

# 000 PART-LEVEL SEMANTIC-GUIDED CONTRASTIVE 001 LEARNING FOR FINE-GRAINED VISUAL CLASSIFI- 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 PART-LEVEL SEMANTIC-GUIDED CONTRASTIVE LEARNING FOR FINE-GRAINED VISUAL CLASSIFI- CATION

006 **Anonymous authors**

007 Paper under double-blind review

## 011 ABSTRACT

013 Fine-Grained Visual Classification (FGVC) aims to distinguish visually similar  
014 subcategories within a broad category, and poses significant challenges due to  
015 subtle inter-class differences, large intra-class variations, and data scarcity. Existing  
016 methods often struggle to effectively capture both part-level detail and spatial  
017 relational features, particularly across rigid and non-rigid object categories. To  
018 address these issues, we propose Part-level Semantic-guided Contrastive Learning  
019 (PSCL), a novel framework that integrates three key components. (1) The Part Lo-  
020 calization Module (PLM) leverages clearCLIP to enable text-controllable region  
021 selection, achieving decoupled and semantically guided spatial feature extraction.  
022 (2) The Multi-scale Multi-part Branch Progressive Reasoning (MMBPR) module  
023 captures discriminative features across multiple parts and scales, while reducing  
024 inter-branch redundancy. (3) The Visual-Language Contrastive Learning based  
025 on Multi-grained Text Features (VLCL-MG) module introduces intermediate-  
026 granularity category concepts to improve feature alignment and inter-class sep-  
027 arability. Extensive experiments on five publicly available FGVC datasets demon-  
028 strate the superior performance and generalization ability of PSCL, validating the  
029 effectiveness of its modular design and the synergy between vision and language.  
030 Code is available at: <https://anonymous.4open.science/r/PSCL-3E1F>.

## 031 1 INTRODUCTION

032  
033 Fine-Grained Visual Classification (FGVC) aims to accurately distinguish between subcategories  
034 that belong to the same high-level category yet exhibit subtle visual differences. Typical applica-  
035 tions include the classification of bird species (Wah et al., 2011; Van Horn et al., 2015), car brands  
036 (Krause et al., 2013), and aircraft (Maji et al., 2013) models. As FGVC focuses on fine-level dis-  
037 tinguishments within specific domains, it has demonstrated unique practical value—distinct from general  
038 visual classification tasks—in areas such as intelligent transportation, medical image analysis, and  
039 ecological environment monitoring. However, FGVC remains a challenging task due to factors such  
040 as low inter-class variance, high intra-class variance, a large number of categories, and data scarcity.

041 We observe that existing models exhibit notable feature preferences when processing rigid and non-  
042 rigid objects. We argue that FGVC tasks require the modeling of two key types of features: (1) part-  
043 level fine-grained features that capture detailed local differences and (2) spatial relational features  
044 that describe inter-class differences in spatial structure. For rigid objects, inter-class differentiation  
045 is often affected by external factors such as viewpoint variation and occlusion. In contrast, non-  
046 rigid objects tend to exhibit more significant posture variations, leading to greater uncertainty in  
047 their spatial structural features. Different model architectures vary considerably in their capacity to  
048 capture these two types of features.

049 Some existing works have consciously incorporated mechanisms for modeling spatial structural fea-  
050 tures. For example, CAP (Behera et al., 2021) captures spatial relations through region consistency  
051 integration, while SFETrans (Yu et al., 2025) extracts spatial features via phase spectrum analysis.  
052 These methods have demonstrated effectiveness in improving classification performance for rigid  
053 objects. However, the core objective of FGVC lies in accurately modeling subtle inter-class dif-  
ferences. Since spatial relational features often rely on matching shared regions across categories,



Figure 1: Two types of critical features in rigid and non-rigid objects. (I) Spatial deformation in non-rigid objects (e.g., birds) due to articulated motion; (II) Diverse part-level details in non-rigid objects; (III) Stable spatial structure in rigid objects (e.g., airplanes); (IV) Consistent part-level appearance in rigid objects.

they may conflict with the precise representation of part-level details—particularly for non-rigid objects—potentially weakening the model’s ability to focus on critical parts. Furthermore, current models generally adopt a unified strategy for designing part-based branches across all categories, overlooking the homogeneity of part-level details among similar categories. This can lead to misclassifications and redundant representations across branches.

To address these issues, we propose a novel framework called Part-level Semantic-guided Contrastive Learning (PSCL). This model introduces a Part Localization Module (PLM), which leverages clearCLIP (Lan et al., 2024) as an auxiliary component to enable text-guided region selection, thereby achieving effective decoupling of feature region selection and feature representation. Additionally, we design a Multi-scale Multi-part Branch Progressive Reasoning (MMBPR) module, where part-based branches represent fine-grained features of individual parts, while a global branch adaptively integrates features based on spatial relations. Through progressive reasoning, MMBPR enables each branch to refine its feature representations across multiple scales.

During the multi-scale feature fusion stage, we further design the Reverse-key Scale-aware Attention Fusion Module (ReSAF) to suppress the influence of high-level features on semantically similar regions at lower levels, thereby encouraging the model to extract information from less similar areas. This effectively mitigates feature redundancy among branches.

Finally, in the classification phase, we introduce a novel Visual-Language Contrastive Learning based on Multi-grained Text Features (VLCL-MG) module. By incorporating intermediate-level category concepts, this module leverages prior knowledge to aggregate fine-grained categories into semantically coherent mid-level groups, promoting more meaningful clustering of similar subcategories in the feature space.

Our main contributions can be summarized as follows:

- We propose a Part Localization Module (PLM) that enables text-controllable spatial feature extraction via clearCLIP;
- We design a Multi-scale Multi-part Branch Progressive Reasoning (MMBPR) module to reduce feature redundancy and enhance part-level and global representations;
- We introduce a Visual-Language Contrastive Learning module based on Multi-grained Text Features (VLCL-MG) to improve the semantic alignment of visually similar subcategories;
- Extensive experiments on five publicly available FGVC datasets validate the effectiveness and generalization ability of our proposed PSCL framework.

## 2 RELATED WORK

## 2.1 FINE-GRAINED VISUAL CLASSIFICATION

Fine-grained visual classification (FGVC) methods primarily focus on capturing subtle inter-class differences through refined feature representation and part localization. Early feature representation approaches relied on high-level features (Lin et al., 2015; Zheng et al., 2019; Sun et al., 2020), later incorporating multi-scale fusion techniques such as AP-CNN (Ding et al., 2021) and PMG (Du et al., 2020), as well as attention-based mechanisms like MA-CNN (Zheng et al., 2017), OSME (Sun et al., 2018), and Transformer-based methods such as TransFG (He et al., 2022) and CAMF (Miao et al., 2021). MDCM (Zhang et al., 2025) introduces a multi-scale ViT framework that improves fine-grained bird recognition by activating, selecting, and aggregating discriminative cues across scales. Part localization methods identify discriminative regions through cropping and scaling strategies. This line of work aims to locate category-relevant regions within the input image by analyzing attention maps generated by the backbone network. The identified regions are then cropped and reprocessed to retain high-resolution, fine-grained details that are critical for classification. This strategy explicitly extracts spatial structural features by emphasizing salient parts, often leading to superior classification performance. While early approaches like Part-based R-CNN (Zhang et al., 2014) and Pose Normalized CNN (Branson et al., 2014) relied on strong supervision, recent methods have shifted to weak supervision for better scalability. Notable examples include MGE-CNN (Zhang et al., 2019), P2P-Net (Yang et al., 2022), CAP (Behera et al., 2021), TBMSL-Net (Zhang et al., 2021), and PART (Zhao et al., 2021), which explore part-level semantics via multi-scale learning, context modeling, or Transformer-based architectures. CSQA-Net (Xu et al., 2025) introduces a Part Navigator module to assign saliency scores to different image regions, enabling discriminative region segmentation without strong part annotations.

## 2.2 VISION-LANGUAGE LEARNING

Vision-language models (VLMs), particularly CLIP (Radford et al., 2021), have demonstrated strong potential in open-vocabulary tasks by learning joint representations from large-scale image-text pairs. While early FGVC-related works using CLIP (Li et al., 2023; Wang et al., 2023b) emphasized alignment between descriptive text and novel categories, MP-FGVC (Jiang et al., 2024) introduced CLIP to closed-set FGVC by leveraging multimodal prompts to enhance category discrimination. For region-level tasks, CLIP’s utility has been extended to open-vocabulary segmentation. MaskCLIP (Zhou et al., 2022) revealed that dense patch-level features from CLIP’s attention layers could be aligned with textual representations. Building on this, ClearCLIP (Lan et al., 2024) demonstrates that by removing residual connections in CLIP, enabling self-attention, and eliminating the feed-forward network, open-vocabulary semantic segmentation can be achieved directly without additional training. We empirically demonstrate that ClearCLIP is also effective for part-level semantic concepts.

### 3 APPROACH

The proposed PSCL architecture is illustrated in fig. 2. In the visual pathway, the input image is first processed separately by the backbone and ClearCLIP. ClearCLIP generates part masks by computing matching scores and applying channel selection, while the backbone produces multi-scale features. For single-scale backbones such as ViT, these features can be regarded as multi-level representations extracted from different transformer layers, which serves an equivalent role in our framework and does not affect the overall conclusion. The two outputs are combined using the Hadamard product to obtain multi-scale part-level features, forming the Part Localization Module. The designed Multi-scale Multi-part Branch Progressive Reasoning module processes the resulting visual features, progressively enhancing the model’s confidence in its predictions from low-level to high-level features. This confidence enhancement is achieved through a combination of hyperparameters for contrastive loss weights across different scales and noise parameters. In the text pathway, contrastive loss leverages intermediate-grained textual priors as input, generating multi-grained textual features for different categories. These features are then rearranged and restructured to produce multi-grained textual representations for each fine-grained label.



Figure 2: Detailed illustration of Part-level Semantic-guided Contrastive Learning model (PSCL).

### 3.1 PART LOCALIZATION MODULE

The proposed Part Localization Module (PLM) is designed to address the conflicting requirements of modeling fine-grained part-level features and spatial relational features in FGVC. This conflict is particularly pronounced for non-rigid objects, where posture variation undermines the stability of spatial structures and affects precise part representation. To resolve this, PLM processes the input image  $\mathbf{x} \in \mathbb{R}^{C \times H \times W}$  through two separate branches: one for capturing difference-aware features and the other for localizing discriminative parts, enabling more effective and targeted feature learning across object types.

The branch responsible for representing differences processes the input  $\mathbf{x}$  to produce multiscale features, with features denoted as  $f_s \in \mathbb{R}^{C_s \times H_s \times W_s}$  across multiple stages. When low-level features are less relevant for classification, only higher stages may be selected, such that

$$s \in \{s_{\min}, \dots, 4\}, \quad s_{\min} \geq 1, \quad (1)$$

where  $s_{\min}$  denotes the earliest stage used, which can be adjusted based on task requirements.



Figure 3: Illustration of ReSAF.

The resulting  $f_s$  is then passed into the Reverse-key Scale-aware Attention Fusion Module (ReSAF) to suppress redundant channel representations across scales, as illustrated in fig. 3. In the figure, AAP denotes Adaptive Average Pooling, and the positional encoding is implemented as a learnable parameter. By flipping key vector directions, ReSAF inverts

similarity scores, guiding high-level queries to attend away from similar low-level regions. This contrastive attention promotes the extraction of complementary.

The branch responsible for identifying the parts of interest is built upon the ClearCLIP backbone. The input image  $\mathbf{x}$  is encoded by the image encoder  $f_{\text{img}}$ , producing patch-level image features  $\mathbf{F}_{\text{img}} = f_{\text{img}}(\mathbf{x}) \in \mathbb{R}^{H \times W \times d}$ . Similarly, the textual prompts corresponding to  $N$  parts, denoted as  $\mathbf{T} = \{T_1, T_2, \dots, T_N\}$ , are processed by the text encoder  $f_{\text{text}}$ , yielding part-specific text feature representations  $\mathbf{F}_{\text{text}} = \{f_{\text{text}}(T_1), f_{\text{text}}(T_2), \dots, f_{\text{text}}(T_N)\} \in \mathbb{R}^{N \times d}$ . To align image patches with text descriptions, the similarity tensor  $\mathbf{S}$  is computed via matrix multiplication.

$$\mathbf{S} = \mathbf{F}_{\text{img}} \mathbf{F}_{\text{text}}^{\top}, \mathbf{S} \in \mathbb{R}^{H \times W \times N}, \quad (2)$$

216 To generate the final part mask  $\mathbf{M}$ , the indices of the maximum similarity scores across the  $N$   
 217 channels are first determined as

$$219 \quad \text{max\_indices} = \arg \max_{j \in \{1, \dots, N\}} \mathbf{S}[j], \quad (3)$$

221 Using these indices, a one-hot-like tensor is constructed:

$$223 \quad \mathbf{S}[j] = \begin{cases} 1, & j = \text{max\_indices}, \\ 224 \quad 0, & \text{otherwise}, \end{cases} \quad (4)$$

226 The one-hot-like tensor undergoes morphological refinement by first applying dilation to expand  
 227 regions, followed by erosion to refine connectivity and remove noise:

$$228 \quad \mathbf{M} = (\mathbf{S} \oplus \mathcal{K}) \ominus \mathcal{K}, \quad (5)$$

230 where  $\mathcal{K}$  denotes the structuring element (kernel), instantiated as a  $3 \times 3$  kernel in our implementa-  
 231 tion;  $\oplus$  represents the morphological dilation operator; and  $\ominus$  denotes the erosion operator.

232 The multi-scale multi-part features  $G_{s,n'}$  can be expressed as:

$$234 \quad G_{s,n'} = \text{concat}(\mathbf{f}'_s \odot \mathbf{M}_{s,n}, \mathbf{f}'_s \odot \mathbf{1}), n \in \{1, 2, \dots, N\}, n' \in \{1, 2, \dots, N+1\}, \quad (6)$$

235 where  $\odot$  denotes the Hadamard product,  $\text{concat}(\cdot)$  denotes the concatenation operation,  $\mathbf{1}$  is a matrix  
 236 of ones, representing the global mask,  $\mathbf{f}'_s \odot \mathbf{1}$ , captures the global features. The global features are  
 237 subsequently processed by the global branch, which adaptively aggregates part-level information  
 238 according to spatial relationships, aiming to model spatial relational features.

### 240 3.2 BRANCH PROGRESSIVE REASONING

241 Our proposed Multi-scale Multi-part Branch Progressive Reasoning (MMBPR) module extends the  
 242 multi-scale reasoning framework introduced by PMG (Du et al., 2020) and PART (Zhao et al., 2021).  
 243 It progressively enhances the constraint on loss from low-level feature branches to high-level feature  
 244 branches. Unlike previous approaches, our method incorporates PLM to reduce redundant represen-  
 245 tations across branches. In addition to progressive reasoning along the multi-scale hierarchy, the  
 246 framework also integrates part-level branches for capturing fine-grained local details and a global  
 247 branch for modeling spatial relational representations through part feature aggregation.

248 Following the ViT architecture, we adopt Class Embedding Learnable Parameters to extract  
 249 category-specific visual representations. **We utilize three class tokens to comprehensively represent**  
 250 **intermediate categories.**

252 The overall input to MMBPR is  $G_{s,n'}$  obtained from eq. (6), and the progressive reasoning process  
 253 begins from the lowest-level features  $G_{s_{\min},n'}$ , as formulated below:

$$254 \quad G_{s_{\min},n'} \xrightarrow{\text{flatten}} \{V_{s_{\min},n',m} \mid m \in \{1, 2, \dots, P^2\}\}, \quad (7)$$

256 The flattened tokens are concatenated with class tokens:

$$257 \quad Z_{s_{\min},n'} = \text{concat}([C_{\text{cls},s_{\min},n',1}; C_{\text{cls},s_{\min},n',2}; C_{\text{cls},s_{\min},n',3}], [V_{s_{\min},n',1}; \dots; V_{s_{\min},n',P^2}]), \quad (8)$$

259 where  $C_{\text{cls},s_{\min},n',j}$  ( $j \in \{1, 2, 3\}$ ) are class tokens.

260 The sequence  $Z$  is then processed through an Encoder Layer:

$$262 \quad Z'_{s_{\min},n'} = \text{LN}(Z_{s_{\min},n'} + \text{MHSA}(Z_{s_{\min},n'})), \\ 263 \quad Z''_{s_{\min},n'} = \text{LN}(Z'_{s_{\min},n'} + \text{MLP}(Z'_{s_{\min},n'})), \quad (9)$$

264 where  $\text{LN}(\cdot)$  is Layer Normalization,  $\text{MHSA}(\cdot)$  is Multi-Head Self-Attention,  $\text{MLP}(\cdot)$  is a feedfor-  
 265 ward neural network, and the model weights are not shared across layers. The resulting output is:

$$267 \quad Z''_{s_{\min},n'} = [C''_{\text{cls},s_{\min},n',1}; C''_{\text{cls},s_{\min},n',2}; C''_{\text{cls},s_{\min},n',3}; V''_{s_{\min},n',1}; \dots; V''_{s_{\min},n',P^2}], \quad (10)$$

268 The output  $Z''_{s_{\min},n'}$  is then divided into two parts: Class tokens, representing the visual features of  
 269 the categories at the stage  $\mathbf{I}_{s_{\min},n'} = [C''_{\text{cls},s_{\min},n',1}; C''_{\text{cls},s_{\min},n',2}; C''_{\text{cls},s_{\min},n',3}]$  are passed to VLCL-MG

270 for contrastive learning. Feature tokens  $[V''_{s_{\min}, n', 1}; \dots; V''_{s_{\min}, n', P_2}]$  are forwarded to the next stage,  
 271 where they are concatenated with the flattened high-level features.  
 272

273 By ensuring non-interference between the lower and higher branches, this design enables the higher-  
 274 level feature branch to acquire stronger discriminative capabilities, thereby leading to more confident  
 275 category-specific visual representations.

276 The process is recursively applied to the next stage:  
 277

$$Z_{s_{\min+1}, n'} = \text{concat}([C_{\text{cls}, s_{\min+1}, n', 1}; C_{\text{cls}, s_{\min+1}, n', 2}; C_{\text{cls}, s_{\min+1}, n', 3}], \\ [V_{s_{\min+1}, n', 1}; \dots; V_{s_{\min+1}, n', P_2}], [V''_{s_{\min}, n', 1}; \dots; V''_{s_{\min}, n', P_2}]), \quad (11)$$

281 This procedure is iteratively applied until the highest-level feature branch completes its reasoning  
 282 process, and the reasoning is conducted in both the global branch and the part-level branches.  
 283

### 284 3.3 VISION-LANGUAGE CONTRASTIVE LEARNING 285

286 Our proposed Vision-Language Contrastive Learning Module based on Multi-grained Text Features  
 287 (VLCL-MG) constrains the inter-class differences of visual features to align with real-world distinc-  
 288 tions by introducing intermediate category constraints, which are primarily implemented through  
 289 the model structure.

290 Additionally, in terms of loss computation, since FGVC tasks involve highly similar subcategories,  
 291 we argue that absolute model outputs can unnecessarily enlarge inter-class distances. If the top-  
 292 scoring category is incorrect, the actual category score may rank lower due to small score differences  
 293 among other categories. To mitigate this, we employ label smoothing (Szegedy et al., 2016) for  
 294 regularization. Meanwhile, given the limited number of samples, models are prone to overfitting,  
 295 making it crucial to learn more from hard-to-classify samples. Therefore, focal loss (Lin et al., 2017)  
 296 is also essential. Based on these considerations, we propose the Focal-Smooth Contrastive Loss as  
 297 a complement to our model structure.

298 Specifically, we first obtain intermediate categories for fine-grained labels. For example, between  
 299 the coarse-grained category airplane and the fine-grained category Boeing 737-200, inter-  
 300 mediate categories include narrow-body airliner and twinjet. This expert knowledge  
 301 can be efficiently obtained with minimal effort, requiring only a one-time retrieval per category  
 302 rather than per-image annotation. For most datasets, we employ ChatGPT-4o for semi-automated  
 303 knowledge retrieval, whereas for the NABirds dataset, we directly utilize the dataset’s built-in class  
 304 hierarchy.

305 The multi-grained textual labels corresponding to each fine-grained category are represented as  
 306

$$\mathbf{t}_{\text{cls}} = \{a_{n_A}, b_{n_B}, f_{n_F}\} \in \mathbb{R}^C, \quad (12)$$

308 where  $a_{n_A}$  and  $b_{n_B}$  represent two types of intermediate categories, and  $f_{n_F}$  corresponds to fine-  
 309 grained categories,  $C$  represents the number of fine-grained categories. These labels are processed  
 310 by the ClearCLIP text encoder, yielding multi-grained text features:  
 311

$$\mathbf{t}_{n_F} = f_{\text{text}}(\mathbf{t}_{\text{cls}}), \quad (13)$$

313 To prevent text features of all grained levels from clustering too closely in the embedding space,  
 314 we subtract the coarse-grained category feature  $f_{\text{text}}(c)$  from the multi-grained text features  $\mathbf{t}_{n_F}$  and  
 315 then apply normalization.

$$\mathbf{T}_{n_F} = \text{norm}(\mathbf{t}_{n_F} - f_{\text{text}}(\text{coarse})), \quad (14)$$

318 This operation ensures a more discriminative distribution of text embeddings across different  
 319 grained levels. To avoid redundant computations, all category label texts are first processed by the  
 320 text encoder, and then rearranged according to the intermediate-grained categories corresponding to  
 321 each fine-grained label, as detailed in fig. 2.

322 The predicted probability distribution  $\mathbf{P}_s$  is obtained by applying a softmax normalization over the  
 323 similarity scores between the linearly projected feature  $\mathbf{I}_{s, n'}$ , extracted from eq. (10) at stage  $s$ , and  
 the final-stage prototype representation  $\mathbf{T}_{n_F}$ . To ensure dimensional compatibility, each feature

324  $\mathbf{I}_{s,n'} \in \mathbb{R}^{D_I}$  is first transformed by a learnable linear projection  $\mathbf{W} \in \mathbb{R}^{D_T \times D_I}$ . The class-wise  
 325 probability for the  $n'$ -th branch is defined as:

$$326 \quad \mathbf{P}_{s,n',c} = \sigma(\boldsymbol{\tau} \odot ((\mathbf{W}\mathbf{I}_{s,n'}) \mathbf{T}_{n_F}^\top) + \boldsymbol{\beta})_c, \quad (15)$$

328 where  $\boldsymbol{\tau} \in \mathbb{R}^C$  denotes a learnable temperature scaling vector,  $\boldsymbol{\beta} \in \mathbb{R}^C$  is a learnable bias term, and  
 329  $\sigma(\cdot)$  represents the softmax function applied over all classes  $c = 1, \dots, C$ .

330 The Focal-Smooth Contrastive Loss at stage  $s$ , denoted as  $\mathcal{FSL}_s(\mathbf{P}_s, y)$ , is formulated as:

$$332 \quad \mathcal{FSL}_s(\mathbf{P}_s, y) = - \sum_{n'=1}^{N+1} \sum_{c=1}^C (1 - P_{s,n',c})^\gamma \tilde{y}_{s,n',c} \log P_{s,n',c}, \quad (16)$$

335 where  $\gamma$  is the focusing factor that adjusts the impact of misclassified examples. The smoothed  
 336 target distribution  $\tilde{y}_{s,n',c}$  is given by:

$$337 \quad \tilde{y}_{s,n',c} = \begin{cases} 1 - \epsilon_s, & \text{if } c = y_{s,n'}, \\ 338 \quad \epsilon_s / (C - 1), & \text{otherwise,} \end{cases} \quad (17)$$

340 where  $\epsilon_s$  gradually decreases as the stage index  $s$  increases, enabling the MMBPR module to gen-  
 341 erate progressively more confident predictions.

342 The final loss is defined as the weighted sum of the stage-wise losses  $\mathcal{FSL}_s(\mathbf{P}_s, y)$ , where the  
 343 weight  $\tilde{\epsilon}_s$  increases with the stage index  $s$  (serving a role analogous to  $\epsilon_s$ , but exhibiting an opposite  
 344 monotonic trend). Formally,

$$345 \quad \mathcal{L}_{\text{final}} = \sum_{s=s_{\min}}^4 \tilde{\epsilon}_s \cdot \mathcal{FSL}_s(\mathbf{P}_s, y), \quad (18)$$

348 At inference time, the prediction from the final stage is utilized, and the inference strategy relies  
 349 solely on the global branch:

$$350 \quad \mathbf{P}^{\text{inference}} = \mathbf{P}_{s=4, n'=0}, \quad (19)$$

351 in which ClearCLIP and redundant part-level branches are removed during inference, thereby en-  
 352 abling substantially faster computation.

## 354 4 EXPERIMENTS

### 356 4.1 EXPERIMENTAL SETUP

358 Table 1: Statistics of benchmark datasets.

| 360 <b>Dataset</b>      | 361 <b>Class</b> | 362 <b>Train</b> | 363 <b>Test</b> |
|-------------------------|------------------|------------------|-----------------|
| 364 FGVC Aircraft (AIR) | 365 100          | 366 6,667        | 367 3,333       |
| 368 Stanford Dogs (DOG) | 369 120          | 370 12,000       | 371 8,580       |
| 372 Stanford Cars (CAR) | 373 196          | 374 8,144        | 375 8,041       |
| 376 CUB-200-2011 (CUB)  | 377 200          | 378 5,994        | 379 5,794       |
| 380 NABirds (NAB)       | 381 555          | 382 23,929       | 383 24,633      |

**Datasets** We comprehensively evaluate PSCL on the FGVC Aircraft (Maji et al., 2013), Stanford Dogs (Khosla et al., 2011), Stanford Cars (Krause et al., 2013), CUB-200-2011 (Wah et al., 2011) and NABirds (Van Horn et al., 2015) datasets, which are widely used FGVC benchmarks. In all experiments, we do not utilize part annotations and follow the same train/test split. The details of the five datasets are presented in table 1.

386 **Implementation Details** We adopt ResNet-50 (He et al., 2016), Vision Transformer (Dosovitskiy  
 387 et al., 2021), and Swin Transformer (Liu et al., 2021) as the backbone architectures. The input image  
 388 resolutions are set to  $448 \times 448$  for ResNet-50 (RN50),  $518 \times 518$  for Vision Transformer (ViT-B),  
 389 and  $384 \times 384$  for Swin Transformer (Swin-B).

390 During training, we apply standard data augmentation techniques, including random cropping, ran-  
 391 dom erasing, horizontal flipping, Gaussian blur, color jittering, and rotation. All models are trained  
 392 for 100 epochs using the AdamW optimizer with a batch size of 16 and a weight decay of 0.01.  
 393 The initial learning rate is set to  $1 \times 10^{-4}$  for RN50 and  $1 \times 10^{-5}$  for both ViT-B and Swin-B. A  
 394 warm-up phase of 10 epochs is applied, and the learning rate follows a cosine annealing schedule.

396 The focusing parameter  $\gamma$  is set to 4, and the smoothing noise factor  $\epsilon_s$  follows [0.4, 0.3, 0.2, 0.1],  
 397 while  $\tilde{\epsilon}_s$  is set to [0.1, 0.2, 0.4, 1.0].

378 4.2 COMPARISON WITH OTHER METHODS  
379380 Table 2: Performance comparison on FGVC benchmark datasets (Accuracy %). The best results for  
381 each dataset are highlighted in bold.  
382

| 383 <b>Method</b>              | 384 <b>Backbone</b> | 385 <b>AIR</b> | 386 <b>CAR</b> | 387 <b>CUB</b> | 388 <b>NAB</b> | 389 <b>DOG</b> |
|--------------------------------|---------------------|----------------|----------------|----------------|----------------|----------------|
| CMN (Deng et al., 2022)        | RN50                | 93.8           | 94.9           | 88.2           | 87.8           | –              |
| P2P-Net (Yang et al., 2022)    | RN50                | 94.2           | 95.4           | 90.2           | –              | –              |
| GDSMP-Net (Ke et al., 2023)    | RN50                | 94.4           | 95.3           | 89.9           | <b>89.0</b>    | –              |
| SIA-Net (Wang et al., 2023c)   | RN50                | 94.3           | 95.5           | <b>90.7</b>    | –              | –              |
| <b>PSCL (ours)</b>             | RN50                | <b>95.1</b>    | <b>95.6</b>    | 89.1           | <b>89.0</b>    | 90.1           |
| TransFG (He et al., 2022)      | ViT-B               | –              | 94.8           | 91.7           | 90.8           | 92.3           |
| MpT-Trans (Wang et al., 2023a) | ViT-B               | 92.2           | 93.8           | 92.0           | 91.3           | –              |
| ACC-ViT (Zhang et al., 2024)   | ViT-B               | –              | 94.9           | 91.8           | 91.4           | <b>92.9</b>    |
| MP-FGVC (Jiang et al., 2024)   | ViT-B               | –              | –              | 91.8           | 91.0           | 91.0           |
| <b>PSCL (ours)</b>             | ViT-B               | <b>96.5</b>    | <b>96.4</b>    | <b>92.3</b>    | <b>93.7</b>    | 92.3           |
| ViT-NeT (Kim et al., 2022)     | Swin-B              | –              | 95.0           | 91.6           | 90.9           | 90.3           |
| TransIFC+ (Liu et al., 2023)   | Swin-B              | –              | –              | 91.0           | 90.9           | –              |
| HERBS (Chou et al., 2023)      | Swin-B              | –              | –              | 92.3           | 93.0           | –              |
| CSQA-Net (Xu et al., 2025)     | Swin-B              | 94.7           | <b>95.6</b>    | 92.6           | 92.3           | –              |
| <b>PSCL (ours)</b>             | Swin-B              | <b>95.3</b>    | 95.5           | <b>93.0</b>    | <b>93.8</b>    | <b>94.7</b>    |

398  
399 We evaluate our method on five benchmark datasets using three backbone architectures and com-  
400 pare it with state-of-the-art models, as summarized in table 2. The results demonstrate the superior  
401 performance and strong generalization ability of PSCL across diverse FGVC benchmarks. PSCL  
402 consistently achieves state-of-the-art or highly competitive accuracy across all datasets and back-  
403 bones (RN50, ViT-B, and Swin-B). It delivers substantial improvements under Transformer-based  
404 backbones, and remains competitive under the CNN-based RN50, particularly on AIR and CAR  
405 datasets. These results highlight PSCL’s adaptability to different architectures and its effectiveness  
406 in capturing both local and structural discriminative cues. Furthermore, its consistent performance  
407 across datasets underscores its robustness. Notably, on the large-scale NAB dataset, the availabil-  
408 ity of an accurate and professionally curated category hierarchy enables precise intermediate-level  
409 grouping, further enhancing accuracy and demonstrating the effectiveness of the VLCL-MG mod-  
410 ule. The strong performance on multiple non-rigid datasets such as DOG and NAB demonstrates  
411 that PSCL effectively models the characteristics of non-rigid objects.

412 4.3 EFFECTIVENESS OF MODULE OPERATION  
413

414 **Locating Relevant Parts** We resize eq. (2) to match the original image dimensions for visualiz-  
415 ing the part localization results. As observed in fig. 4, the PLM structure effectively identifies the  
416 locations of the parts.



417 Figure 4: Part score visualization. PLM uses the following textual prompts: (I) mouth; (II) head;  
418 (III) body; (IV) foot; (V) landing gear; (VI) tail; (VII) fuselage; (VIII) engine.  
419

420 **Reverse-key Scale-aware Attention Fusion Module** To assess the effectiveness of our proposed  
421 ReSAF module, we conduct a comparative study with two alternative intermediate mechanisms: a  
422 multilayer perceptron (MLP) and cross-attention. All experiments are performed using the RN50

backbone on the AIR dataset. The quantitative results, summarized in table 3, demonstrate that Re-SAF consistently outperforms the other two variants, highlighting its superior capability in capturing scale-aware feature interactions.



Figure 5: Attention maps of ReSAF. (I)-(IV) show the relative attention among patches, while (V)-(VIII) present the accumulated spatial attention. It can be observed that shallow features primarily serve a complementary role for deep features.

Table 3: Performance comparison of different intermediate mechanisms on the AIR dataset. Accuracy (%) is reported.

| Intermediate Mechanism | Accuracy (%) |
|------------------------|--------------|
| MLP                    | 94.71        |
| Cross-Attention        | 94.99        |
| ReSAF (Ours)           | <b>95.14</b> |



Figure 6: Accuracy (%) on the AIR dataset (RN50) under different settings. Left: focusing parameter  $\gamma$ ; Right: encoder hidden dimension.

classes sharing the same intermediate category often exhibit similar part-level structures (e.g., Anseriformes birds with webbed feet and long necks; off-road vehicles with high chassis and traction-oriented tires), which reduces the additional benefits of stacking PLM and VLCL-MG. MMBPR further improves performance through multi-scale reasoning. Although the modules differ in their roles, all aim to enhance semantic consistency, and despite the potential overlap of their effects in low-redundancy settings, the full model consistently achieves the best results, confirming their overall complementarity.

Table 4: Accuracy (%) on AIR dataset (RN50) under smoothing noise factor  $\epsilon_s$ .

| $\epsilon_s$         | Accuracy (%) |
|----------------------|--------------|
| [0.0, 0.0, 0.0, 0.0] | 89.92        |
| [0.6, 0.4, 0.2, 0.0] | 94.22        |
| [0.7, 0.5, 0.3, 0.1] | 94.83        |
| [0.4, 0.3, 0.2, 0.1] | <b>95.14</b> |

**Hyperparameter Selection** All hyperparameters except the learning rate were searched and selected exclusively on the AIR dataset with RN50. Results are shown in table 4, table 5 and fig. 6. The trends of  $\epsilon_s$  and  $\gamma$  suggest that progressive inference improves performance, and increasing the focus on hard samples via  $\gamma$  further enhances results. We note that if hyperparameter tuning were performed specifically for a target dataset, our proposed PSCL could potentially achieve even better performance.

**Ablation Studies** The ablation results in table 6 across RN50, Swin-B, and ViT-B on CUB, AIR, and CAR verify the effectiveness of each proposed module. PLM and VLCL-MG individually yield notable gains, reflecting their strengths in part localization and semantic alignment. Because both are designed to address the same underlying issue, combining them may show diminishing marginal gains—a property rooted in the data itself. Fine-grained

Table 5: Accuracy (%) on AIR dataset (RN50) under multi-scale loss weight coefficient  $\tilde{\epsilon}_s$ .

| $\tilde{\epsilon}_s$ | Accuracy (%) |
|----------------------|--------------|
| [0.0, 0.0, 0.0, 1.0] | 94.65        |
| [0.1, 0.2, 0.2, 1.0] | 94.77        |
| [0.1, 0.2, 0.4, 1.0] | <b>95.14</b> |
| [0.2, 0.4, 0.4, 1.0] | 94.89        |

486  
487  
488  
Table 6: Ablation study on three FGVC datasets using different backbones. Accuracy (%) is reported  
for each configuration. The best results for each column are highlighted in bold. Features are  
indicated by a check mark (✓) or a cross (✗).

| 489<br>490 | PLM | MMBPR | VLCL-MG | RN50         |              |              | Swin-B       |              |              | ViT-B        |              |              |
|------------|-----|-------|---------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
|            |     |       |         | CUB          | AIR          | CAR          | CUB          | AIR          | CAR          | CUB          | AIR          | CAR          |
| 491        | ✗   | ✗     | ✗       | 85.09        | 91.56        | 91.90        | 92.32        | 94.14        | 94.86        | 90.23        | 94.57        | 95.60        |
| 492        | ✓   | ✗     | ✗       | 88.82        | 94.54        | 95.46        | 92.68        | 94.60        | 94.74        | 91.99        | 96.13        | 96.05        |
| 493        | ✓   | ✓     | ✗       | 89.09        | 94.54        | 95.54        | 92.51        | 95.05        | 95.04        | <b>92.34</b> | 96.19        | 96.17        |
| 494        | ✗   | ✗     | ✓       | 87.90        | 94.39        | 95.32        | 92.65        | 94.87        | 95.51        | 90.94        | 95.08        | 96.26        |
| 495        | ✓   | ✓     | ✓       | <b>89.13</b> | <b>95.14</b> | <b>95.59</b> | <b>93.01</b> | <b>95.32</b> | <b>95.54</b> | <b>92.34</b> | <b>96.48</b> | <b>96.44</b> |

#### 496 4.4 TRAINING AND INFERENCE EFFICIENCY

497  
498 We report the computational cost of PSCL across different backbones using a single NVIDIA RTX  
499 4090 GPU. The encoder hidden dimension is set to 768, and the number of stages is fixed at 4  
500 ( $s_{\min}=1$ ).

##### 501 Additional Computational Cost During Training.

502 Although PSCL introduces additional computational  
503 overhead, the overall cost remains comparable to that  
504 of many contemporary large-scale Transformer models.  
505 Moreover, it can benefit from standard computation-  
506 acceleration techniques, ensuring that the added cost re-  
507 mains within an acceptable range.

508 It is worth noting that different backbones have different hidden dimensions; consequently, the MLP  
509 used to project features to the encoder hidden dimension incurs slightly different computational  
510 costs. The resulting discrepancy is on the order of a few tenths of a GFLOP. For consistency, the  
511 FLOPs reported in table 7 are computed by assuming a backbone hidden dimension of 768. In  
512 addition, when  $s_{\min}=4$ , ReSAF degenerates into a simple MLP whose input dimension equals the  
513 backbone hidden dimension and whose output dimension matches the encoder hidden dimension.

514  
515 **Inference.** At test time, PSCL only uses the global branch, reducing computation to backbone +  
516 1 ReSAF + 3 encoder layers. Table 8 summarizes per-image inference time, throughput, and peak  
517 VRAM for different batch sizes. PSCL adds modest overhead compared to the backbone alone,  
518 remaining within a practical range for real-world use.

519  
520 Table 8: Inference statistics. Time in ms/image; Throughput in images/s; PSCL: prediction head;  
521 Backb.: backbone; VRAM: peak GPU memory (GB).

| 522<br>523 | Batch | Model  | Time (ms) |        | Throughput (img/s) |        | VRAM<br>(GB) |
|------------|-------|--------|-----------|--------|--------------------|--------|--------------|
|            |       |        | PSCL      | Backb. | PSCL               | Backb. |              |
| 524        | 1     | ViT-B  | 17.26     | 6.39   | 57.94              | 156.59 | 4.54         |
| 525        | 1     | RN50   | 18.29     | 6.56   | 54.66              | 152.47 | 3.65         |
| 526        | 1     | Swin-B | 31.41     | 21.75  | 31.84              | 45.98  | 4.71         |
| 527        | 8     | ViT-B  | 5.18      | 3.97   | 193.13             | 251.91 | 4.78         |
| 528        | 8     | RN50   | 3.11      | 1.38   | 321.89             | 724.25 | 3.93         |
| 529        | 8     | Swin-B | 5.01      | 3.45   | 199.79             | 289.70 | 5.04         |

## 531 5 CONCLUSION

532  
533 We introduce Part-level Semantic-guided Contrastive Learning (PSCL), a framework for Fine-  
534 Grained Visual Classification that jointly models part-level details and spatial relations for both  
535 rigid and non-rigid objects. PSCL employs a Part Localization Module (PLM) with ClearCLIP  
536 for semantically guided, interpretable part extraction, a Multi-scale Multi-part Branch Progressive  
537 Reasoning (MMBPR) module to fuse fine-grained and global features, and a Visual-Language Con-  
538 trastive Learning module with Multi-grained Text Features (VLCL-MG) to align subcategories via  
539 intermediate-level semantics. Experiments on five FGVC benchmarks demonstrate PSCL’s robust  
performance and strong generalization.

Table 7: Computational cost.

| Component | GFLOPs                 |
|-----------|------------------------|
| ClearCLIP | 17.35                  |
| MMBPR     | $15.72 \times (N + 1)$ |
| ReSAF     | 5.78                   |
| others    | Negligible             |

## 540 ETHICS STATEMENT

541

542 Our work focuses on fine-grained visual classification using publicly available datasets. No human  
 543 subjects, personally identifiable information, or sensitive content are involved. All datasets em-  
 544 ployed, including AIR, CAR, NABirds, DOG, and others, are used strictly for research purposes in  
 545 accordance with their respective licenses. We acknowledge the potential societal impacts of deploy-  
 546 ing FGVC models, such as reinforcing biases present in the training data, and emphasize that PSCL  
 547 should be applied responsibly, with consideration for fairness and ethical implications.

## 548 REPRODUCIBILITY STATEMENT

549

550 To ensure reproducibility, we provide detailed descriptions of all model components, including the  
 551 Part Localization Module (PLM), Multi-scale Multi-part Branch Progressive Reasoning (MMBPR),  
 552 and Visual-Language Contrastive Learning with Multi-grained Text Features (VLCL-MG). Hyper-  
 553 parameters, training procedures, and evaluation protocols are specified in the manuscript. **We re-**  
 554 **lease the code, trained model checkpoints, and the dataset as anonymous supplementary materials,**  
 555 **enabling other researchers to reproduce our experiments under the same settings.**

556

## 557 REFERENCES

558

559 Ardhendu Behera, Zachary Wharton, Pradeep RPG Hewage, and Asish Bera. Context-aware atten-  
 560 tional pooling (cap) for fine-grained visual classification. In *Proceedings of the AAAI conference*  
 561 *on artificial intelligence*, volume 35, pp. 929–937, 2021.

562 Steve Branson, Grant Van Horn, Serge Belongie, and Pietro Perona. Bird species categorization  
 563 using pose normalized deep convolutional nets. *arXiv preprint arXiv:1406.2952*, 2014.

564

565 Po-Yung Chou, Yu-Yung Kao, and Cheng-Hung Lin. Fine-grained visual classification with high-  
 566 temperature refinement and background suppression. *arXiv preprint arXiv:2303.06442*, 2023.

567

568 Weijian Deng, Joshua Marsh, Stephen Gould, and Liang Zheng. Fine-grained classification via  
 569 categorical memory networks. *IEEE Transactions on Image Processing*, 31:4186–4196, 2022.

570

571 Yifeng Ding, Zhanyu Ma, Shaoguo Wen, Jiyang Xie, Dongliang Chang, Zhongwei Si, Ming Wu,  
 572 and Haibin Ling. Ap-cnn: Weakly supervised attention pyramid convolutional neural network for  
 573 fine-grained visual classification. *IEEE Transactions on Image Processing*, 30:2826–2836, 2021.

574

575 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas  
 576 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,  
 577 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at  
 578 scale, 2021. URL <https://arxiv.org/abs/2010.11929>.

579

580 Ruoyi Du, Dongliang Chang, Ayan Kumar Bhunia, Jiyang Xie, Zhanyu Ma, Yi-Zhe Song, and  
 581 Jun Guo. Fine-grained visual classification via progressive multi-granularity training of jigsaw  
 582 patches. In *European Conference on Computer Vision*, pp. 153–168. Springer, 2020.

583

584 Ju He, Jie-Neng Chen, Shuai Liu, Adam Kortylewski, Cheng Yang, Yutong Bai, and Changhu Wang.  
 585 Transfg: A transformer architecture for fine-grained recognition. In *Proceedings of the AAAI*  
 586 *conference on artificial intelligence*, volume 36, pp. 852–860, 2022.

587

588 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-  
 589 nition. In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp.  
 590 770–778, 2016.

591

592 Xin Jiang, Hao Tang, Junyao Gao, Xiaoyu Du, Shengfeng He, and Zechao Li. Delving into multi-  
 593 modal prompting for fine-grained visual classification. In *Proceedings of the AAAI conference on*  
 594 *artificial intelligence*, volume 38, pp. 2570–2578, 2024.

595

596 Xiao Ke, Yuhang Cai, Baitao Chen, Hao Liu, and Wenzhong Guo. Granularity-aware distillation  
 597 and structure modeling region proposal network for fine-grained image classification. *Pattern  
 598 Recognition*, 137:109305, 2023.

594 Aditya Khosla, Nityananda Jayadevaprakash, Bangpeng Yao, and Fei-Fei Li. Novel dataset for fine-  
 595 grained image categorization: Stanford dogs. In *Proc. CVPR workshop on fine-grained visual*  
 596 *categorization (FGVC)*, volume 2, 2011.

597 Sangwon Kim, Jaeyeal Nam, and Byoung Chul Ko. Vit-net: Interpretable vision transformers with  
 598 neural tree decoder. In *International conference on machine learning*, pp. 11162–11172. PMLR,  
 599 2022.

600 Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d object representations for fine-grained  
 601 categorization. In *Proceedings of the IEEE international conference on computer vision work-  
 602 shops*, pp. 554–561, 2013.

603 Mengcheng Lan, Chaofeng Chen, Yiping Ke, Xinjiang Wang, Litong Feng, and Wayne Zhang.  
 604 Clearclip: Decomposing clip representations for dense vision-language inference. In *European*  
 605 *Conference on Computer Vision*, pp. 143–160. Springer, 2024.

606 Siyuan Li, Li Sun, and Qingli Li. Clip-reid: exploiting vision-language model for image re-  
 607 identification without concrete text labels. In *Proceedings of the AAAI Conference on Artificial*  
 608 *Intelligence*, volume 37, pp. 1405–1413, 2023.

609 Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object  
 610 detection. In *2017 IEEE International Conference on Computer Vision (ICCV)*, pp. 2999–3007,  
 611 2017. doi: 10.1109/ICCV.2017.324.

612 Tsung-Yu Lin, Aruni RoyChowdhury, and Subhransu Maji. Bilinear cnn models for fine-grained  
 613 visual recognition. In *Proceedings of the IEEE international conference on computer vision*, pp.  
 614 1449–1457, 2015.

615 Hai Liu, Cheng Zhang, Yongjian Deng, Bochen Xie, Tingting Liu, and You-Fu Li. Transfc: Invari-  
 616 ant cues-aware feature concentration learning for efficient fine-grained bird image classification.  
 617 *IEEE Transactions on Multimedia*, 27:1677–1690, 2023.

618 Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo.  
 619 Swin transformer: Hierarchical vision transformer using shifted windows. In *Proceedings of the*  
 620 *IEEE/CVF international conference on computer vision*, pp. 10012–10022, 2021.

621 Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew Blaschko, and Andrea Vedaldi. Fine-grained  
 622 visual classification of aircraft. *arXiv preprint arXiv:1306.5151*, 2013.

623 Zhuang Miao, Xun Zhao, Jiabao Wang, Yang Li, and Hang Li. Complemental attention multi-feature  
 624 fusion network for fine-grained classification. *IEEE Signal Processing Letters*, 28:1983–1987,  
 625 2021.

626 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,  
 627 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual  
 628 models from natural language supervision. In *International conference on machine learning*, pp.  
 629 8748–8763. PMLR, 2021.

630 Guolei Sun, Hisham Cholakkal, Salman Khan, Fahad Khan, and Ling Shao. Fine-grained recog-  
 631 nition: Accounting for subtle differences between similar classes. In *Proceedings of the AAAI*  
 632 *conference on artificial intelligence*, volume 34, pp. 12047–12054, 2020.

633 Ming Sun, Yuchen Yuan, Feng Zhou, and Errui Ding. Multi-attention multi-class constraint for  
 634 fine-grained image recognition. In *Proceedings of the european conference on computer vision*  
 635 (*ECCV*), pp. 805–821, 2018.

636 Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna. Rethink-  
 637 ing the inception architecture for computer vision. In *Proceedings of the IEEE conference on*  
 638 *computer vision and pattern recognition*, pp. 2818–2826, 2016.

639 Grant Van Horn, Steve Branson, Ryan Farrell, Scott Haber, Jessie Barry, Panos Ipeirotis, Pietro  
 640 Perona, and Serge Belongie. Building a bird recognition app and large scale dataset with citizen  
 641 scientists: The fine print in fine-grained dataset collection. In *Proceedings of the IEEE conference*  
 642 *on computer vision and pattern recognition*, pp. 595–604, 2015.

648 C. Wah, S. Branson, P. Welinder, P. Perona, and S. Belongie. The caltech-ucsd birds-200-2011  
 649 dataset. Technical Report CNS-TR-2011-001, California Institute of Technology, 2011.  
 650

651 Chuanming Wang, Huiyuan Fu, and Huadong Ma. Multi-part token transformer with dual con-  
 652 trastive learning for fine-grained image classification. In *Proceedings of the 31st ACM Interna-  
 653 tional Conference on Multimedia*, pp. 7648–7656, 2023a.

654 Shijie Wang, Jianlong Chang, Haojie Li, Zhihui Wang, Wanli Ouyang, and Qi Tian. Open-set  
 655 fine-grained retrieval via prompting vision-language evaluator. In *Proceedings of the IEEE/CVF  
 656 Conference on Computer Vision and Pattern Recognition*, pp. 19381–19391, 2023b.

657 Shijie Wang, Zhihui Wang, Haojie Li, Jianlong Chang, Wanli Ouyang, and Qi Tian. Semantic-  
 658 guided information alignment network for fine-grained image recognition. *IEEE Transactions on  
 659 Circuits and Systems for Video Technology*, 33(11):6558–6570, 2023c.

660 Qin Xu, Sitong Li, Jiahui Wang, Bo Jiang, Bin Luo, and Jinhui Tang. Context-semantic quality  
 661 awareness network for fine-grained visual categorization. *Pattern Recognition*, pp. 112033, 2025.

662 Xuhui Yang, Yaowei Wang, Ke Chen, Yong Xu, and Yonghong Tian. Fine-grained object clas-  
 663 sification via self-supervised pose alignment. In *Proceedings of the IEEE/CVF Conference on  
 664 Computer Vision and Pattern Recognition*, pp. 7399–7408, 2022.

665 Ying Yu, Wei Wei, Cairong Zhao, Jin Qian, and Enhong Chen. Structural feature enhanced trans-  
 666 former for fine-grained image recognition. *Pattern Recognition*, pp. 111955, 2025.

667 Fan Zhang, Meng Li, Guisheng Zhai, and Yizhao Liu. Multi-branch and multi-scale attention learn-  
 668 ing for fine-grained visual categorization. In *MultiMedia Modeling: 27th International Con-  
 669 ference, MMM 2021, Prague, Czech Republic, June 22–24, 2021, Proceedings, Part I 27*, pp.  
 670 136–147. Springer, 2021.

671 Lianbo Zhang, Shaoli Huang, Wei Liu, and Dacheng Tao. Learning a mixture of granularity-specific  
 672 experts for fine-grained categorization. In *Proceedings of the IEEE/CVF international conference  
 673 on computer vision*, pp. 8331–8340, 2019.

674 Ning Zhang, Jeff Donahue, Ross Girshick, and Trevor Darrell. Part-based r-cnns for fine-grained cat-  
 675 egory detection. In *Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzer-  
 676 land, September 6–12, 2014, Proceedings, Part I 13*, pp. 834–849. Springer, 2014.

677 Zhicheng Zhang, Hao Tang, and Jinhui Tang. Multi-scale activation, selection, and aggregation:  
 678 Exploring diverse cues for fine-grained bird recognition. In *Proceedings of the AAAI Conference  
 679 on Artificial Intelligence*, volume 39, pp. 10385–10393, 2025.

680 Zi-Chao Zhang, Zhen-Duo Chen, Yongxin Wang, Xin Luo, and Xin-Shun Xu. A vision transformer  
 681 for fine-grained classification by reducing noise and enhancing discriminative information. *Pat-  
 682 tern Recognition*, 145:109979, 2024.

683 Yifan Zhao, Jia Li, Xiaowu Chen, and Yonghong Tian. Part-guided relational transformers for fine-  
 684 grained visual recognition. *IEEE Transactions on Image Processing*, 30:9470–9481, 2021.

685 Heliang Zheng, Jianlong Fu, Tao Mei, and Jiebo Luo. Learning multi-attention convolutional neural  
 686 network for fine-grained image recognition. In *Proceedings of the IEEE international conference  
 687 on computer vision*, pp. 5209–5217, 2017.

688 Heliang Zheng, Jianlong Fu, Zheng-Jun Zha, and Jiebo Luo. Learning deep bilinear transformation  
 689 for fine-grained image representation. *Advances in Neural Information Processing Systems*, 32,  
 2019.

690 Chong Zhou, Chen Change Loy, and Bo Dai. Extract free dense labels from clip. In *European  
 691 Conference on Computer Vision*, pp. 696–712. Springer, 2022.

702 **A THE USE OF LARGE LANGUAGE MODELS**  
703

704 In this work, we leverage large language models (LLMs), specifically ChatGPT-4o, to construct  
705 intermediate category hierarchies. Beyond this, LLMs are also employed to assist in code develop-  
706 ment and manuscript refinement. All outputs from the LLM are carefully verified to ensure accu-  
707 racy. However, the intermediate category hierarchies may contain some errors due to their reliance  
708 on domain-specific expert knowledge, representing a potential source of noise in the experimental  
709 results.

710  
711 **B TRAINING AND HYPERPARAMETER SETTINGS FOR DIFFERENT**  
712 **BACKBONES**  
713714 Table 9: Hyperparameter settings for different backbones.  
715

| 716 <b>Hyperparameter Setting</b>                | 717 <b>ResNet-50</b>       | 718 <b>ViT-B</b>           | 719 <b>Swin-B</b>          |
|--------------------------------------------------|----------------------------|----------------------------|----------------------------|
| 720 Input resolution                             | 721 $448 \times 448$       | 722 $518 \times 518$       | 723 $384 \times 384$       |
| 724 Batch size                                   | 725 16                     | 726 16                     | 727 16                     |
| 728 Weight decay                                 | 729 0.01                   | 730 0.01                   | 731 0.01                   |
| 732 Optimizer                                    | 733 AdamW                  | 734 AdamW                  | 735 AdamW                  |
| 736 Optimizer $\beta$                            | 737 $(0.9, 0.95)$          | 738 $(0.9, 0.95)$          | 739 $(0.9, 0.95)$          |
| 740 Optimizer $\epsilon$                         | 741 $1e-8$                 | 742 $1e-8$                 | 743 $1e-8$                 |
| 744 Initial learning rate                        | 745 $1e-4$                 | 746 $1e-5$                 | 747 $1e-5$                 |
| 748 Learning rate schedule                       | 749 Cosine annealing       | 750 Cosine annealing       | 751 Cosine annealing       |
| 752 Warm-up epochs                               | 753 10                     | 754 10                     | 755 10                     |
| 756 Epochs                                       | 757 100                    | 758 100                    | 759 100                    |
| 760 Focusing parameter $\gamma$                  | 761 4                      | 762 4                      | 763 4                      |
| 764 Smoothing noise factor $\epsilon_s$          | 765 $[0.4, 0.3, 0.2, 0.1]$ | 766 $[0.4, 0.3, 0.2, 0.1]$ | 767 $[0.4, 0.3, 0.2, 0.1]$ |
| 768 Multi-scale loss weight $\tilde{\epsilon}_s$ | 769 $[0.1, 0.2, 0.4, 1.0]$ | 770 $[0.1, 0.2, 0.4, 1.0]$ | 771 $[0.1, 0.2, 0.4, 1.0]$ |

732 Table 10: Training time (hours) and peak VRAM (GB) for each model and dataset.  
733

| 734 <b>Dataset</b> | 735 <b>RN50</b> |               | 736 <b>ViT-B</b> |               | 737 <b>Swin-B</b> |               |
|--------------------|-----------------|---------------|------------------|---------------|-------------------|---------------|
|                    | 738 Time (h)    | 739 VRAM (GB) | 740 Time (h)     | 741 VRAM (GB) | 742 Time (h)      | 743 VRAM (GB) |
| 744 AIR            | 745 3.7         | 746 18        | 747 5.1          | 748 22        | 749 4.8           | 750 23.8      |
| 751 CAR            | 752 3.8         | 753 15.1      | 754 5.4          | 755 19.1      | 756 5.1           | 757 21.6      |
| 758 CUB            | 759 3.0         | 760 16.5      | 761 4.2          | 762 20.6      | 763 3.9           | 764 22.7      |
| 766 NAB            | 767 12          | 768 16.5      | 769 16.6         | 770 20.6      | 771 15.4          | 772 22.7      |
| 774 DOG            | 775 5.5         | 776 15.1      | 777 8.0          | 778 19.1      | 779 7.5           | 780 21.6      |

741 Table 10 shows the training time and peak VRAM for each backbone and dataset. RN50 is generally  
742 faster and uses less memory than ViT-B and Swin-B, while larger datasets (e.g., NAB) require more  
743 time.  
744

745 **C PART TEXT FOR DIFFERENT DATASETS**  
746

| 748 <b>Dataset</b> | 749 <b>Part Text</b>                                                                                                                |
|--------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 750 AIR            | 751 background of a plane, tail of a plane, logo of a plane, engine of a plane, landing gear<br>752 of a plane, fuselage of a plane |
| 753 CUB            | 754 background of a bird, head of a bird, foot of a bird, body of a bird, mouth of a bird                                           |
| 755 CAR            | 756 background of a car, head of a car, body of a car, back of a car                                                                |
| 757 NAB            | 758 background of a bird, head of a bird, foot of a bird, body of a bird, mouth of a bird                                           |
| 759 DOG            | 760 background of a dog, head of a dog, foot of a dog, body of a dog                                                                |

756 D OTHER RESULTS.  
757759 Table 11: Classification accuracy (%) on fine-grained datasets using different embedding/masking  
760 strategies.

| Method                                       | ResNet50 |          |       | ViT-B |          |       |
|----------------------------------------------|----------|----------|-------|-------|----------|-------|
|                                              | CUB      | Aircraft | Car   | CUB   | Aircraft | Car   |
| Random text embeddings ( $F_{\text{text}}$ ) | 88.93    | 94.75    | 95.38 | 92.04 | 95.45    | 96.36 |
| Random masking ( $S(\mathbf{k})$ )           | 88.12    | 94.93    | 95.25 | 91.76 | 95.26    | 96.26 |
| Part text embeddings                         | 89.13    | 95.14    | 95.59 | 92.34 | 96.48    | 96.44 |

768 We conducted experiments in which either  $F_{\text{text}}$  or  $S(\mathbf{k})$  was randomized. Both random strategies  
769 can be viewed as mutually exclusive data augmentation methods based on random masking.  
770 However, Random Text Embeddings tend to occlude semantically similar regions, whereas Random  
771 Masking hides regions randomly. Our proposed PSCL architecture demonstrates considerable  
772 robustness: thanks to the MMBPR and VLCL-MG modules, the model can still learn to focus on  
773 relevant regions autonomously. Nevertheless, providing targeted human guidance could further im-  
774 prove the efficiency of this process.

776 Table 12: Effect of intermediate-category text annotations on NAB classification performance using  
777 ViT-B. Accuracy (%) is reported.

| Intermediate-Category Text                | Accuracy (%) |
|-------------------------------------------|--------------|
| Expert annotations (precise hierarchy)    | <b>93.74</b> |
| Generated via ChatGPT-4o (semi-automatic) | 93.48        |
| Random-text control group                 | 92.83        |

784 We posit that the NAB dataset benefits substantially from its inherent, precise hierarchical category  
785 structure, resulting in a significant performance boost. Accordingly, we employed ChatGPT-4o in  
786 a semi-automatic manner to generate intermediate-category text annotations, while also creating a  
787 random-text control group, and conducted comparative experiments using the ViT-B backbone. The  
788 results demonstrate that accurate expert annotations effectively activate the VLCL-MG module, yet  
789 even the generated intermediate-category text can improve classification accuracy to a certain extent.

791 Table 13: Performance of different numbers of part texts on AIR and CUB datasets

| Dataset | Part text                                                                                                                | N | Accuracy % |
|---------|--------------------------------------------------------------------------------------------------------------------------|---|------------|
| AIR     | background of a plane, tail of a plane, Logo of a plane, engine of a plane, landing gear of a plane, fuselage of a plane | 6 | 95.14      |
| AIR     | background of a plane, tail of a plane, head of a plane, fuselage of a plane                                             | 4 | 94.74      |
| AIR     | background of a plane, tail of a plane, plane                                                                            | 2 | 94.75      |
| AIR     | plane                                                                                                                    | 1 | 94.66      |
| CUB     | background of a bird, head of a bird, foot of a bird, body of a bird, mouth of a bird                                    | 5 | 89.13      |
| CUB     | background of a bird, head of a bird, body of a bird                                                                     | 3 | 88.83      |
| CUB     | background of a bird, bird                                                                                               | 2 | 88.47      |
| CUB     | bird                                                                                                                     | 1 | 88.44      |

808 We conducted experiments to analyze the effect of the number of part texts ( $N$ ). The results below  
809 suggest that 4–6 part texts offer a good balance between performance and complexity. Using even  
a single part text (e.g., “bird”) still yields competitive results, as other effective components (like

810 progressive learning) contribute significantly. While using more parts increases computational cost,  
 811 the performance gains diminish marginally. The experiments were performed using RN50.  
 812

## 814 E EXAMPLES OF SOME INTERMEDIATE CATEGORIES

817 Table 14: Intermediate classes for the AIR dataset

| 819 Fine-grained | 820 Intermediate-grained 1 | 821 Intermediate-grained 2    |
|------------------|----------------------------|-------------------------------|
| 822 737-900      | 823 narrow-body airliner   | 824 twinjet                   |
| 825 747-100      | 826 wide-body airliner     | 827 four-engined jet aircraft |
| 828 A330-300     | 829 wide-body airliner     | 830 twinjet                   |
| 831 A340-200     | 832 wide-body airliner     | 833 four-engined jet aircraft |
| Cessna 525       | business jet               | twinjet                       |
| Challenger 600   | business jet               | twinjet                       |
| DC-10            | wide-body airliner         | trijet                        |
| DC-3             | cargo aircraft             | twin-turboprop                |
| Gulfstream V     | business jet               | twinjet                       |
| Hawk T1          | light aircraft             | single-engine jet             |
| Il-76            | cargo aircraft             | four-engined jet aircraft     |
| L-1011           | wide-body airliner         | trijet                        |
| MD-11            | wide-body airliner         | trijet                        |

835 Table 15: Intermediate classes for the CUB dataset

| 837 Fine-grained        | 838 Intermediate-grained 1 | 839 Intermediate-grained 2 |
|-------------------------|----------------------------|----------------------------|
| Frigatebird             | Seabirds                   | Waterbirds                 |
| Gadwall                 | Ducks                      | Waterbirds                 |
| American Goldfinch      | Finches                    | Songbirds                  |
| Boat-tailed Grackle     | Grackles                   | Songbirds                  |
| American Crow           | Crows                      | Corvids                    |
| Fish Crow               | Crows                      | Corvids                    |
| Black-billed Cuckoo     | Cuckoos                    | Songbirds                  |
| Rusty Blackbird         | Blackbirds                 | Songbirds                  |
| Yellow-headed Blackbird | Blackbirds                 | Songbirds                  |
| Indigo Bunting          | Buntings                   | Songbirds                  |

850 Table 16: Intermediate classes for the CAR dataset

| 852 Fine-grained                         | 853 Intermediate-grained 1 | 854 Intermediate-grained 2 |
|------------------------------------------|----------------------------|----------------------------|
| Audi S4 Sedan 2007                       | Sedan                      | Performance Vehicle        |
| Audi TT RS Coupe 2012                    | Coupe                      | Performance Vehicle        |
| BMW ActiveHybrid 5 Sedan 2012            | Sedan                      | Hybrid Vehicle             |
| BMW 1 Series Convertible 2012            | Convertible                | Luxury Vehicle             |
| BMW 1 Series Coupe 2012                  | Coupe                      | Luxury Vehicle             |
| Acura Integra Type R 2001                | Coupe                      | Performance Vehicle        |
| Acura ZDX Hatchback 2012                 | Hatchback                  | Luxury Vehicle             |
| Aston Martin V8 Vantage Convertible 2012 | Convertible                | Luxury Vehicle             |
| Chrysler Crossfire Convertible 2008      | Convertible                | Performance Vehicle        |
| Chrysler PT Cruiser Convertible 2008     | Convertible                | Family Car                 |
| Daewoo Nubira Wagon 2002                 | Wagon                      | Family Car                 |

864  
865  
866  
867  
868  
869  
870

Table 17: Intermediate classes for the DOG dataset

| Fine-grained              | Intermediate-grained 1 | Intermediate-grained 2 |
|---------------------------|------------------------|------------------------|
| Blenheim Spaniel          | Sporting               | Spaniel                |
| Papillon                  | Toy                    | Toy-group              |
| Toy Terrier               | Toy                    | Terrier-toy            |
| Rhodesian Ridgeback       | Hound                  | Sighthound             |
| Afghan Hound              | Hound                  | Sighthound             |
| Weimaraner                | Sporting               | Pointer                |
| Staffordshire Bullterrier | Terrier                | Bull-type              |
| Cocker Spaniel            | Sporting               | Spaniel                |
| Pug                       | Toy                    | Toy-group              |
| Great Pyrenees            | Working                | Working-group          |
| Irish Water Spaniel       | Sporting               | Spaniel                |
| Kuvasz                    | Working                | Working-group          |
| Groenendael               | Herding                | Herding-group          |

885  
886  
887  
888  
889  
890  
891  
892  
893  
894  
895  
896  
897  
898

Table 18: Intermediate classes for the NAB dataset

| Fine-grained                 | Intermediate-grained 1       | Intermediate-grained 2               |
|------------------------------|------------------------------|--------------------------------------|
| Black-bellied Whistling-Duck | Black-bellied Whistling-Duck | Ducks, Geese, and Swans              |
| Semipalmated Plover          | Semipalmated Plover          | Plovers, Sandpipers, and Allies      |
| American White Pelican       | American White Pelican       | Pelicans, Herons, Ibises, and Allies |
| Killdeer                     | Killdeer                     | Plovers, Sandpipers, and Allies      |
| Chimney Swift                | Chimney Swift                | Swifts and Hummingbirds              |
| American Oystercatcher       | American Oystercatcher       | Plovers, Sandpipers, and Allies      |
| Ross's Goose                 | Ross's Goose                 | Ducks, Geese, and Swans              |
| Barn Owl                     | Barn Owl                     | Owls                                 |
| Turkey Vulture               | Turkey Vulture               | Hawks, Kites, Eagles, and Allies     |
| Brown Pelican                | Brown Pelican                | Pelicans, Herons, Ibises, and Allies |
| Scaled Quail                 | Scaled Quail                 | Grouse, Quail, and Allies            |
| Rock Pigeon                  | Rock Pigeon                  | Pigeons and Doves                    |
| Black-necked Stilt           | Black-necked Stilt           | Plovers, Sandpipers, and Allies      |

913  
914  
915  
916  
917

918 **F LLM PROMPT**  
919920 We use ChatGPT-4o with the following prompt (AIR example):  
921922 “Please classify the following fine-grained categories based on visually dis-  
923 cernible characteristics. Each category must belong to two distinct intermediate-  
924 grained categories. Output one line per category:  
925 [Fine-grained], [Intermediate-1], [Intermediate-2]:  
926 707-320 727-200 737-200 ...”  
927928 **G LLM NOISE-SENSITIVITY EXPERIMENTS**  
929930 We additionally evaluated DeepSeek-R1 and Qwen-2.5-Max under greedy decoding. The results are  
931 summarized in table 19.  
932933 Table 19: Noise-sensitivity experiment results (accuracy %).  
934

| 935 Setting                                             | 936 | 937 Model        | 938 Accuracy |
|---------------------------------------------------------|-----|------------------|--------------|
| 937 Baseline                                            | 938 | 939 ChatGPT-4o   | 940 95.14    |
| 938 Re-label using same intermediate-grained categories | 939 | 940 DeepSeek-R1  | 941 95.08    |
| 939                                                     | 940 | 941 Qwen-2.5-Max | 942 95.11    |
| 940 Re-generate intermediate-grained categories         | 941 | 942 DeepSeek-R1  | 943 94.83    |
| 941                                                     | 942 | 943 Qwen-2.5-Max | 944 95.21    |

943 Only DeepSeek-R1’s regenerated taxonomy became overly coarse (e.g., engine type, wing type),  
944 but LLM variation overall shows robustness. All evaluated models outperform the version without  
945 VLCL-MG (94.54%).  
946947 **H INPUT RESOLUTION OF OUR MODEL**  
948949 For all RN50 models, the input resolution is consistent. For Swin-B, we adopt  $384 \times 384$  as in  
950 HERBS, while TransIFC+ and CSQA-Net use  $448 \times 448$ . ViT-NeT uses  $224 \times 224$ .  
951952 The ViT-B model is somewhat special. After multiple trials, we selected ViT-B/14 with  $518 \times 518$   
953 resolution as the optimal choice. Some additional results for ViT-B models with different input  
954 resolutions are shown in table 20.  
955956 Table 20: Performance of ViT-B models under different input resolutions (accuracy %).  
957

| 958 | 959 Model    | 960 Resolution       | 961 AIR   | 962 CUB   | 963 DOG   |
|-----|--------------|----------------------|-----------|-----------|-----------|
| 959 | 960 ViT-B/14 | 961 $518 \times 518$ | 962 96.48 | 963 92.34 | 964 92.27 |
| 960 | 961 ViT-B/14 | 962 $336 \times 336$ | 963 92.62 | 964 87.21 | 965 90.02 |
| 961 | 962 ViT-B/16 | 963 $448 \times 448$ | 964 94.31 | 965 92.23 | 966 91.01 |
| 962 | 963 ViT-B/16 | 964 $384 \times 384$ | 965 93.58 | 966 88.65 | 967 92.66 |

968 The performance of ViT-B on AIR improves significantly at higher resolutions. We attribute this to  
969 the increased resolution and smaller patch size, which allows the model to capture finer details of  
970 parts such as “logo” and “engine”.  
971972 We note that reporting the best-performing resolutions might raise concerns regarding fairness. To  
973 clarify, even when evaluated at the same resolution, ViT-B models still achieve strong performance  
974 across datasets, indicating that the observed improvements are not a result of unfair comparisons.  
975

## 972 I RESAF OPERATION DETAILS

974 Additional ablation studies on ReSAF variants (with and without eq. (11) concatenation) are pro-  
 975 vided below, conducted on the AIR dataset with RN50 backbone:

977 Table 21: Ablation study of ReSAF variants on the AIR dataset

| Mechanism                         | w/o Eq.11 Concat (%) | w/ Eq.11 Concat (%) |
|-----------------------------------|----------------------|---------------------|
| SAE(Xu et al., 2025)              | 93.67                | 93.79               |
| SAE + Positional Encoding         | 94.33                | 94.43               |
| Prog. Cross-Attention             | 94.60                | 94.99               |
| Prog. Flipped Key Cross-Attention | 94.42                | 94.78               |
| <b>ReSAF (Ours)</b>               | 94.51                | <b>95.14</b>        |

986 ReSAF leverages hierarchical feature roles: deep layers drive classification, while shallow layers  
 987 assist. The flipped-key mechanism ensures complementary shallow information is captured in re-  
 988 gions overlooked by deep features. Eq. 11 concatenation delays shallow-feature fusion, allowing  
 989 the encoder and loss function to select the most useful features and preventing interference between  
 990 shallow and deep layers. The experimental results above validate the effectiveness and reliability of  
 991 ReSAF.

## 995 J PERFORMANCE USING ONLY LAST STAGE OUTPUT AND INFERENCE 996 FEATURE SELECTION

998 During inference, our model exclusively utilizes the global branch at the final stage. This choice is  
 999 supported by empirical results and design considerations summarized as follows.

### 1001 1. ROLE OF PART-LEVEL BRANCHES AND INFERENCE EFFICIENCY

1003 Part-level branches function as regional prompts and feature refinement modules during training.  
 1004 However, the slight performance improvement they offer at inference time does not justify their  
 1005 computational cost. Therefore, we exclude these branches during deployment.

1007 Comparisons between using only the global branch prediction  $\mathbf{P}^{\text{global}} = \mathbf{P}_{s=4, n'=0}$  and aggregating  
 1008 part-level predictions  $\mathbf{P}^{\text{sum}} = \sum_{n'=1}^{N+1} \mathbf{P}_{s=4, n'}$  are shown below:

| Method                       | RN50 (CUB/AIR/CAR) | Swin-B (CUB/AIR/CAR) | ViT-B (CUB/AIR/CAR) |
|------------------------------|--------------------|----------------------|---------------------|
| $\mathbf{P}^{\text{global}}$ | 89.13/95.14/95.59  | 93.01/95.32/95.54    | 92.34/96.48/96.44   |
| $\mathbf{P}^{\text{sum}}$    | 89.08/95.17/95.55  | 93.02/95.38/95.55    | 92.29/96.36/96.44   |

### 1015 2. PROGRESSIVE CONFIDENCE ENHANCEMENT IN VLCL-MG

1017 The VLCL-MG module introduces progressively strengthened confidence constraints across stages.  
 1018 As features propagate through the hierarchy, earlier-stage representations are processed and con-  
 1019 catenated to later stages (eq. (11)), allowing the final stage to integrate comprehensive multi-stage  
 1020 information.

1021 To examine the effectiveness of different inference strategies, we compare:

$$1023 \mathbf{P}^1 = \sum_{s=s_{\min}}^4 \mathbf{P}_s, \quad \mathbf{P}^2 = \sum_{s=s_{\min}}^4 \tilde{\epsilon}_s \cdot \mathbf{P}_s, \quad \mathbf{P}^3 = \mathbf{P}_{s=4, n'=0}.$$

1025 Results on the CUB dataset validate the superiority of using only the final stage:

| Method               | RN50         | Swin-B       | ViT-B        |
|----------------------|--------------|--------------|--------------|
| <b>P<sup>1</sup></b> | 88.40        | 92.71        | 90.95        |
| <b>P<sup>2</sup></b> | 88.95        | <b>93.09</b> | 92.12        |
| <b>P<sup>3</sup></b> | <b>89.13</b> | 93.01        | <b>92.34</b> |

Overall, relying solely on the final-stage prediction ( $\mathbf{P}^3$ ) provides the best balance between accuracy and computational efficiency. While minor fluctuations may appear in certain individual cases, the final-stage strategy ( $\mathbf{P}^3$ ) remains the most reliable and effective option when considering overall performance and practical deployment constraints.

## K ADDITIONAL VISUALIZATIONS OF PART SCORES



Figure 7: Additional visualizations of part scores. PLM uses the following textual prompts: (I) logo; (II) wing; (III) windows; (IV) wing; (V) tail; (VI) eyes; (VII) wheels; (VIII) windows; (IX) headlights.