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ABSTRACT

Fine-Grained Visual Classification (FGVC) aims to distinguish visually similar
subcategories within a broad category, and poses significant challenges due to
subtle inter-class differences, large intra-class variations, and data scarcity. Exist-
ing methods often struggle to effectively capture both part-level detail and spatial
relational features, particularly across rigid and non-rigid object categories. To
address these issues, we propose Part-level Semantic-guided Contrastive Learning
(PSCL), a novel framework that integrates three key components. (1) The Part Lo-
calization Module (PLM) leverages clearCLIP to enable text-controllable region
selection, achieving decoupled and semantically guided spatial feature extraction.
(2) The Multi-scale Multi-part Branch Progressive Reasoning (MMBPR) module
captures discriminative features across multiple parts and scales, while reducing
inter-branch redundancy. (3) The Visual-Language Contrastive Learning based
on Multi-grained Text Features (VLCL-MG) module introduces intermediate-
granularity category concepts to improve feature alignment and inter-class sep-
arability. Extensive experiments on five publicly available FGVC datasets demon-
strate the superior performance and generalization ability of PSCL, validating the
effectiveness of its modular design and the synergy between vision and language.
Code is available at: https://anonymous.4open.science/r/PSCL-3E1F.

1 INTRODUCTION

Fine-Grained Visual Classification (FGVC) aims to accurately distinguish between subcategories
that belong to the same high-level category yet exhibit subtle visual differences. Typical applica-
tions include the classification of bird species (Wah et al., 2011; Van Horn et al., 2015), car brands
(Krause et al., 2013), and aircraft (Maji et al., 2013) models. As FGVC focuses on fine-level dis-
tinctions within specific domains, it has demonstrated unique practical value—distinct from general
visual classification tasks—in areas such as intelligent transportation, medical image analysis, and
ecological environment monitoring. However, FGVC remains a challenging task due to factors such
as low inter-class variance, high intra-class variance, a large number of categories, and data scarcity.

We observe that existing models exhibit notable feature preferences when processing rigid and non-
rigid objects. We argue that FGVC tasks require the modeling of two key types of features: (1) part-
level fine-grained features that capture detailed local differences and (2) spatial relational features
that describe inter-class differences in spatial structure. For rigid objects, inter-class differentiation
is often affected by external factors such as viewpoint variation and occlusion. In contrast, non-
rigid objects tend to exhibit more significant posture variations, leading to greater uncertainty in
their spatial structural features. Different model architectures vary considerably in their capacity to
capture these two types of features.

Some existing works have consciously incorporated mechanisms for modeling spatial structural fea-
tures. For example, CAP (Behera et al., 2021) captures spatial relations through region consistency
integration, while SFETrans (Yu et al., 2025) extracts spatial features via phase spectrum analysis.
These methods have demonstrated effectiveness in improving classification performance for rigid
objects. However, the core objective of FGVC lies in accurately modeling subtle inter-class dif-
ferences. Since spatial relational features often rely on matching shared regions across categories,
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Figure 1: Two types of critical features in rigid and non-rigid objects. (I) Spatial deformation in
non-rigid objects (e.g., birds) due to articulated motion; (II) Diverse part-level details in non-rigid
objects; (III) Stable spatial structure in rigid objects (e.g., airplanes); (IV) Consistent part-level
appearance in rigid objects.

they may conflict with the precise representation of part-level details—particularly for non-rigid
objects—potentially weakening the model’s ability to focus on critical parts. Furthermore, current
models generally adopt a unified strategy for designing part-based branches across all categories,
overlooking the homogeneity of part-level details among similar categories. This can lead to mis-
classifications and redundant representations across branches.

To address these issues, we propose a novel framework called Part-level Semantic-guided Con-
trastive Learning (PSCL). This model introduces a Part Localization Module (PLM), which lever-
ages clearCLIP (Lan et al., 2024) as an auxiliary component to enable text-guided region selection,
thereby achieving effective decoupling of feature region selection and feature representation. Ad-
ditionally, we design a Multi-scale Multi-part Branch Progressive Reasoning (MMBPR) module,
where part-based branches represent fine-grained features of individual parts, while a global branch
adaptively integrates features based on spatial relations. Through progressive reasoning, MMBPR
enables each branch to refine its feature representations across multiple scales.

During the multi-scale feature fusion stage, we further design the Reverse-key Scale-aware Attention
Fusion Module (ReSAF) to suppress the influence of high-level features on semantically similar
regions at lower levels, thereby encouraging the model to extract information from less similar
areas. This effectively mitigates feature redundancy among branches.

Finally, in the classification phase, we introduce a novel Visual-Language Contrastive Learning
based on Multi-grained Text Features (VLCL-MG) module. By incorporating intermediate-level
category concepts, this module leverages prior knowledge to aggregate fine-grained categories into
semantically coherent mid-level groups, promoting more meaningful clustering of similar subcate-
gories in the feature space.

Our main contributions can be summarized as follows:

• We propose a Part Localization Module (PLM) that enables text-controllable spatial feature
extraction via clearCLIP;

• We design a Multi-scale Multi-part Branch Progressive Reasoning (MMBPR) module to
reduce feature redundancy and enhance part-level and global representations;

• We introduce a Visual-Language Contrastive Learning module based on Multi-grained Text
Features (VLCL-MG) to improve the semantic alignment of visually similar subcategories;

• Extensive experiments on five publicly available FGVC datasets validate the effectiveness
and generalization ability of our proposed PSCL framework.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2 RELATED WORK

2.1 FINE-GRAINED VISUAL CLASSIFICATION

Fine-grained visual classification (FGVC) methods primarily focus on capturing subtle inter-class
differences through refined feature representation and part localization. Early feature representation
approaches relied on high-level features (Lin et al., 2015; Zheng et al., 2019; Sun et al., 2020), later
incorporating multi-scale fusion techniques such as AP-CNN (Ding et al., 2021) and PMG (Du et al.,
2020), as well as attention-based mechanisms like MA-CNN (Zheng et al., 2017), OSME (Sun et al.,
2018), and Transformer-based methods such as TransFG (He et al., 2022) and CAMF (Miao et al.,
2021). MDCM (Zhang et al., 2025) introduces a multi-scale ViT framework that improves fine-
grained bird recognition by activating, selecting, and aggregating discriminative cues across scales.
Part localization methods identify discriminative regions through cropping and scaling strategies.
This line of work aims to locate category-relevant regions within the input image by analyzing
attention maps generated by the backbone network. The identified regions are then cropped and
reprocessed to retain high-resolution, fine-grained details that are critical for classification. This
strategy explicitly extracts spatial structural features by emphasizing salient parts, often leading to
superior classification performance. While early approaches like Part-based R-CNN (Zhang et al.,
2014) and Pose Normalized CNN (Branson et al., 2014) relied on strong supervision, recent methods
have shifted to weak supervision for better scalability. Notable examples include MGE-CNN (Zhang
et al., 2019), P2P-Net (Yang et al., 2022), CAP (Behera et al., 2021), TBMSL-Net (Zhang et al.,
2021), and PART (Zhao et al., 2021), which explore part-level semantics via multi-scale learning,
context modeling, or Transformer-based architectures. CSQA-Net (Xu et al., 2025) introduces a
Part Navigator module to assign saliency scores to different image regions, enabling discriminative
region segmentation without strong part annotations.

2.2 VISION-LANGUAGE LEARNING

Vision-language models (VLMs), particularly CLIP (Radford et al., 2021), have demonstrated strong
potential in open-vocabulary tasks by learning joint representations from large-scale image-text
pairs. While early FGVC-related works using CLIP (Li et al., 2023; Wang et al., 2023b) empha-
sized alignment between descriptive text and novel categories, MP-FGVC (Jiang et al., 2024) intro-
duced CLIP to closed-set FGVC by leveraging multimodal prompts to enhance category discrimi-
nation. For region-level tasks, CLIP’s utility has been extended to open-vocabulary segmentation.
MaskCLIP (Zhou et al., 2022) revealed that dense patch-level features from CLIP’s attention layers
could be aligned with textual representations. Building on this, ClearCLIP (Lan et al., 2024) demon-
strates that by removing residual connections in CLIP, enabling self-attention, and eliminating the
feed-forward network, open-vocabulary semantic segmentation can be achieved directly without ad-
ditional training. We empirically demonstrate that ClearCLIP is also effective for part-level semantic
concepts.

3 APPROACH

The proposed PSCL architecture is illustrated in fig. 2. In the visual pathway, the input image is
first processed separately by the backbone and ClearCLIP. ClearCLIP generates part masks by com-
puting matching scores and applying channel selection, while the backbone produces multi-scale
features. For single-scale backbones such as ViT, these features can be regarded as multi-level
representations extracted from different transformer layers, which serves an equivalent role in our
framework and does not affect the overall conclusion. The two outputs are combined using the
Hadamard product to obtain multi-scale part-level features, forming the Part Localization Module.
The designed Multi-scale Multi-part Branch Progressive Reasoning module processes the resulting
visual features, progressively enhancing the model’s confidence in its predictions from low-level to
high-level features. This confidence enhancement is achieved through a combination of hyperparam-
eters for contrastive loss weights across different scales and noise parameters. In the text pathway,
contrastive loss leverages intermediate-grained textual priors as input, generating multi-grained tex-
tual features for different categories. These features are then rearranged and restructured to produce
multi-grained textual representations for each fine-grained label.
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Figure 2: Detailed illustration of Part-level Semantic-guided Contrastive Learning model (PSCL).

3.1 PART LOCALIZATION MODULE

The proposed Part Localization Module (PLM) is designed to address the conflicting requirements
of modeling fine-grained part-level features and spatial relational features in FGVC. This conflict
is particularly pronounced for non-rigid objects, where posture variation undermines the stability
of spatial structures and affects precise part representation. To resolve this, PLM processes the
input image x ∈ RC×H×W through two separate branches: one for capturing difference-aware
features and the other for localizing discriminative parts, enabling more effective and targeted feature
learning across object types.

The branch responsible for representing differences processes the input x to produce multiscale
features, with features denoted as fs ∈ RCs×Hs×Ws across multiple stages. When low-level features
are less relevant for classification, only higher stages may be selected, such that

s ∈ {smin, . . . , 4}, smin ≥ 1, (1)

where smin denotes the earliest stage used, which can be adjusted based on task requirements.

Cross Attention

{ , , }i 1 2 3f

4f

KV

Q
Positional Encoding

MLPAAP { , , }i


1 2 3f

Self AttentionMLPAAP 
4f

Figure 3: Illustration of ReSAF.

The resulting fs is then passed into
the Reverse-key Scale-aware Atten-
tion Fusion Module (ReSAF) to sup-
press redundant channel representa-
tions across scales, as illustrated in
fig. 3. In the figure, AAP denotes
Adaptive Average Pooling, and the
positional encoding is implemented
as a learnable parameter. By flipping
key vector directions, ReSAF inverts

similarity scores, guiding high-level queries to attend away from similar low-level regions. This
contrastive attention promotes the extraction of complementary.

The branch responsible for identifying the parts of interest is built upon the ClearCLIP backbone.
The input image x is encoded by the image encoder fimg, producing patch-level image features
Fimg = fimg(x) ∈ RH×W×d. Similarly, the textual prompts corresponding to N parts, denoted as
T = {T1, T2, . . . , TN}, are processed by the text encoder ftext, yielding part-specific text feature
representations Ftext = {ftext(T1), ftext(T2), . . . , ftext(TN )} ∈ RN×d. To align image patches with
text descriptions, the similarity tensor S is computed via matrix multiplication.

S = FimgF
⊤
text, S ∈ RH×W×N , (2)
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To generate the final part mask M, the indices of the maximum similarity scores across the N
channels are first determined as

max indices = arg max
j∈{1,...,N}

S[j], (3)

Using these indices, a one-hot-like tensor is constructed:

S[j] =

{
1, j = max indices,
0, otherwise,

(4)

The one-hot-like tensor undergoes morphological refinement by first applying dilation to expand
regions, followed by erosion to refine connectivity and remove noise:

M = (S ⊕K)⊖K, (5)

where K denotes the structuring element (kernel), instantiated as a 3× 3 kernel in our implementa-
tion; ⊕ represents the morphological dilation operator; and ⊖ denotes the erosion operator.

The multi-scale multi-part features Gs,n′ can be expressed as:

Gs,n′ = concat (f ′
s ⊙Ms,n , f

′
s ⊙ 1) , n ∈ {1, 2, . . . , N}, n′ ∈ {1, 2, . . . , N + 1}, (6)

where ⊙ denotes the Hadamard product, concat(·) denotes the concatenation operation, 1 is a matrix
of ones, representing the global mask, f ′

s ⊙ 1, captures the global features. The global features are
subsequently processed by the global branch, which adaptively aggregates part-level information
according to spatial relationships, aiming to model spatial relational features.

3.2 BRANCH PROGRESSIVE REASONING

Our proposed Multi-scale Multi-part Branch Progressive Reasoning (MMBPR) module extends the
multi-scale reasoning framework introduced by PMG (Du et al., 2020) and PART (Zhao et al., 2021).
It progressively enhances the constraint on loss from low-level feature branches to high-level feature
branches. Unlike previous approaches, our method incorporates PLM to reduce redundant represen-
tations across branches. In addition to progressive reasoning along the multi-scale hierarchy, the
framework also integrates part-level branches for capturing fine-grained local details and a global
branch for modeling spatial relational representations through part feature aggregation.

Following the ViT architecture, we adopt Class Embedding Learnable Parameters to extract
category-specific visual representations. We utilize three class tokens to comprehensively represent
intermediate categories.

The overall input to MMBPR is Gs,n′ obtained from eq. (6), and the progressive reasoning process
begins from the lowest-level features Gsmin,n′ , as formulated below:

Gsmin,n′
flatten−−−→ {Vsmin,n′,m | m ∈ {1, 2, . . . , P 2}}, (7)

The flattened tokens are concatenated with class tokens:

Zsmin,n′ = concat([Ccls,smin,n′,1;Ccls,smin,n′,2;Ccls,smin,n′,3], [Vsmin,n′,1; . . . ;Vsmin,n′,P 2 ]), (8)

where Ccls,smin,n′,j (j ∈ {1, 2, 3}) are class tokens.

The sequence Z is then processed through an Encoder Layer:

Z ′
smin,n′ = LN(Zsmin,n′ + MHSA(Zsmin,n′ )),

Z ′′
smin,n′ = LN(Z ′

smin,n′ + MLP(Z ′
smin,n′ )),

(9)

where LN(·) is Layer Normalization, MHSA(·) is Multi-Head Self-Attention, MLP(·) is a feedfor-
ward neural network, and the model weights are not shared across layers. The resulting output is:

Z ′′
smin,n′ = [C ′′

cls,smin,n′,1;C
′′
cls,smin,n′,2;C

′′
cls,smin,n′,3;V

′′
smin,n′,1; . . . ;V

′′
smin,n′,P 2 ], (10)

The output Z ′′
smin,n′ is then divided into two parts: Class tokens, representing the visual features of

the categories at the stage Ismin,n′ = [C ′′
cls,smin,n′,1;C

′′
cls,smin,n′,2;C

′′
cls,smin,n′,3] are passed to VLCL-MG

5
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for contrastive learning. Feature tokens [V ′′
smin,n′,1; . . . ;V

′′
smin,n′,P 2 ] are forwarded to the next stage,

where they are concatenated with the flattened high-level features.

By ensuring non-interference between the lower and higher branches, this design enables the higher-
level feature branch to acquire stronger discriminative capabilities, thereby leading to more confident
category-specific visual representations.

The process is recursively applied to the next stage:

Zsmin+1,n′ = concat([Ccls,smin+1,n′,1;Ccls,smin+1,n′,2;Ccls,smin+1,n′,3],

[Vsmin+1,n′,1; . . . ;Vsmin+1,n′,P 2 ], [V ′′
smin,n′,1; . . . ;V

′′
smin,n′,P 2 ]),

(11)

This procedure is iteratively applied until the highest-level feature branch completes its reasoning
process, and the reasoning is conducted in both the global branch and the part-level branches.

3.3 VISION-LANGUAGE CONTRASTIVE LEARNING

Our proposed Vision-Language Contrastive Learning Module based on Multi-grained Text Features
(VLCL-MG) constrains the inter-class differences of visual features to align with real-world distinc-
tions by introducing intermediate category constraints, which are primarily implemented through
the model structure.

Additionally, in terms of loss computation, since FGVC tasks involve highly similar subcategories,
we argue that absolute model outputs can unnecessarily enlarge inter-class distances. If the top-
scoring category is incorrect, the actual category score may rank lower due to small score differences
among other categories. To mitigate this, we employ label smoothing (Szegedy et al., 2016) for
regularization. Meanwhile, given the limited number of samples, models are prone to overfitting,
making it crucial to learn more from hard-to-classify samples. Therefore, focal loss (Lin et al., 2017)
is also essential. Based on these considerations, we propose the Focal-Smooth Contrastive Loss as
a complement to our model structure.

Specifically, we first obtain intermediate categories for fine-grained labels. For example, between
the coarse-grained category airplane and the fine-grained category Boeing 737-200, inter-
mediate categories include narrow-body airliner and twinjet. This expert knowledge
can be efficiently obtained with minimal effort, requiring only a one-time retrieval per category
rather than per-image annotation. For most datasets, we employ ChatGPT-4o for semi-automated
knowledge retrieval, whereas for the NABirds dataset, we directly utilize the dataset’s built-in class
hierarchy.

The multi-grained textual labels corresponding to each fine-grained category are represented as

tcls = {anA
, bnB

, fnF
} ∈ RC , (12)

where anA
and bnB

represent two types of intermediate categories, and fnF
corresponds to fine-

grained categories, C represents the number of fine-grained categories. These labels are processed
by the ClearCLIP text encoder, yielding multi-grained text features:

tnF
= ftext(tcls), (13)

To prevent text features of all grained levels from clustering too closely in the embedding space,
we subtract the coarse-grained category feature ftext(c) from the multi-grained text features tnF

and
then apply normalization.

TnF
= norm(tnF

− ftext(coarse)), (14)

This operation ensures a more discriminative distribution of text embeddings across different
grained levels. To avoid redundant computations, all category label texts are first processed by the
text encoder, and then rearranged according to the intermediate-grained categories corresponding to
each fine-grained label, as detailed in fig. 2.

The predicted probability distribution Ps is obtained by applying a softmax normalization over the
similarity scores between the linearly projected feature Is,n′ , extracted from eq. (10) at stage s, and
the final-stage prototype representation TnF

. To ensure dimensional compatibility, each feature

6
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Is,n′ ∈ RDI is first transformed by a learnable linear projection W ∈ RDT×DI . The class-wise
probability for the n′-th branch is defined as:

Ps,n′,c = σ
(
τ ⊙

(
(WIs,n′)T⊤

nF

)
+ β

)
c
, (15)

where τ ∈ RC denotes a learnable temperature scaling vector, β ∈ RC is a learnable bias term, and
σ(·) represents the softmax function applied over all classes c = 1, . . . , C.

The Focal-Smooth Contrastive Loss at stage s, denoted as FSLs(Ps, y), is formulated as:

FSLs(Ps, y) = −
N+1∑
n′=1

C∑
c=1

(1− Ps,n′,c)
γ
ỹs,n′,c logPs,n′,c, (16)

where γ is the focusing factor that adjusts the impact of misclassified examples. The smoothed
target distribution ỹs,n′,c is given by:

ỹs,n′,c =

{
1− ϵs, if c = ys,n′ ,

ϵs/(C − 1), otherwise,
(17)

where ϵs gradually decreases as the stage index s increases, enabling the MMBPR module to gen-
erate progressively more confident predictions.

The final loss is defined as the weighted sum of the stage-wise losses FSLs(Ps, y), where the
weight ϵ̃s increases with the stage index s (serving a role analogous to ϵs, but exhibiting an opposite
monotonic trend). Formally,

Lfinal =

4∑
s=smin

ϵ̃s · FSLs(Ps, y), (18)

At inference time, the prediction from the final stage is utilized, and the inference strategy relies
solely on the global branch:

Pinference = Ps=4, n′=0, (19)
in which ClearCLIP and redundant part-level branches are removed during inference, thereby en-
abling substantially faster computation.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Table 1: Statistics of benchmark datasets.

Dataset Class Train Test
FGVC Aircraft (AIR) 100 6,667 3,333
Stanford Dogs (DOG) 120 12,000 8,580
Stanford Cars (CAR) 196 8,144 8,041
CUB-200-2011 (CUB) 200 5,994 5,794
NABirds (NAB) 555 23,929 24,633

Datasets We comprehensively evaluate PSCL
on the FGVC Aircraft (Maji et al., 2013), Stan-
ford Dogs(Khosla et al., 2011), Stanford Cars
(Krause et al., 2013), CUB-200-2011 (Wah
et al., 2011) and NABirds (Van Horn et al.,
2015) datasets, which are widely used FGVC
benchmarks. In all experiments, we do not
utilize part annotations and follow the same
train/test split. The details of the five datasets
are presented in table 1.

Implementation Details We adopt ResNet-50 (He et al., 2016), Vision Transformer (Dosovitskiy
et al., 2021), and Swin Transformer (Liu et al., 2021) as the backbone architectures. The input image
resolutions are set to 448× 448 for ResNet-50 (RN50), 518× 518 for Vision Transformer (ViT-B),
and 384× 384 for Swin Transformer (Swin-B).

During training, we apply standard data augmentation techniques, including random cropping, ran-
dom erasing, horizontal flipping, Gaussian blur, color jittering, and rotation. All models are trained
for 100 epochs using the AdamW optimizer with a batch size of 16 and a weight decay of 0.01.
The initial learning rate is set to 1 × 10−4 for RN50 and 1 × 10−5 for both ViT-B and Swin-B. A
warm-up phase of 10 epochs is applied, and the learning rate follows a cosine annealing schedule.

The focusing parameter γ is set to 4, and the smoothing noise factor ϵs follows [0.4, 0.3, 0.2, 0.1],
while ϵ̃s is set to [0.1, 0.2, 0.4, 1.0].
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4.2 COMPARISON WITH OTHER METHODS

Table 2: Performance comparison on FGVC benchmark datasets (Accuracy %). The best results for
each dataset are highlighted in bold.

Method Backbone AIR CAR CUB NAB DOG

CMN (Deng et al., 2022) RN50 93.8 94.9 88.2 87.8 –
P2P-Net (Yang et al., 2022) RN50 94.2 95.4 90.2 – –
GDSMP-Net (Ke et al., 2023) RN50 94.4 95.3 89.9 89.0 –
SIA-Net (Wang et al., 2023c) RN50 94.3 95.5 90.7 – –
PSCL (ours) RN50 95.1 95.6 89.1 89.0 90.1

TransFG (He et al., 2022) ViT-B – 94.8 91.7 90.8 92.3
MpT-Trans (Wang et al., 2023a) ViT-B 92.2 93.8 92.0 91.3 –
ACC-ViT (Zhang et al., 2024) ViT-B – 94.9 91.8 91.4 92.9
MP-FGVC (Jiang et al., 2024) ViT-B – – 91.8 91.0 91.0
PSCL (ours) ViT-B 96.5 96.4 92.3 93.7 92.3

ViT-NeT (Kim et al., 2022) Swin-B – 95.0 91.6 90.9 90.3
TransIFC+ (Liu et al., 2023) Swin-B – – 91.0 90.9 –
HERBS (Chou et al., 2023) Swin-B – – 92.3 93.0 –
CSQA-Net (Xu et al., 2025) Swin-B 94.7 95.6 92.6 92.3 –
PSCL (ours) Swin-B 95.3 95.5 93.0 93.8 94.7

We evaluate our method on five benchmark datasets using three backbone architectures and com-
pare it with state-of-the-art models, as summarized in table 2. The results demonstrate the superior
performance and strong generalization ability of PSCL across diverse FGVC benchmarks. PSCL
consistently achieves state-of-the-art or highly competitive accuracy across all datasets and back-
bones (RN50, ViT-B, and Swin-B). It delivers substantial improvements under Transformer-based
backbones, and remains competitive under the CNN-based RN50, particularly on AIR and CAR
datasets. These results highlight PSCL’s adaptability to different architectures and its effectiveness
in capturing both local and structural discriminative cues. Furthermore, its consistent performance
across datasets underscores its robustness. Notably, on the large-scale NAB dataset, the availabil-
ity of an accurate and professionally curated category hierarchy enables precise intermediate-level
grouping, further enhancing accuracy and demonstrating the effectiveness of the VLCL-MG mod-
ule. The strong performance on multiple non-rigid datasets such as DOG and NAB demonstrates
that PSCL effectively models the characteristics of non-rigid objects.

4.3 EFFECTIVENESS OF MODULE OPERATION

Locating Relevant Parts We resize eq. (2) to match the original image dimensions for visualiz-
ing the part localization results. As observed in fig. 4, the PLM structure effectively identifies the
locations of the parts.

Figure 4: Part score visualization. PLM uses the following textual prompts: (I) mouth; (II) head;
(III) body; (IV) foot; (V) landing gear; (VI) tail; (VII) fuselage; (VIII) engine.

Reverse-key Scale-aware Attention Fusion Module To assess the effectiveness of our proposed
ReSAF module, we conduct a comparative study with two alternative intermediate mechanisms: a
multilayer perceptron (MLP) and cross-attention. All experiments are performed using the RN50
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backbone on the AIR dataset. The quantitative results, summarized in table 3, demonstrate that Re-
SAF consistently outperforms the other two variants, highlighting its superior capability in capturing
scale-aware feature interactions.

Figure 5: Attention maps of ReSAF. (I)-(IV) show the relative attention among patches, while (V)-
(VIII) present the accumulated spatial attention. It can be observed that shallow features primarily
serve a complementary role for deep features.

Table 3: Performance comparison of different in-
termediate mechanisms on the AIR dataset. Ac-
curacy (%) is reported.

Intermediate Mechanism Accuracy (%)
MLP 94.71
Cross-Attention 94.99
ReSAF (Ours) 95.14

Hyperparameter Selection All hyperparame-
ters except the learning rate were searched and
selected exclusively on the AIR dataset with
RN50. Results are shown in table 4, table 5 and
fig. 6. The trends of ϵ̃s and γ suggest that pro-
gressive inference improves performance, and
increasing the focus on hard samples via γ fur-
ther enhances results. We note that if hyperpa-
rameter tuning were performed specifically for
a target dataset, our proposed PSCL could po-
tentially achieve even better performance.

1 2 4 6
Focusing parameter 

94.0

94.5

95.0

A
cc

ur
ac

y 
(%

)

256 512 768 1024
Embedding Dimension

Figure 6: Accuracy (%) on the AIR dataset
(RN50) under different settings. Left: focusing
parameter γ; Right: encoder hidden dimension.

Ablation Studies The ablation results in ta-
ble 6 across RN50, Swin-B, and ViT-B on
CUB, AIR, and CAR verify the effectiveness
of each proposed module. PLM and VLCL-
MG individually yield notable gains, reflecting
their strengths in part localization and seman-
tic alignment. Because both are designed to
address the same underlying issue, combining
them may show diminishing marginal gains—a
property rooted in the data itself. Fine-grained

classes sharing the same intermediate category often exhibit similar part-level structures (e.g., Anser-
iformes birds with webbed feet and long necks; off-road vehicles with high chassis and traction-
oriented tires), which reduces the additional benefits of stacking PLM and VLCL-MG. MMBPR
further improves performance through multi-scale reasoning. Although the modules differ in their
roles, all aim to enhance semantic consistency, and despite the potential overlap of their effects
in low-redundancy settings, the full model consistently achieves the best results, confirming their
overall complementarity.

Table 4: Accuracy (%) on AIR dataset (RN50)
under smoothing noise factor ϵs.

ϵs Accuracy (%)
[0.0, 0.0, 0.0, 0.0] 89.92
[0.6, 0.4, 0.2, 0.0] 94.22
[0.7, 0.5, 0.3, 0.1] 94.83
[0.4, 0.3, 0.2, 0.1] 95.14

Table 5: Accuracy (%) on AIR dataset (RN50)
under multi-scale loss weight coefficient ϵ̃s.

ϵ̃s Accuracy (%)
[0.0, 0.0, 0.0, 1.0] 94.65
[0.1, 0.2, 0.2, 1.0] 94.77
[0.1, 0.2, 0.4, 1.0] 95.14
[0.2, 0.4, 0.4, 1.0] 94.89
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Table 6: Ablation study on three FGVC datasets using different backbones. Accuracy (%) is reported
for each configuration. The best results for each column are highlighted in bold. Features are
indicated by a check mark (✓) or a cross (✗).

PLM MMBPR VLCL-MG RN50 Swin-B ViT-B
CUB AIR CAR CUB AIR CAR CUB AIR CAR

✗ ✗ ✗ 85.09 91.56 91.90 92.32 94.14 94.86 90.23 94.57 95.60
✓ ✗ ✗ 88.82 94.54 95.46 92.68 94.60 94.74 91.99 96.13 96.05
✓ ✓ ✗ 89.09 94.54 95.54 92.51 95.05 95.04 92.34 96.19 96.17
✗ ✗ ✓ 87.90 94.39 95.32 92.65 94.87 95.51 90.94 95.08 96.26
✓ ✓ ✓ 89.13 95.14 95.59 93.01 95.32 95.54 92.34 96.48 96.44

4.4 TRAINING AND INFERENCE EFFICIENCY

We report the computational cost of PSCL across different backbones using a single NVIDIA RTX
4090 GPU. The encoder hidden dimension is set to 768, and the number of stages is fixed at 4
(smin=1).

Table 7: Computational cost.

Component GFLOPs
ClearCLIP 17.35
MMBPR 15.72× (N + 1)
ReSAF 5.78
others Negligible

Additional Computational Cost During Training.
Although PSCL introduces additional computational
overhead, the overall cost remains comparable to that
of many contemporary large-scale Transformer models.
Moreover, it can benefit from standard computation-
acceleration techniques, ensuring that the added cost re-
mains within an acceptable range.

It is worth noting that different backbones have different hidden dimensions; consequently, the MLP
used to project features to the encoder hidden dimension incurs slightly different computational
costs. The resulting discrepancy is on the order of a few tenths of a GFLOP. For consistency, the
FLOPs reported in table 7 are computed by assuming a backbone hidden dimension of 768. In
addition, when smin=4, ReSAF degenerates into a simple MLP whose input dimension equals the
backbone hidden dimension and whose output dimension matches the encoder hidden dimension.

Inference. At test time, PSCL only uses the global branch, reducing computation to backbone +
1 ReSAF + 3 encoder layers. Table 8 summarizes per-image inference time, throughput, and peak
VRAM for different batch sizes. PSCL adds modest overhead compared to the backbone alone,
remaining within a practical range for real-world use.

Table 8: Inference statistics. Time in ms/image; Throughput in images/s; PSCL: prediction head;
Backb.: backbone; VRAM: peak GPU memory (GB).

Batch Model Time (ms) Throughput (img/s) VRAM
(GB)PSCL Backb. PSCL Backb.

1 ViT-B 17.26 6.39 57.94 156.59 4.54
1 RN50 18.29 6.56 54.66 152.47 3.65
1 Swin-B 31.41 21.75 31.84 45.98 4.71
8 ViT-B 5.18 3.97 193.13 251.91 4.78
8 RN50 3.11 1.38 321.89 724.25 3.93
8 Swin-B 5.01 3.45 199.79 289.70 5.04

5 CONCLUSION

We introduce Part-level Semantic-guided Contrastive Learning (PSCL), a framework for Fine-
Grained Visual Classification that jointly models part-level details and spatial relations for both
rigid and non-rigid objects. PSCL employs a Part Localization Module (PLM) with ClearCLIP
for semantically guided, interpretable part extraction, a Multi-scale Multi-part Branch Progressive
Reasoning (MMBPR) module to fuse fine-grained and global features, and a Visual-Language Con-
trastive Learning module with Multi-grained Text Features (VLCL-MG) to align subcategories via
intermediate-level semantics. Experiments on five FGVC benchmarks demonstrate PSCL’s robust
performance and strong generalization.
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ETHICS STATEMENT

Our work focuses on fine-grained visual classification using publicly available datasets. No human
subjects, personally identifiable information, or sensitive content are involved. All datasets em-
ployed, including AIR, CAR, NABirds, DOG, and others, are used strictly for research purposes in
accordance with their respective licenses. We acknowledge the potential societal impacts of deploy-
ing FGVC models, such as reinforcing biases present in the training data, and emphasize that PSCL
should be applied responsibly, with consideration for fairness and ethical implications.

REPRODUCIBILITY STATEMENT

To ensure reproducibility, we provide detailed descriptions of all model components, including the
Part Localization Module (PLM), Multi-scale Multi-part Branch Progressive Reasoning (MMBPR),
and Visual-Language Contrastive Learning with Multi-grained Text Features (VLCL-MG). Hyper-
parameters, training procedures, and evaluation protocols are specified in the manuscript. We re-
lease the code, trained model checkpoints, and the dataset as anonymous supplementary materials,
enabling other researchers to reproduce our experiments under the same settings.
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A THE USE OF LARGE LANGUAGE MODELS

In this work, we leverage large language models (LLMs), specifically ChatGPT-4o, to construct
intermediate category hierarchies. Beyond this, LLMs are also employed to assist in code develop-
ment and manuscript refinement. All outputs from the LLM are carefully verified to ensure accu-
racy. However, the intermediate category hierarchies may contain some errors due to their reliance
on domain-specific expert knowledge, representing a potential source of noise in the experimental
results.

B TRAINING AND HYPERPARAMETER SETTINGS FOR DIFFERENT
BACKBONES

Table 9: Hyperparameter settings for different backbones.

Hyperparameter Setting ResNet-50 ViT-B Swin-B

Input resolution 448× 448 518× 518 384× 384
Batch size 16 16 16
Weight decay 0.01 0.01 0.01
Optimizer AdamW AdamW AdamW
Optimizer β (0.9, 0.95) (0.9, 0.95) (0.9, 0.95)
Optimizer ϵ 1e−8 1e−8 1e−8
Initial learning rate 1e−4 1e−5 1e−5
Learning rate schedule Cosine annealing Cosine annealing Cosine annealing
Warm-up epochs 10 10 10
Epochs 100 100 100
Focusing parameter γ 4 4 4
Smoothing noise factor ϵs [0.4,0.3,0.2,0.1] [0.4,0.3,0.2,0.1] [0.4,0.3,0.2,0.1]
Multi-scale loss weight ϵ̃s [0.1,0.2,0.4,1.0] [0.1,0.2,0.4,1.0] [0.1,0.2,0.4,1.0]

Table 10: Training time (hours) and peak VRAM (GB) for each model and dataset.

Dataset RN50 ViT-B Swin-B
Time (h) VRAM (GB) Time (h) VRAM (GB) Time (h) VRAM (GB)

AIR 3.7 18 5.1 22 4.8 23.8
CAR 3.8 15.1 5.4 19.1 5.1 21.6
CUB 3.0 16.5 4.2 20.6 3.9 22.7
NAB 12 16.5 16.6 20.6 15.4 22.7
DOG 5.5 15.1 8.0 19.1 7.5 21.6

Table 10 shows the training time and peak VRAM for each backbone and dataset. RN50 is generally
faster and uses less memory than ViT-B and Swin-B, while larger datasets (e.g., NAB) require more
time.

C PART TEXT FOR DIFFERENT DATASETS

Dataset Part Text

AIR background of a plane, tail of a plane, logo of a plane, engine of a plane, landing gear
of a plane, fuselage of a plane

CUB background of a bird, head of a bird, foot of a bird, body of a bird, mouth of a bird
CAR background of a car, head of a car, body of a car, back of a car
NAB background of a bird, head of a bird, foot of a bird, body of a bird, mouth of a bird
DOG background of a dog, head of a dog, foot of a dog, body of a dog
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D OTHER RESULTS.

Table 11: Classification accuracy (%) on fine-grained datasets using different embedding/masking
strategies.

Method ResNet50 ViT-B

CUB Aircraft Car CUB Aircraft Car

Random text embeddings (Ftext) 88.93 94.75 95.38 92.04 95.45 96.36
Random masking (S(k)) 88.12 94.93 95.25 91.76 95.26 96.26
Part text embeddings 89.13 95.14 95.59 92.34 96.48 96.44

We conducted experiments in which either Ftext or S(k) was randomized. Both random strate-
gies can be viewed as mutually exclusive data augmentation methods based on random masking.
However, Random Text Embeddings tend to occlude semantically similar regions, whereas Ran-
dom Masking hides regions randomly. Our proposed PSCL architecture demonstrates considerable
robustness: thanks to the MMBPR and VLCL-MG modules, the model can still learn to focus on
relevant regions autonomously. Nevertheless, providing targeted human guidance could further im-
prove the efficiency of this process.

Table 12: Effect of intermediate-category text annotations on NAB classification performance using
ViT-B. Accuracy (%) is reported.

Intermediate-Category Text Accuracy (%)

Expert annotations (precise hierarchy) 93.74
Generated via ChatGPT-4o (semi-automatic) 93.48
Random-text control group 92.83

We posit that the NAB dataset benefits substantially from its inherent, precise hierarchical category
structure, resulting in a significant performance boost. Accordingly, we employed ChatGPT-4o in
a semi-automatic manner to generate intermediate-category text annotations, while also creating a
random-text control group, and conducted comparative experiments using the ViT-B backbone. The
results demonstrate that accurate expert annotations effectively activate the VLCL-MG module, yet
even the generated intermediate-category text can improve classification accuracy to a certain extent.

Table 13: Performance of different numbers of part texts on AIR and CUB datasets

Dataset Part text N Accuracy %

AIR background of a plane, tail of a plane, Logo of a plane, engine
of a plane, landing gear of a plane, fuselage of a plane 6 95.14

AIR background of a plane, tail of a plane, head of a plane, fuselage
of a plane 4 94.74

AIR background of a plane, plane 2 94.75
AIR plane 1 94.66

CUB background of a bird, head of a bird, foot of a bird, body of a
bird, mouth of a bird 5 89.13

CUB background of a bird, head of a bird, body of a bird 3 88.83
CUB background of a bird, bird 2 88.47
CUB bird 1 88.44

We conducted experiments to analyze the effect of the number of part texts (N ). The results below
suggest that 4–6 part texts offer a good balance between performance and complexity. Using even
a single part text (e.g., “bird”) still yields competitive results, as other effective components (like
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progressive learning) contribute significantly. While using more parts increases computational cost,
the performance gains diminish marginally. The experiments were performed using RN50.

E EXAMPLES OF SOME INTERMEDIATE CATEGORIES

Table 14: Intermediate classes for the AIR dataset

Fine-grained Intermediate-grained 1 Intermediate-grained 2

737-900 narrow-body airliner twinjet
747-100 wide-body airliner four-engined jet aircraft
A330-300 wide-body airliner twinjet
A340-200 wide-body airliner four-engined jet aircraft
Cessna 525 business jet twinjet
Challenger 600 business jet twinjet
DC-10 wide-body airliner trijet
DC-3 cargo aircraft twin-turboprop
Gulfstream V business jet twinjet
Hawk T1 light aircraft single-engine jet
Il-76 cargo aircraft four-engined jet aircraft
L-1011 wide-body airliner trijet
MD-11 wide-body airliner trijet

Table 15: Intermediate classes for the CUB dataset

Fine-grained Intermediate-grained 1 Intermediate-grained 2

Frigatebird Seabirds Waterbirds
Gadwall Ducks Waterbirds
American Goldfinch Finches Songbirds
Boat-tailed Grackle Grackles Songbirds
American Crow Crows Corvids
Fish Crow Crows Corvids
Black-billed Cuckoo Cuckoos Songbirds
Rusty Blackbird Blackbirds Songbirds
Yellow-headed Blackbird Blackbirds Songbirds
Indigo Bunting Buntings Songbirds

Table 16: Intermediate classes for the CAR dataset

Fine-grained Intermediate-grained 1 Intermediate-grained 2

Audi S4 Sedan 2007 Sedan Performance Vehicle
Audi TT RS Coupe 2012 Coupe Performance Vehicle
BMW ActiveHybrid 5 Sedan 2012 Sedan Hybrid Vehicle
BMW 1 Series Convertible 2012 Convertible Luxury Vehicle
BMW 1 Series Coupe 2012 Coupe Luxury Vehicle
Acura Integra Type R 2001 Coupe Performance Vehicle
Acura ZDX Hatchback 2012 Hatchback Luxury Vehicle
Aston Martin V8 Vantage Convertible 2012 Convertible Luxury Vehicle
Chrysler Crossfire Convertible 2008 Convertible Performance Vehicle
Chrysler PT Cruiser Convertible 2008 Convertible Family Car
Daewoo Nubira Wagon 2002 Wagon Family Car
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Table 17: Intermediate classes for the DOG dataset

Fine-grained Intermediate-grained 1 Intermediate-grained 2

Blenheim Spaniel Sporting Spaniel
Papillon Toy Toy-group
Toy Terrier Toy Terrier-toy
Rhodesian Ridgeback Hound Sighthound
Afghan Hound Hound Sighthound
Weimaraner Sporting Pointer
Staffordshire Bullterrier Terrier Bull-type
Cocker Spaniel Sporting Spaniel
Pug Toy Toy-group
Great Pyrenees Working Working-group
Irish Water Spaniel Sporting Spaniel
Kuvasz Working Working-group
Groenendael Herding Herding-group

Table 18: Intermediate classes for the NAB dataset

Fine-grained Intermediate-grained 1 Intermediate-grained 2

Black-bellied Whistling-Duck Black-bellied Whistling-Duck Ducks, Geese, and Swans
Semipalmated Plover Semipalmated Plover Plovers, Sandpipers, and Allies
American White Pelican American White Pelican Pelicans, Herons, Ibises, and Allies
Killdeer Killdeer Plovers, Sandpipers, and Allies
Chimney Swift Chimney Swift Swifts and Hummingbirds
American Oystercatcher American Oystercatcher Plovers, Sandpipers, and Allies
Ross’s Goose Ross’s Goose Ducks, Geese, and Swans
Barn Owl Barn Owl Owls
Turkey Vulture Turkey Vulture Hawks, Kites, Eagles, and Allies
Brown Pelican Brown Pelican Pelicans, Herons, Ibises, and Allies
Scaled Quail Scaled Quail Grouse, Quail, and Allies
Rock Pigeon Rock Pigeon Pigeons and Doves
Black-necked Stilt Black-necked Stilt Plovers, Sandpipers, and Allies
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F LLM PROMPT

We use ChatGPT-4o with the following prompt (AIR example):

“Please classify the following fine-grained categories based on visually dis-
cernible characteristics. Each category must belong to two distinct intermediate-
grained categories. Output one line per category:
[Fine-grained], [Intermediate-1], [Intermediate-2]:
707-320 727-200 737-200 . . . ”

G LLM NOISE-SENSITIVITY EXPERIMENTS

We additionally evaluated DeepSeek-R1 and Qwen-2.5-Max under greedy decoding. The results are
summarized in table 19.

Table 19: Noise-sensitivity experiment results (accuracy %).

Setting Model Accuracy

Baseline ChatGPT-4o 95.14
Re-label using same intermediate-grained categories DeepSeek-R1 95.08

Qwen-2.5-Max 95.11
Re-generate intermediate-grained categories DeepSeek-R1 94.83

Qwen-2.5-Max 95.21

Only DeepSeek-R1’s regenerated taxonomy became overly coarse (e.g., engine type, wing type),
but LLM variation overall shows robustness. All evaluated models outperform the version without
VLCL-MG (94.54%).

H INPUT RESOLUTION OF OUR MODEL

For all RN50 models, the input resolution is consistent. For Swin-B, we adopt 384 × 384 as in
HERBS, while TransIFC+ and CSQA-Net use 448× 448. ViT-NeT uses 224× 224.

The ViT-B model is somewhat special. After multiple trials, we selected ViT-B/14 with 518 × 518
resolution as the optimal choice. Some additional results for ViT-B models with different input
resolutions are shown in table 20.

Table 20: Performance of ViT-B models under different input resolutions (accuracy %).

Model Resolution AIR CUB DOG

ViT-B/14 518× 518 96.48 92.34 92.27
ViT-B/14 336× 336 92.62 87.21 90.02
ViT-B/16 448× 448 94.31 92.23 91.01
ViT-B/16 384× 384 93.58 88.65 92.66

The performance of ViT-B on AIR improves significantly at higher resolutions. We attribute this to
the increased resolution and smaller patch size, which allows the model to capture finer details of
parts such as “logo” and “engine”.

We note that reporting the best-performing resolutions might raise concerns regarding fairness. To
clarify, even when evaluated at the same resolution, ViT-B models still achieve strong performance
across datasets, indicating that the observed improvements are not a result of unfair comparisons.
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I RESAF OPERATION DETAILS

Additional ablation studies on ReSAF variants (with and without eq. (11) concatenation) are pro-
vided below, conducted on the AIR dataset with RN50 backbone:

Table 21: Ablation study of ReSAF variants on the AIR dataset

Mechanism w/o Eq.11 Concat (%) w/ Eq.11 Concat (%)
SAE(Xu et al., 2025) 93.67 93.79
SAE + Positional Encoding 94.33 94.43
Prog. Cross-Attention 94.60 94.99
Prog. Flipped Key Cross-Attention 94.42 94.78
ReSAF (Ours) 94.51 95.14

ReSAF leverages hierarchical feature roles: deep layers drive classification, while shallow layers
assist. The flipped-key mechanism ensures complementary shallow information is captured in re-
gions overlooked by deep features. Eq. 11 concatenation delays shallow-feature fusion, allowing
the encoder and loss function to select the most useful features and preventing interference between
shallow and deep layers. The experimental results above validate the effectiveness and reliability of
ReSAF.

J PERFORMANCE USING ONLY LAST STAGE OUTPUT AND INFERENCE
FEATURE SELECTION

During inference, our model exclusively utilizes the global branch at the final stage. This choice is
supported by empirical results and design considerations summarized as follows.

1. ROLE OF PART-LEVEL BRANCHES AND INFERENCE EFFICIENCY

Part-level branches function as regional prompts and feature refinement modules during training.
However, the slight performance improvement they offer at inference time does not justify their
computational cost. Therefore, we exclude these branches during deployment.

Comparisons between using only the global branch prediction Pglobal = Ps=4,n′=0 and aggregating
part-level predictions Psum =

∑N+1
n′=1 Ps=4,n′ are shown below:

Method RN50 (CUB/AIR/CAR) Swin-B (CUB/AIR/CAR) ViT-B (CUB/AIR/CAR)
Pglobal 89.13/95.14/95.59 93.01/95.32/95.54 92.34/96.48/96.44
Psum 89.08/95.17/95.55 93.02/95.38/95.55 92.29/96.36/96.44

2. PROGRESSIVE CONFIDENCE ENHANCEMENT IN VLCL-MG

The VLCL-MG module introduces progressively strengthened confidence constraints across stages.
As features propagate through the hierarchy, earlier-stage representations are processed and con-
catenated to later stages (eq. (11)), allowing the final stage to integrate comprehensive multi-stage
information.

To examine the effectiveness of different inference strategies, we compare:

P1 =

4∑
s=smin

Ps, P2 =

4∑
s=smin

ϵ̃s ·Ps, P3 = Ps=4,n′=0.

Results on the CUB dataset validate the superiority of using only the final stage:
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Method RN50 Swin-B ViT-B
P1 88.40 92.71 90.95
P2 88.95 93.09 92.12
P3 89.13 93.01 92.34

Overall, relying solely on the final-stage prediction (P3) provides the best balance between accuracy
and computational efficiency. While minor fluctuations may appear in certain individual cases, the
final-stage strategy (P3) remains the most reliable and effective option when considering overall
performance and practical deployment constraints.

K ADDITIONAL VISUALIZATIONS OF PART SCORES

Figure 7: Additional visualizations of part scores. PLM uses the following textual prompts: (I)
logo; (II) wing; (III) windows; (IV) wing; (V) tail; (VI) eyes; (VII) wheels; (VIII) windows; (IX)
headlights.
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