.029
50 0.487± 0.162 0.673± 0.112 0.673± 0.152 0.705± 0.073

100 0.385± 0.231 0.623± 0.201 0.601± 0.205 0.675± 0.142

Hopper Hop

10 0.703± 0.092 0.729± 0.023 0.726± 0.023 0.731± 0.017
30 0.633± 0.127 0.704± 0.087 0.701± 0.092 0.722± 0.038
50 0.506± 0.191 0.664± 0.132 0.673± 0.132 0.698± 0.092

100 0.407± 0.237 0.612± 0.237 0.623± 0.201 0.689± 0.143

Hopper Stand

10 0.709± 0.056 0.728± 0.021 0.725± 0.019 0.732± 0.013
30 0.645± 0.112 0.699± 0.057 0.704± 0.081 0.724± 0.039
50 0.523± 0.168 0.671± 0.121 0.689± 0.137 0.703± 0.080

100 0.421± 0.197 0.632± 0.211 0.642± 0.189 0.692± 0.139

Pendulum Swingup

10 0.715± 0.054 0.728± 0.017 0.719± 0.023 0.732± 0.015
30 0.611± 0.137 0.709± 0.054 0.699± 0.079 0.730± 0.037
50 0.526± 0.161 0.684± 0.112 0.664± 0.146 0.721± 0.088

100 0.359± 0.224 0.641± 0.198 0.612± 0.204 0.686± 0.131

Quadruped Run

10 0.718± 0.042 0.727± 0.023 0.725± 0.019 0.731± 0.013
30 0.642± 0.107 0.701± 0.072 0.702± 0.074 0.726± 0.042
50 0.556± 0.143 0.679± 0.135 0.683± 0.137 0.705± 0.078

100 0.398± 0.217 0.644± 0.193 0.629± 0.184 0.682± 0.129

Quadruped Walk

10 0.719± 0.045 0.728± 0.027 0.724± 0.017 0.732± 0.011
30 0.656± 0.092 0.701± 0.067 0.703± 0.072 0.723± 0.039
50 0.534± 0.129 0.682± 0.114 0.685± 0.132 0.701± 0.082

100 0.413± 0.212 0.654± 0.183 0.634± 0.179 0.687± 0.137

Reacher Easy

10 0.711± 0.065 0.729± 0.012 0.724± 0.013 0.732± 0.008
30 0.634± 0.102 0.706± 0.061 0.705± 0.067 0.731± 0.031
50 0.464± 0.167 0.675± 0.104 0.678± 0.121 0.720± 0.075

100 0.373± 0.221 0.631± 0.175 0.614± 0.163 0.705± 0.125

Reacher Hard

10 0.712± 0.072 0.729± 0.013 0.724± 0.014 0.732± 0.010
30 0.608± 0.121 0.702± 0.062 0.703± 0.072 0.730± 0.042
50 0.501± 0.189 0.663± 0.114 0.674± 0.132 0.717± 0.082

100 0.349± 0.233 0.602± 0.183 0.607± 0.172 0.701± 0.165

Walker Run

10 0.702± 0.137 0.720± 0.023 0.713± 0.027 0.729± 0.013
30 0.554± 0.158 0.676± 0.067 0.682± 0.092 0.711± 0.072
50 0.424± 0.213 0.613± 0.132 0.658± 0.188 0.672± 0.128

100 0.323± 0.261 0.532± 0.191 0.572± 0.243 0.645± 0.175

Walker Stand

10 0.706± 0.087 0.728± 0.012 0.721± 0.012 0.734± 0.008
30 0.598± 0.128 0.690± 0.051 0.692± 0.113 0.722± 0.067
50 0.494± 0.173 0.648± 0.108 0.658± 0.162 0.701± 0.138

100 0.369± 0.241 0.568± 0.172 0.572± 0.221 0.662± 0.185

Walker Walk

10 0.701± 0.118 0.727± 0.015 0.723± 0.022 0.731± 0.028
30 0.612± 0.140 0.696± 0.063 0.701± 0.073 0.730± 0.034
50 0.474± 0.181 0.664± 0.123 0.667± 0.112 0.718± 0.079

100 0.371± 0.251 0.598± 0.194 0.601± 0.171 0.675± 0.142
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H.2 Trial Efficiency

Figure 10: Performance comparison of test results on 20 DMC tasks under limited environment steps,
where the standard error is shaded in the distraction setting. The horizontal axis indicates the number
of environment data that is used to train the models. The vertical axis represents the average test
return over 100 test episodes.
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H.3 Data Efficiency

Figure 11: Performance comparison of test results on 20 DMC tasks under limited environment
interactions, where the standard error is shaded in the distraction setting. The horizontal axis indicates
the number of times that the models explore the environments. The vertical axis represents the
average test return over 100 test episodes.
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H.4 Long-term Imaginations Over Extended Horizon Size

Figure 12: Performance comparison of test results on 20 DMC tasks over different horizon size of
imagination. The horizontal axis indicates the horizon size of each imagination. The vertical axis
represents the average test return over 100 test episodes.
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H.5 Impact of Logic Inference Depth Over Extended Horizon Size

Figure 13: Performance comparison of test results on 20 DMC tasks with different logic inference
depth α over extended horizon size of imagination. The horizontal axis indicates the horizon size of
each imagination, and the vertical axis represents the average test return over 100 test episodes.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We explain our contributions and scope in detail in the introduction (Section
1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitations in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
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Justification: We derive the logical ELBO in Appendix C.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Please refer to Section 3, Appendix D, and Appendix E to reproduce our
results. We also release all the code and data.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: answerYes

Justification: We provide the code and data in the supplemental material.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We described the training and test details in Section 3, Appendix D, and
Appendix E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars for Figure 4-14, and in Table 2 and 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See Section 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms, in every respect, with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: See Appendix A.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: The creators or original owners of assets used in the paper are properly credited
and the license and terms of use are explicitly mentioned and are properly respected.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in our research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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