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ABSTRACT

We propose accelerating the simulation of Lagrangian dynamics, such as fluid flows,
granular flows, and elastoplasticity, with neural-operator-based reduced-order mod-
eling. While full-order approaches simulate the physics of every particle within the
system, incurring high computation time for dense inputs, we propose to simulate
the physics on sparse graphs constructed by sampling from the spatially discretized
system. Our discretization-invariant reduced-order framework trains on any spatial
discretizations and computes temporal dynamics on any sparse sampling of these
discretizations through neural operators. Our proposed approach is termed Graph
Informed Optimized Reduced-Order Modeling or GIOROM. Through reduced
order modeling, we ensure lower computation time by sparsifying the system by
6.6-32.0×, while ensuring high-fidelity full-order inference via neural fields. We
show that our model generalizes to a range of initial conditions, resolutions, and
materials.

1 INTRODUCTION

Simulating the dynamics of physical systems is crucial in fields like computational fluid mechanics,
digital twins, graphics, and robotics. These spatio-temporal dynamics are often described by partial
differential equations (PDEs) in the following form:

J (ϕ,∇ϕ,∇2ϕ, . . . , ϕ̇, ϕ̈, . . .) = 0, ϕ(X, t) : Ω× T → Rd , (1)

where ϕ represents a multidimensional vector field that depends on both space and time. The symbols
∇ and ˙(·) signify the spatial gradient and time derivative, respectively. Here, Ω ⊂ Rd and T ⊂ R
denote the spatial and temporal domains, respectively. In this work, we focus on the deformation map
arising from continuum mechanics (Gonzalez & Stuart, 2008), i.e., the position field x = ϕ(X, t). Its
first and second temporal derivatives denote “velocity” v = ϕ̇ and “acceleration” a = ϕ̈ respectively.

To computationally solve 1, the system is discretized both temporally and spatially. Temporal
discretization ({tn}Nn=0) breaks down the system’s continuous evolution into discrete time steps.
After introducing a temporal discretization {tn}Nn=0, we solve for a sequence of spatial functions
{ϕtn(X)}Nn=0, where ϕtn(X) = ϕ(X, tn). Similarly, spatial discretization partitions the phys-
ical domain into a discrete set of spatial points, denoted as {Xj}Pj=1, representing the P -point
discretization.

Deep-learning-based methods have emerged as an efficient tool for solving these spatio-temporal
systems (Azizzadenesheli et al., 2024; Zhang et al., 2023; Cuomo et al., 2022). Instead of solving the
PDE explicitly at every time-step, these deep-learning methods implicitly time-step the system via
neural network evaluations. Graph Neural Network-based models, such as GNS (Sanchez-Gonzalez
et al., 2020), have shown promise in simulating a diverse range of physical systems. A salient feature
of GNS is that after training on particular spatial discretizations of the system, it can generalize to
other discretizations. However, scaling GNS to large-scale systems can be challenging due to the
message-passing operations, which aggregate information between all the neighbors. Furthermore,
using a large number of message passing layers leads to over-smoothing. Neural operators Li
et al. (2020a); Lu et al. (2021); Kovachki et al. (2023), which learn the mappings between infinite-
dimensional function spaces, offer a principled way of dealing with input and output data at arbitrary
resolution. In particular, graph-based neural operators Li et al. (2020b;c; 2024) can be applied to
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Figure 1: The overall architecture of GIOROM. The neural operator Gθ predicts the acceleration
of a Lagrangian system Atk at time tk from the past w velocity instances Vtk−w:k

. The positions
are derived through Euler integration. The neural field is used to efficiently evaluate the deformation
field at arbitrary locations.

graphs of any resolution by taking special care of the construction and aggregation of neighborhoods.
However, these methods still have to operate on a very high number of spatial points to ensure high
fidelity, just as their classic numerical counterparts. As such, these deep learning models still incur
large computation times when operating on highly dense full-order systems (e.g., point clouds).

Reduced-order methods aim to address this computational challenge by operating on reduced-order
systems (e.g., a subset of the full-order point clouds) (Benner et al., 2015). In particular, continuous
reduced-order modeling approaches (Pan et al., 2023; Chen et al., 2023) create a reduced-order
representation for the continuous PDE themselves, not their discretizations. As such, these methods
generalize across various spatial discretizations of the system. However, these discretization-agnostic
ROM methods are intrusive, in the sense that they require exact PDE information due to the need to
solve the PDEs explicitly at every time step, thereby preventing them from being applied to problems
where the PDEs are unknown (Lusch et al., 2018).

While, reduced-order methods such as CROM Chen et al. (2023) address computational costs by
operating in reduced-order spaces, their flexibility and speed for solving spatio-temporal dynamics is
still limited by their reliance on classical numerical PDE solvers. To overcome these limitations, we
use the data-driven capabilities of neural operators, which have shown significant accelerations for
solving PDEs on different geometries. Specifically, we leverage the graph neural operator as in Li
et al. (2024) to handle irregular point clouds. However, the latter model is designed to learn Eulerian
formulations of computational fluid dynamics problems without temporal dynamics. Lagrangian
dynamics, on the other hand, is influenced by inter-particle interactions, such as collisions. Thus, we
propose a discretization-agnostic Interaction Operator, which allows for local interactions within the
graph neural operator (see Section 4). Moreover, we propose a transformer neural operator in latent
space to efficiently model global interactions, see also Figure 1. In summary, we introduce a novel
method for learning Lagragian dynamics that reduces the cost for both spatial (via neural fields) and
temporal (via neural operators) modeling in a fully discretization-agnostic manner.

Our key contributions can be summarized as follows

• A framework to learn Lagrangian dynamics on highly sparse graphs: We propose a
spatial-sampling-based reduced order modeling strategy that can accurately and efficiently
learn temporal dynamics on very sparse graphs, achieving 6.6-32× reduction in input size
over full-order neural physics solvers, while also delivering high fidelity performance on
diverse systems.
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• Graph-based neural operator: To learn the temporal dynamics, we present a graph-based
neural operator transformer that is discretization agnostic.We refer to this model as the
time-stepper.

• Arbitrary spatial evaluation using neural fields: We leverage continuous reduced-order
modeling techniques to evaluate the full-order system at arbitrary spatial points through
neural fields.

2 RELATED WORKS

Neural physics solvers Neural network-based solvers have shown great success in accelerating
physical simulations, including problems in fluid dynamics Sanchez-Gonzalez et al. (2020); Kochkov
et al. (2021); Vinuesa & Brunton (2021); Mao et al. (2020); Shukla et al. (2024); Hao et al. (2024),
solid mechanics Geist & Trimpe (2021); Capuano & Rimoli (2019); Jin et al. (2023), climate modeling
Pathak et al. (2022), and robotics Ni & Qureshi (2022); Kaczmarski et al. (2023). Such approaches
can be purely data-driven or physics-informed, i.e., leveraging an underlying PDE Raissi et al. (2019);
Sirignano & Spiliopoulos (2018); Richter & Berner (2022); Nam et al. (2024). Moreover, different
architectures have been proposed for the neural networks. Approaches based on convolutional neural
networks can be used to numerically solve systems of PDE on fixed regular grids Lee & Carlberg
(2020a); Maulik et al. (2021); Stoffel et al. (2020); Bamer et al. (2021). For more general meshes,
graph neural networks (GNNs) have been proposed, e.g., in the context of mesh-based physics Cao
et al. (2022); Pfaff et al. (2020); Han et al. (2022); Fortunato et al. (2022), Lagrangian dynamics
Sanchez-Gonzalez et al. (2020), parametric PDEs Pichi et al. (2024), and rigid body physics Kneifl
et al. (2024). GNNs can efficiently capture spatial interactions between particles. However, their
time complexity scales with the size of the graph since they require message-passing operations on
every node. For finer resolutions, this can be computationally prohibitive. Moreover, in their standard
formulation, they do not generalize to graphs that have significantly different sizes than the ones seen
during training.

Neural operator models Neural operators are a class of discretization agnostic neural network
architectures that can generalize to arbitrary discretization of input data. These architectures have
been used in solving parametric PDEs Lu et al. (2021); Li et al. (2020c; 2023); Azizzadenesheli
et al. (2024); Rahman et al. (2024); Liu-Schiaffini et al. (2024); Kovachki et al. (2023); Rahman et al.
(2022a); Liu et al. (2022); Viswanath et al. (2023); Shih et al. (2024); Goswami et al. (2023), fluid
dynamics Di Leoni et al. (2023); Wang et al. (2024); Peyvan et al. (2024), protein interactions Liu
et al. (2024b;a); Dharuman et al. (2023), 3D physics Xu et al. (2024); White et al. (2023); Bonev et al.
(2023); Rahman et al. (2022b); He et al. (2024); Rahman et al. (2022b), weather modeling Bire et al.
(2023); Pathak et al. (2022), robotics Bhaskara et al. (2023); Peng et al. (2023), and computer vision
Guibas et al. (2021); Rahman & Yeh (2024); Viswanath et al. (2022). In our work, we propose a new
parameterization for the graph neural operator to efficiently capture spatial dynamics in Lagrangian
systems and generalize to different discretizations of reduced-order inputs.

Reduced-order model Reduced-order models (ROMs) simplify high-dimensional dynamic sys-
tems by projecting them onto a lower-dimensional manifold, resulting in faster and less expensive
computations (Berkooz et al., 1993; Holmes et al., 2012; Lee & Carlberg, 2020a; Peherstorfer, 2022).
These methods gain computational efficiency by simulating a subset of the original spatial samples
(An et al., 2008). Recent neural field-based ROMs (Pan et al., 2023; Yin et al., 2023; Wen et al.,
2023; Chen et al., 2023) demonstrate the ability to train a discretization-agnostic low-dimensional
representation, allowing the trained model to generalize over various geometric discretizations. We
extend these ROMs by using a neural operator to compute the dynamics of the spatial samples, such
that the model is a non-intrusive and discretization-agnostic ROM system. This combination creates
a machine-learning model that generalizes across geometries while being significantly faster than
traditional models.

3 METHOD: SPATIAL DIMENSION REDUCTION

In this section, we introduce the formulation for spatial-reduction and reduced-order representation
of the input point-cloud. As shown in Figure 1., the input, represented as a point-cloud, is reduced
into a sparse graph. We define the neural field formulation to recover the points not present within
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the sparse graph. In this situation, discretization invariance refers to the model’s agnosticism to the
choice of points used in the sparse graph.

Full-order system Let {Xj}Pj=1 be the P -point discretization of the spatial domain Ω, where P is
the number of full-order spatial points. Traditional full-order numerical PDE solvers directly operate
on these spatial discretizations (Hughes, 2012) and are therefore prohibitively slow when P is large.

Reduced-order system ROM techniques leverage a Q-point discretization of the spatial domain
{Xk}Qk=1, where Q≪ P . In particular, by leveraging neural fields and projection-based ROM, the
work by Chang et al. (2023) proposes a technique that can infer the continuous spatial function at
arbitrary spatial locations from just a few spatial samples, i.e., the Q-point discretization. To evolve
these Q-point discretizations over time, we seek a mapping between {ϕk

tn}
Q
k=1 and {ϕk

tn+1
}Qk=1,

where ϕk
tn = Xk

tn = ϕtn(X
k).

Sampling-based reduction The Q-point discretization, {Xk}Qk=1 ∈ Rd is obtained by applying
farthest point sampling on the P -point discretization of the system. This ensures an even distribution
of points, reduced redundancy in closely clustered regions and preservation of geometric features.
This system is then converted to a sparse radius-graph, connecting all the points in a neighborhood
defined by a ball of radius r. This process is illustrated in Figure 1.

Time Integration In the discrete setting, we leverage an explicit Euler time integrator (Ascher &
Petzold, 1998) with step-size ∆t,

ϕj
tn+1

= ϕj
tn +∆t ϕ̇j

tn (2)

ϕ̇j
tn+1

= ϕ̇j
tn +∆t ϕ̈j

tn (3)

As such, the one and only unknown in the equation above is the acceleration Aj
tn = ϕ̈j

tn , which is
necessary for computing the velocity Vj

tn+1
= ϕ̇j

tn+1
. We propose to predict the acceleration field

from the current and past velocity fields via neural operators to ensure discretization invariance (see
Section 4).

Full-order inference using neural fields Equipped with the next time-step positions ϕtn+1
(Xk)

at the reduced-order Q-point discretizations {Xk}Qk=1, we will compute the next time-step positions
ϕtn+1

(Xj) at the full-order P -point discretizations {Xj}Pj=1. To do so, we leverage a neural
representation of projection-based reduced-order models (ROM) (Benner et al., 2015). ROM assumes
that ϕtn+1(X

j) can be represented as a weighted sum of a small number of basis functions U with
weights qtn+1

: ϕtn+1
(Xj) = Xj +U(Xj)qtn+1

.

We emphasize that U is not restricted to a specific location in space and can be evaluated at any
arbitrary point, making it independent of any particular discretization.

The basis functions are implemented using neural fields whose weights are learnable. We follow the
same training procedure as described in Chang et al. (2023). After training, the basis U stays fixed
over time while the weights qtn+1 change at each time step.

When we have the function ϕtn+1
(Xk) for the sub-sampling Xk ∈ {Xk}Qk=1, we can calculate

qtn+1
by solving the least squares problem:

min
qtn+1

Q∑
k=1

∥ϕtn+1
(Xk)− (Xk +U(Xk)qtn+1

)∥22. (4)

After qtn+1 is obtained, we are able to calculate ϕtn+1(X
j) by:

ϕtn+1(X
j) = Xj +U(Xj)qtn+1 , ∀Xj ∈ {Xj}Pj=1. (5)

4 METHOD: TEMPORAL DYNAMICS

The reduced-order representation of the system forms the backbone of the time-stepper model, which
is represented in Figure 1. as the encoder-processor-decoder. In this section, we discuss how the
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neural operator learns the time-stepping temporal dynamics of the reduced-order system represented
by the sparse graph.

To learn the temporal dynamics, i.e., computing ϕ̈j
tn in Equation (3), we use a discretization-invariant

neural operator architecture that follows the encode-process-decode setup. We propose a graph-based
neural operator architecture called Interaction Operator as the encoder and the decoder, while we use
a neural operator transformer (NOT) as the processor.

Neural operators are a class of machine learning models that learn to map functions in infinite-
dimensional function spaces using a finite collection of discretized input-output pairs. In particular,
we want to learn the mapping from the current and past velocity fields (ϕ̇ti)

n
i=n−w to the current

acceleration field ϕ̈tn . The hyperparameter w defines the time window given by the past w time steps.
In practice, we use a finite collection of spatially discretized input-output pairs, as, e.g., provided by
the Q-point discretization. However, importantly, the output of the neural operator will be consistent
across different discretizations.

4.1 BACKGROUND: OPERATOR LEARNING

Many neural physics simulators model spatial interactions between particles using graph neural
networks (GNNs). While applicable to different number of particles, GNNs struggle if there is a
significant difference between training and inference sizes. To this end, we will use neural operators
that are agnostic to the underlying resolution, i.e., the number of particles, by construction.

A graph neural operator (GNO) operates on a radius graph, where a point x is connected to all points
within a ball Br(x) of a certain radius r Li et al. (2020b;c; 2024). This can be understood as a
discretization of an integral transform

GNO(v)(x) =

∫
Br(x)

κθ(x, y, v(y))dy, (6)

where v denotes a suitable input function and κ is a learnable kernel, parametrized by a neural network.
If the input function v is discretized at points yi ∈ Br(x), the integral transform in equation 6 can be
approximated by

GNO(v)(x) ≈
∑

yi∈Br(x)

κθ(x, yi, v(yi))∆yi, (7)

where ∆yi are suitable integration weights.

While geometries in the physical domain are complex and irregular, we follow Li et al. (2024) and
efficiently learn the global spatio-temporal dynamics on a coarse uniform grid in latent space. To
switch between the given discretization and a uniform grid, we note that the output function GNO(v)
in equation 7 can be evaluated on points x different from the discretization points {yi}i. We leverage
this property to evaluate the output on a uniform grid, which is used as the latent space to learn the
spatio-temporal dynamics.

4.2 ENCODING AND DECODING LOCAL SPATIAL FEATURES

To capture the local spatial features of the discretized input, we define a graph-based neural operator,
termed Interaction Operator, which performs two tasks. It captures the point interactions using
a discretization-agnostic adaptation of message passing and leverages a GNO layer to project the
features to a regular grid. The general formulation of the message-passing operator is defined as

MPk(v)(x) = fθ

(
v(x),

∫
Br(x)

κθ(k(x, y), v(x), v(y))dy
)
. (8)

In contrast to existing GNOs as in equation 6, we let the kernel κθ in equation 8 depend on v(x) and
an additional function k representing edge features. Moreover, we allow for residual connections
through fθ, which is parametrized by a neural network. The term v(x) represents the local interactions
between the nodes of the input graph. We can discretize equation 8 similar to equation 7 but require
the evaluation point x to be included in the set of discretization points {yi}i at which we know the
value of the input function v and the edge features k. To this end, we use the same discretization
for the input and output functions of the message-passing operator. To be able to use a uniform
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discretization in the latent space, we define the interaction operators as compositions with GNO
layers as in equation 6, i.e., IOenc = GNO ◦MPh and IOdec = MPk ◦GNO.

For the edge features h and k, we choose h(x, y) = gθ((x − y)/r) and k(x, y) = h(x, y) +
κθ(h(x, y), v(x), v(y)), where gθ is parametrized by a neural network and κθ is the kernel of MPh.
This effectively creates a residual connection between the interaction operators. In summary, using
the interaction operators IOenc and IOdec as encoder and decoder allows us to map from an arbitrary
discretization of the input and output fields to a uniform discretization in the latent space.

4.3 GLOBAL SPATIO-TEMPORAL PROCESSING

To learn the spatio-temporal evolution of the system in the latent space, we use a neural operator
transformer (NOT). The transformer can be viewed as a sequence of global GNO layers as in
equation 6 with a specific choice of kernel Kovachki et al. (2023). It processes the output of the
interaction operator, which is a function discretized on a coarse regular grid. These inputs are
first transformed to embeddings through pointwise MLPs. Then, heterogeneous attention blocks
as proposed in Hao et al. (2023) are used to compute the normalized self-attention between the
embeddings. The overall architecture of the neural operator Gθ mapping the past velocity fields to the
current acceleration field can then be defined as Gθ(v) = IOdec ◦NOT ◦ IOenc

The pseudocode is provided in Appendix D. To summarize, the model learns the instantaneous
acceleration, denoted as Atn = Gθ(Vtn−w:n

), where, w is the window used for past time step
instances and Vtn−w:n

denotes the velocity sequence.

5 EXPERIMENTS

Figure 2: Performance against different systems: The figure shows the full-order rollout perfor-
mance on Water, Sand, Elasticity and Plasticine

5.1 DATASET

We trained our model on four 3-dimensional physical systems - Newtonian fluids (Water), Drucker-
Prager elastoplasticity (Sand), von Mises yield (Plasticine) and purely Elastic deformations. We
assume that all these materials follow the elastodynamic equation, given by

ρ0ϕ̈ = ∇ ·P+ ρ0b (9)
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where, P is the first Piola-Kirchoff stress, ρ0 is the initial density, b is the body force and ϕ is the
deformation map.

We used the nclaw simulator (Ma et al., 2023) to generate 100 trajectories for each of these systems
with random initial velocity conditions and a fixed boundary [0, 1], [0, 1], [0, 1], with a free-slip
boundary condition. The ∆t between consecutive time frames was 5e−3s. We additionally trained
our model on four 2-D systems provided by Sanchez-Gonzalez et al. (2020) - WaterDrop, Sand, Goop
and MultiMaterial.

5.2 MODEL SETUP AND HYPERPARAMETERS

Data Representation To train the time-stepper model, we create a window of w point cloud position
sequences as the input, with the pointwise acceleration as the output. We define Xtn ∈ RQ×d to
be the pointwise positions of Q particles within a d-dimensional system at time n. A sequence of
N time steps is denoted as Xt0:N = (Xt0 , . . . ,XtN ). In particular, {X0

tn , . . . ,X
Q
tn} ∈ Xtn are the

individual particles within the system. We define velocity at time n as Vtn ∈ RQ×d as Xtn −Xtn−1
.

Similarly, acceleration at time n is defined as Atn = Vtn−Vtn−1
or Atn = Xtn+1

−2Xtn +Xtn−1
.

In all these cases, ∆t is set to one for simplicity. In case of water and sand, the velocity sequence is
perturbed with noise. The particle types (water, sand, plasticine, etc.) are represented as embeddings.

Boundary Representation To enforce the boundaries of the system, the node feature includes the
past w velocity fields as well as the distance of the most recent position field to the upper (bu) and
lower (bl) boundaries of the computational domain, given by D = [(xi − bl)/r, (bu − xi)/r], where
r is the radius of the graph.

Sampling and Graph Construction To reduce the point cloud to ROM space, we use farthest
point sampling to achieve an even spatial distribution of points. These sampled points are represented
as the vertices of a radius graph, whose neighbors are defined as the points within the specified radius.
The radius is tuned to ensure that the reduced-order graph has the same number of components as the
full-order graph. We show that if the number of components increases, it leads to unphysical volume
collapse. These effects are shown in Figure 3 and Table 13 in Appendix G.1.

Figure 3: Our method operates on a reduced-order graph. (a) depicts the graph with all the points.
(b) When the reduced-order graph has more components than the full-order graph, it leads to volume
collapse in simulations. (c) We improve the prediction of the dynamics by choosing a radius that
induces the same number of components. (d) FPS based sampling has similar performance but the
system is more uniformly distributed. (e) Delaunay Graph causes the system to break. (N: No. of
Nodes, E: No. of Edges, R: Graph Radius)

Loss Function The time stepper model predicts per-particle acceleration from a sequence of past
velocities of the samples. The loss is defined as the mean squared error between the predicted
acceleration and the ground-truth acceleration in the simulation sequence. To account for the impact
of noise and normalization, we compute the weighted average between acceleration loss and the

7
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MSE on the predicted and the expected positions. We choose a large β in the order of 1e5. For a
consecutive pair of positions Xtn and Xtn+1

, with corresponding velocities Vtn and Vtn+1
, the

corresponding acceleration is defined as Âtn = (Vtn+1
−Vtn)/∆t. The loss is thus given as

L(θ) = ∥Gθ(Vtn−w:n
)− Âtn∥22 + β∥X̂tn+1

−Xtn+1
∥22 (10)

The neural field is trained using the reconstruction loss (Chang et al., 2023), given by

L(θ) =

N∑
n=0

P∑
j=1

∥Xj +Uθ(X
j)qtn+1

− ϕGT
tn+1

(Xj)∥22 (11)

and ϕGT
tn+1

is the ground truth deformation map at time tn+1 and at spatial sample Xj . Additional
training details and model hyperparameters can be found in Appendix C.1.

5.3 RESULTS

Performance on different physical systems We evaluate our model on previously unseen trajecto-
ries of different physical systems (validation dataset) in Table 1, which presents the mean-squared
error MSE loss over one time-step and over several time-steps accumulated auto-regressively (“roll-
out”). The loss is computed on the position vector, which is computed by applying Euler integration
on the model generated acceleration vector. Figure 2 visually depicts the outputs rolled out by the
model. Figure 5b shows the model-generated point-clouds, where the points shown are the spatial
locations of the system. Figure 4 depicts the performance w.r.t the ground truth point clouds in 2D
settings.

Table 1: This table showcases the performance of GIOROM on several physical systems, These
results are computed on the full-order system.

PHYSICAL SYSTEM DURATION
(5e−3s) # POINTS

SPARSE
GRAPH
SIZE

SCALE NOISE ONE STEP-MSE
(×e−9)

ROLLOUT MSE
(×e−3)

WATER-3D 1000 55k 1.7k 32× 3e−4 5.23 0.386
WATER-2D 1000 1k 0.12k 8.3× 0 0.524 6.7
SAND-3D 400 32k 1k 32× 3e−7 4.87 0.0025
SAND-2D 320 2k 0.3k 6.6× 0 8.5 1.34
GOOP-2D 400 1.9k 0.2k 9.5× 0 1.31 0.94
PLASTICINE 320 5k 1.1k 4.5× 0 0.974 0.5
ELASTICITY 120 78k 2.6k 30× 0 0.507 0.2
MULTI-MATERIAL 2D 1000 2k 0.25k 8× 0 2.3 9.43

Table 2: This table highlights resolution invariance and discretization invariance of GIOROM in
different settings of the Elasticity dataset.

SETTING AVERAGE
NUM. POINTS

SCALE W.R.T
TRAINING DATA

ONE-STEP MSE
(x e−9)

ROLLOUT MSE
(x e−3)

DIFFERENT DISC. 2.5k 1.25 0.8 0.2
LOWER RES. 1k 0.5 1.9 0.5
LOWER RES. 0.5k 0.25 2.34 0.6
HIGHER RES. 5k 2 0.319 0.7
HIGHER RES. 10k 4 0.88 0.9
DIFFERENT GEOMETRY 98k 32 10.7 5.7
FULL ORDER INFERENCE
WITH IO 78k 52 94.4 2

Discretization invariance We evaluate the discretization invariance through the experiments
presented in Table 2. These were performed on the elasticity dataset, due to its full-order size of
78k particles. The first row shows the performance on a validation dataset, measured as the MSE
between Euler integrated positions and the expected positions. Each input comprises 1.2× the number
of points used in the corresponding training dataset. This ensures that the input has comparable
resolution but different spatial instantiations of the same input. However, we test on previously
unseen trajectory (inital condition) in all of these cases We perform two sets of experiments on lower
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resolution inputs (0.25× and 0.5×) and higher ones (2×, 4×). We also test generalization to unseen
geometries, as shown in the sixth row of Table 2, and lastly, to justify the need for neural field, we
infer the full-order system using the time-stepper and observe a slight degradation in performance
compared to the neural field. Discretization invariance is illustrated in Figure 5a.

5.4 BASELINES

ROM baselines We evaluate our proposed neural field against Proper Orthogonal Decomposition
(POD) and MLP based autoencoder models similar to those proposed in Lee & Carlberg (2020b). We
observe that when the discretization is changed, these models struggle to infer the spatial locations
of the system. However, our approach is agnostic to the spatial indices of the sampled system. On
randomized sub-samples of the same input point-cloud from the elasticity dataset (78k points), we
observed that POD had an MSE of 6.00e-4, while the Autoencoder had an MSE of 2.10e-4. Our
model achieved an MSE of 7.59e-7, highlighting discretization invariance.

Neural Operator baselines Table 3 represents the rollout performance of different Neural Operator
models on reduced-order graphs. The performance is measured as the average MSE accumulated
over the entire duration. We compare against GINO Li et al. (2024), General Neural Operator
Transformer GNOT Hao et al. (2023) and Inducing Point Operator Transformer Lee & Oh (2024).
Additionally, we compare against two graph neural network based models GAT, GNN, similar to the
model proposed in Sanchez-Gonzalez et al. (2020).

Table 3: This table compares the rollout MSE of GIOROM time-stepper against other neural physics
solvers. These results were computed on the reduced-order system, which is the training setting for
all these models

MODEL WATER-3D PLASTICINE ELASTIC SAND-3D
GNN 0.011 0.0038 0.0019 0.0008
GAT 0.06 0.0083 0.0097 0.011
GINO 0.38 0.09 0.18 0.07
GNOT 0.046 0.0052 0.0028 0.0085
IPOT 0.15 0.097 0.084 0.0075
OURS 0.0106 0.0008 0.0004 0.0009

6 DISCUSSION

Architecture Choice The architecture contains 3 elements - the Interaction Operator, the Neural
Operator Transformer and the Neural Field. To underscore the importance of each of these com-
ponents, we perform several ablations. In the absence of the Interaction Operator, the model fails
to capture local spatial interactions effectively. The Neural Operator Transformer ensures that the
model can generalize to longer trajectories, without requiring the velocity to be injected with noise,
unless the system is highly dynamic, as in the case of 3D water and sand simulations. We present
the ablations in Table 4. As shown in tables 2 and 9, the use of neural fields speeds up the inference,
however, it doesn’t significantly improve the accuracy.

Compatibility With Various Neural Physics solvers The core aspect of our framework is that
it enables learning physics in a reduced order setting, allowing for inference at any spatial point
with arbitrary resolution or discretization. Besides the Interaction Operator and Neural Operator
Transformer integrated into our model, other discretization-agnostic methods for learning temporal
dynamics are also applicable. As illustrated in Table 5, our setup achieves strong performance when
substituting the Neural Operator Transformer with a Fourier Neural Operator, though the inclusion of
noise during training is necessary for all physical systems. Additionally, GNS Sanchez-Gonzalez
et al. (2020) can be utilized as a time stepper, but the computational speed decreases due to the ten
message-passing blocks.

Justification of Neural Fields as a key factor in achieving speedup In Table 10., we highlight
how the inference time increases with the increase in the size of the input graphs. To overcome this
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Table 4: This table experimentally shows the importance of each component within the architecture.
These numbers were computed on the Plasticine dataset. It can be observed, that NOT reduces the
dependency on noise, while IO improves the accuracy

SETUP NOISE 1-step MSE Rollout MSE
Ours 0 1.17e-9 0.0008
NOT w/o IO 0 3.35e-9 0.05
IO + FNO + IO 0 2.1e-9 0.117
IO + FNO + IO 3e-4 3.4e-9 0.0032
2 GNO + FNO + 2 GNO 3e-4 1.9e-7 0.09
GNO + FNO + GNO 0 8.0e-9 21.84
GNO + FNO + GNO 3e-6 9.5e-9 16.70
GNO + FNO + GNO 3e-4 2.8e-7 0.36
GNO + FNO + GNO 3e-3 2.67e-5 2.85

Table 5: This table shows the performance of different neural physics solvers as the time stepper. The
time complexity of GNS and FNO’s dependency on training noise are the two tradeoffs that were
considered while choosing our architecture.

TIME STEPPER WATER-3D SAND-3D PLASTICINE ELASTICITY
OURS 0.0106 0.0009 0.0008 0.0004
GNS 0.011 0.0008 0.0038 0.0019
IO + FNO + IO 0.025 0.0067 0.0072 0.0058

bottleneck, we propose using smaller graphs for time-stepping and the neural field to recover the
full-order system. The neural field exhibits a near constant time complexity across different sizes of
the input point cloud. This is empirically shown in Table 5, where the upscale time of the neural field
is nearly the same for different densities of full-order systems.

Computation of Neural Field weights in Practice Equation 4 presents the least-squares expression
for computing the weights qtn+1 . In practice, this is formulated as solving a symmetric positive
linear system using a single Cholesky factorization, as shown in Chang et al. (2023). Therefore, this
does not include expensive computation overheads. This is shown in Table 9.

Handling self-contact in Materials The training data for the model is generated using MPM
solvers, which do not explicitly check for self-collision, but rather implicitly handle them through a
background grid, for both solids and fluids. Being data-driven, this phenomenon is learned by the
model implicitly. Better fine-grained self-contact sampling is an exciting future work direction.

7 CONCLUSION

In conclusion, our proposed GIOROM, can implicitly learn PDEs over several physical systems.
Utilizing a reduced-order modeling approach on sparse graphs, GIOROM is faster than previous
neural network-based physics solvers while achieving high fidelity simulations. Moreover, our neural-
operator-based model generalizes well across different initial conditions, velocities, discretizations,
and geometries.

Despite its promising performance, GIOROM has limitations that warrant further exploration. While
GIOROM is capable of generalizing across different settings, like many machine learning and
reduced-order methods, it struggles with extreme out-of-distribution scenarios (Li et al., 2020b; Chen
et al., 2023). Moreover, while GIOROM is primarily designed for continuous systems, future research
might explore mechanisms to explicitly handle discontinuities (Belhe et al., 2023; Goswami et al.,
2022).
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A ADDITIONAL RELATED WORKS

Time series dynamical systems Simulating temporal dynamics in an auto-regressive manner is a
particularly challenging task due to error accumulations during long rollout Wikner et al. (2024); List
et al. (2024). There have been many works that learn temporal PDEs and CFD, including Majid &
Tudisco (2024); Liu et al. (2024c); Sarkar et al. (2024); Wu et al. (2024); Jeon et al. (2024); Jiang
et al. (2024); Ma et al. (2024); Janny et al. (2024). Some works have proposed neural network-based
approaches to model 3D Lagrangian dynamics, such as Ummenhofer et al. (2020), who propose
a convolutional neural network-based approach to model the behavior of Newtonian fluids in 3D
systems. Sanchez-Gonzalez et al. (2020) propose a more general graph-based framework, but the
network suffers from high computation time on very dense graphs and is restricted to learning physics
in the full-order setting.

B OPERATOR LEARNING

B.1 BACKGROUND

Here, we summarize the important ingredients of neural operators. For more details, please refer to
Li et al. (2020a). Operator learning is a machine learning paradigm where a neural network is trained
to map between infinite-dimensional function spaces. Let G : V → A be a nonlinear map between
the two function spaces V and A. A neural operator is an operator parameterized by a neural network
given by

Gθ : V → A, θ ∈ RP , (12)
that approximates this function mapping in the finite-dimensional space. The learning problem can
be formulated as

min
θ∈RP

Ev∼D

[
∥Gθ(v)− G(v)∥2V

]
, (13)

where ∥·∥V is a norm on V and D is a probability distribution on V . In practice, the above optimization
is posed as an empirical risk-minimization problem, defined as

min
θ∈RP

1

N

N∑
i=1

∥Gθ(v(i))− a(i)∥2V . (14)

A neural operator Gθ learns the mapping between two functions through a sequence of point-wise
and integral operators, defined as

Gθ = L ◦ J1 ◦ ... ◦ JL ◦ P (15)

The lifting and projection layers L and P are learnable pointwise operators that output a function
with a higher and lower-dimensional co-domain, respectively. The intermediate layers Jℓ perform
kernel integration operations with a learnable kernel function as in equation 6.

C INTERACTION NETWORK

The interaction network proposed in Battaglia et al. (2016) learns a relation-centric function f that
encodes spatial interactions between the interacting nodes within a system as a function of their
interaction attributes r . This can be represented as

et+1 = fR(x1,t, x2,t, r) (16)

A node-centered function predicts the temporal dynamics of the node as a function of the spatial
interactions as follows

x1,t+1 = fo(et+1, x1,t) (17)
In a system of m nodes, the spatial interactions are represented as a graph, where the neighborhood
is defined by a ball of radius r. This graph is represented as G(O,R), where O is the collection of
objects and R is the relationships between them. The interaction between them is defined as

I(G) = fo(a(G,X, fR(⟨xi, xj , rij⟩))) (18)

Where a is an aggregation function that combines all the interactions, X is the set of external effects,
not part of the system, such as gravitational acceleration, etc.
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C.1 HYPERPARAMETERS

The models were implemented using Pytorch library and trained on CUDA. The graphs were built
using Pytorch Geometric module. All models were trained on NVIDIA RTX 3060 GPUs
for 5e6 steps.

The input to the model is a state vector matrix corresponding to w = 6 previous time steps of each
particle, along with features that represent the material of each particle. A radius graph is constructed
for the set of particles within the input space, such that edges are added between particles that are
within the radius r. The nodes of the graph are the velocity sequences for all the particles within the
sparse graph.

The graph is constructed using radius graph defined in Pytorch Geometric. The node
features and the edge features, which include the distance from the boundary points, are encoded
into latent vectors of size 128 using 2 MLPs. The encoder uses two layers of interaction operator.
The latents are then processed by two layers of Neural Operator Transformer. The decoder layers are
symmetric to the encoder layers. However, the decoder uses an additional projection layer with 16
channels that lifts the output to 128 channels, which is then projected back to the physical dimensions
of the input graph (2D or 3D). All MLPs within the GNO and FNO framework use gelu activation
function.

Training noise In more dynamic systems such as Water-3D and Sand-3D, to prevent noise
accumulation during long rollouts, the velocity sequence is corrupted with random walk noise during
training. The noise is sampled from a normal distribution N (0, σ2). Systems like Plasticine or
Elasticity did not require any training noise.

Normalization All velocity sequences are standardized to zero mean and unit standard deviation.
The dataset statistics are computed during training. Global mean and variance values from the training
dataset are used to compute statistics.

Optimizers Optimization is done with Adamax optimizer, with an initial learning rate of 1e-4,
weight decay of 1e-6 and a batch size of 4. The learning rate was decayed exponentially from 10−4

to 10−6 using a scheduler, with a gamma of 0.11/5e6

D PSEUDOCODE

Algorithm 1 Predicting Lagrangian dynamics with GIOROM

Input: Reduced-order velocities Vtn−w:n = {Vk
tn−w:n

}Qk=1, full-order points X̄ = {Xj}Pj=1

Output: Full-order deformation X̄tn+1 = {Xj
tn+1
}Pj=1 = {ϕtn+1(X

j)}Pj=1

1: Atn ← Gθ (Vtn−w:n
) ▷ See Section 4

2: Vtn+1
←Vtn +∆tAtn ▷ See Equation equation 3

3: Xtn+1
←Xtn +∆tVtn+1

▷ See Equation equation 2
4: X̄tn+1 ← NeuralField(Xtn+1 , X̄) ▷ See Section 3

E ADDITIONAL DATASET DETAILS

We model the following classes of materials - elastic, plasticine, granular, Newtonian fluids, non-
Newtonian fluids, and multi-material simulations.

Plasticine (von Mises Yield) Using the NCLAW simulator, we generated 100 trajectories of 400 time
steps (dt = 5e−4) with random initial velocities and 4 different geometries - Stanford bunny, Stanford
armadillo, blub (goldfish), and spot (cow). The trajectories are modeled using Saint Venant-Kirchoff
elastic model, given by

P = U(2µϵ+ λtr(ϵ))UT (19)
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Algorithm 2 Training of the neural operator

Input: Reduced-order position sequence Xtn−w:n
, ground truth acceleration Âtn

Output: Reduced-order acceleration Atn

1: Vtn−w:n
← (Xtn−w:n

−Xtn−w:n−1
)/∆t

2: Ṽtn−w−1:n ← Vtn−w:n +N (0, σ2) ▷ As explained in Section C.1
3: edges← radius graph(Xtn , radius)
4: edge feats← MLP(Xtn , edge)
5: node feats← MLP(Ṽtn−w:n)
6: node feats, edge feats← MP(node feats, edge feats) ▷ Message Passing As in equation 8
7: lgrid← linspace ([min, max])
8: latents← IT(Xtn , lgrid, node feats) ▷ Integral Transform See equation 7
9: acc← NOT (latents)

10: acc spatial← IT (lgrid, Xtn , acc)
11: Atn ← MP (acc spatial, edge feats)
12: loss← MSE(Atn , Âtn )

where λ and µ are Lamé constants, P is the second Piola-Kirchoff stress and ϵ is the strain. U is
obtained by applying SVD to the deformation gradient F = UΣVT. The von Mises yield condition
is denoted by

δγ = ∥ϵ̂∥ − τY
2µ

(20)

where ϵ is the normalized Henky strain, τY is the yield stress.

Granular material (Drucker Prager sand flows) We trained the model on 2 datasets to simulate
granular media. We generated 100 trajectories at 300 time steps, using NCLAW simulator and on the
2D Sand dataset released by Pfaff et al. (2020). The Drucker-Prager elastoplasticity is modeled by the
same Saint Venant–Kirchhoff elastic model, given by Equation 19. Additionally, the Drucker-Prager
yield condition is applied such that

tr(ϵ) > 0 or δγ = ∥ϵ̂∥+ α
(3λ+ 2µ)tr(ϵ)

2µ
> 0 (21)

where, α =
√
2/3 2sinθ

3−sinθ and θ is the frictional angle of the granular media.

Elasticity To simulate elasticity, we generated simulations using meshes from Thingi10k dataset
Zhou & Jacobson (2016). We generated 24 trajectories, with 200 time steps, for 6 geometries to train
the model. The elasticity is modeled using stable neo-Hookean model, as proposed in Smith et al.
(2018). The energy is denoted by

Ψ =
µ

2
(IC − 3) +

λ

2
(J − α)2 − µ

2
log(IC + 1) (22)

where IC refers to the first right Cauchy-Green invariant and J is the relative volume change. µ and
λ are Lamé constants. The corresponding Piola-Kirchoff stress is given by

P = µ
(
1− 1

IC + 1

)
F+ λ(J − α)

∂J

∂F
(23)

where F is the deformation gradient.

Newtonian Fluids For Newtonian fluids, In the 2D setting, we use WaterDrop dataset created by
Pfaff et al. (2020), which is generated using the material point method (MPM). For the 3D setting,
we generated 100 trajectories with random initial velocity, each spanning 1000 time steps at a dt
of 5e − 3. This dataset was prepared using the NCLAW framework. These are modeled as weakly
compressible fluids, using fixed corotated elastic model with µ = 0. The Piola-Kirchoff Stress is
given by

P = λJ(J − 1)F−T (24)
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Non-Newtonian fluids To train the model on non-Newtonian fluids, we used the Goop and
Goop-3D datasets.

Multimaterial We simulated multi-material trajectories in 2D using the dataset published by Pfaff
et al. (2020).

F TRAINING DETAILS

Ground truth acceleration is computed from position sequences before adding noise to the input
(in case of systems that required training noise). This is adjusted by removing the velocity noise
accumulated at the end of the random walk. This ensures that the model corrects the noise present in
the velocity.

It is to be noted that this loss is defined as a 1-step loss function over a pair of consecutive time steps
k and k+1, imposing a strong inductive bias towards a Markovian system. Optimizing the model for
rollout over K steps would overlook the effects of instantaneous physical states (influence of gravity,
etc.), thus resulting in greater one-step errors, which would eventually accumulate and result in larger
errors during rollout.

The model was validated by full rollouts on 10 held-out validation sets per material simulation, with
performance measured by the MSE between predicted particle positions and ground-truth particle
positions.

We test our model on multiple materials, ranging from Newtonian fluids to elastic solids, in both 2D
and 3D settings. We empirically show that our model is at least 2-4x faster than graph neural network-
based solvers with comparable parameter counts on the same simulation trajectory. Furthermore, we
show that this speed-up doesn’t compromise the accuracy of rollout predictions. We also highlight
the generalization capability of our model to unseen initial trajectories and graph densities.

Table 6: The table denotes the various training and testing geometries.

SHAPE PARAMS ARMADILLO BUNNY SPOT BLUB
MEAN CURVATURE 2.9e-3 1.1e-2 1.3e-2 5.9e-3
DIRICHLET ENERGY 2.3e-4 2.5e-3 2.4e-3 8.1e-4

Evaluation The evaluation metrics used to evaluate the models are particle-wise one-step MSE and
rollout MSE on the held-out evaluation sets. The rollout velocity and positions are computed using
semi-implicit Euler integration as

Vtk+1
=

∆Xtk

∆t
+∆t · Gθ(Vtk−C:k

) (25)

Xtk+1
= Xtk +∆t ·Vtk+1

(26)

In our calculations, we assume ∆t to be 1.

G ABLATIONS

Speedup against graph neural networks Graph neural networks can effectively capture spatial
interactions in point clouds. However, the message passing operation adds a computational overhead
that we overcome with neural operator layers. We show, in Table 7 and Table 8, that our model has
faster inference times compared to graph based neural networks.

Generalizability to degree of sparsity We tested the model against different degrees of sparsity,
while maintaining the number of connected components, with respect to the full-order system.
We observed, that the model performed consistently when the system was super-sampled, but the
performance degraded when the system had fewer than 375 points or 0.25× the average training data
size. The results are visualized in Figure 6.
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Figure 4: The above figures depict full-order inference by GIOROM on 2D point clouds. (a)
depicts granular flow, (b) represents the trajectory of jelly-like substance under gravity. (c) shows the
effects of external force on a highly elastic object. (d) depicts the interaction of granular media and
Newtonian fluid.

(a) Discretization agnosticism. (b) Point-cloud outputs from the time-stepper

Figure 5: Discretization Invariance and visualization of different physical systems inferred by
the model.

Table 7: Contrasting the change in computation time with the increase in connectivity radius for a
graph with 7056 points. The times shown represent the overall time needed to infer all 200 time steps.
We compare our time-stepper with other neural network based physics solvers.

MODEL TIME STEPS NUMBER OF SPATIAL POINTS CONNECTIVITY RADIUS
0.040 0.050 0.060 0.070 0.080 0.090 0.100

OURS 200 7056 points 20.1s 34.3s 47.6s 65.8s 89.7s 104.1s 109.3s
GNS 200 7056 points 43.5s 73.5s 111.6s 162s 226.2s 305.9s 386.0s
GAT 200 7056 points 146.5s 236.5s 394.2s 532.8s 645.2s 733.8s 812.5s

Table 8: Contrasting the change in computation time with an increase in graph size at a fixed radius
of 0.060. The times shown represent the overall time needed to infer all 200 time steps. We compare
our time-stepper against other neural network based physics solvers

MODEL PARAMETERS CONNECTIVITY MATERIAL TIME STEPS GRAPH SIZE
1776 POINTS 4143 POINTS 5608 POINTS 7056 POINTS

OURS 4,312,247 0.060 Plasticine 200 3.9s 14.5s 27.3s 47.6s
GNS 1,592,987 0.060 Plasticine 200 7.8 s 38.3s 68.7s 111.6s
GAT 1,999,003 0.060 Plasticine 200 71.1s 153.4s 295.3s 394.2s
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Table 9: Contrasting the inference times (in seconds) for highly dense point clouds up-sampled from
highly sparse graphs (1776 points).

TIME STEPS ROLLOUT SIZE ROLLOUT TIME (s) FULL-ORDER SIZE UPSCALE TIME (s)
200 1776 3.9 7,000 5e-5
200 1776 3.9 40,000 3e-4
200 1776 3.9 60,000 8e-4
200 1776 3.9 100,000 9e-4

Figure 6: Effects of sparsity on Rollout Loss on the Elasticity dataset (78k) The above graphs
highlight how the time-stepper performance at different sparsity settings (as a ratio of 78k). The
graph of sparsity vs. GPU usage highlights the highest GPU usage at the specified radius of the input
graph. The Sparsity vs. Time graph highlights the computation time as a function of sparsity, at the
specified input graph radius. The Sparsity vs. Rollout MSE graph shows that the at 0.125x, 0.062x
and 0.031x, the model achieves a rollout loss of the order of 1e-4. To show that increasing the radius
doesn’t always improve performance, we show in the bottom right graph that on the sparsest graph
(0.007x), the MSE increases when the radius is increased beyond 0.06.

Number of message-passing layers We show that the key bottleneck in terms of speed is the
message-passing operation within the interaction network. This operation scales with the number of
edges as E = O(K2), where K is the number of nodes.

Table 10: This table shows that the number of message-passing layers results in a negligible improve-
ment in rollout Loss.

NUM. MESSAGE PASSING LAYERS CONNECTIVITY INPUT SIZE INFERENCE TIME/STEP LOSS
2 0.077 2247 3.6 0.0008
4 0.077 2247 3.8 0.0009
6 0.077 2247 4.2 0.0014
8 0.077 2247 4.3 0.0009

Graph radius and viscosity We observed that during inference, larger neighborhoods resulted
in greater rigidity within the system. The following table highlights the changes in viscosity as the
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graph radius varies during inference. We measure viscosity by the highest average velocity attained
by the particles and the lowest average distance between them.

Figure 7: The figure highlights the increase in viscosity as the radius increases, due to a larger
neighborhood, (a) with a radius of 0.010, (b) 0.015, (c) 0.025, (d) 0.040, (e) 0.055.

Table 11: This table highlights the increase in viscosity, measured by the average minimum inter-
particle distance over 200 time steps and the average maximum velocity over 200 time steps. Higher
values of minimum inter-particle distance denote a more rigid graph where the particles don’t collide
with each other as often, and a lower average particle velocity indicates a more constrained flow

RADIUS AVG. MIN INTER-PARTICLE DIST. AVG. MAX PARTICLE VELOCITY
0.015 6.06e-5 1.7e-2
0.020 6.32e-5 8.1e-3
0.025 6.4e-5 7.6e-3
0.030 6.42e-5 6.6e-3
0.035 6.51e-5 5.7e-3
0.040 6.58e-5 5.0e-3
0.045 6.71e-5 4.6e-3
0.050 7.04e-5 4.2e-3

Discretization invariance w.r.t the latent grid We show that the model is agnostic to the resolution
of the latent grid during inference. If the latent grid is too small, the performance degrades due to
data loss. However, with larger latent grid sizes, there is no significant improvement in performance.
The model was tested on latent grid dimensions of 8, 16, 32, 64, and 128. The results are shown in
Figure 9.

Effects of latent grid The latent grid allows the Fourier neural operator to learn the temporal
dynamics on a regular grid of fixed size. This allows it to learn the dynamics of non-uniform and
complex geometries. Table 12 shows the performance of the model in the absence of the latent grid.

Table 12: The table showcases invariance to grid sizes greater than 8. At sizes less than 16, the model
fails to perform as well due to data loss

GRID SIZE ROLLOUT LOSS
128 0.0072
64 0.0074
32 0.0081
16 0.0075
8 0.0110

G.1 SAMPLING STRATEGY VS. ROLLOUT LOSS

We compared different sampling strategies against the rollout Loss (MSE). The results are presented
in Table 13.

Table 13: Comparison of different sampling and graph construction strategies against Rollout MSE
on Water-2D dataset

SAMPLING STRATEGY GRAPH TYPE ROLLOUT MSE
RANDOM RADIUS 0.0098
RANDOM DELAUNAY 7.017
FPS RADIUS 0.0097
FPS DELAUNAY 8.04
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G.2 EFFECTS OF NOISE ON ROLLOUT ACCURACY

Temporal auto-regressive models suffer from corruption of simulations due to noise accumulation.
The attention mechanism used in this architecture helps mitigate this issue to an extent. However,
when the system is too chaotic, such as 3D water simulations, it is important to choose the right noise
scale to ensure that the model is robust to this noise accumulation. We experimented with different
noise standard deviations and found that values between 1e-4 and 3e-4 resulted in the most stable
rollouts for 3D Water simulations. This can be observed in Figure 8.

Figure 8: Effects of noise on different physical systems

Effect of training dataset size on generalizability We performed experiments to see if the
performance would improve significantly with the addition of new trajectories in the WaterDrop2D
dataset. We observed that the rollout loss steadily decreases with the addition of new trajectories.
However, this decrease is less apparent after 200 trajectories. The loss is much higher when the
number of trajectories is less than 100.

Table 14: This table shows the trends in rollout loss with the number of training trajectories for the
Water-2D dataset. The model generalizes fairly well when trained on 150 trajectories, after which
there’s a gradual improvement in performance

TRAINING SIZE (# TRAJS) ROLLOUT LOSS (MSE)
50 0.010
150 0.0067
200 0.0064
400 0.0061

1000 0.0059

G.3 DESIGN DECISIONS WITH MINIMAL IMPACT

We performed hyper-parameter tuning on WaterDrop dataset and found that the following param-
eters have the least impact on the overall model performance. The results are illustrated in Figure
9.

Time window for input velocity sequence The window used for input velocity sequence didn’t
affect the accuracy of the output by a significant amount. We experimented with window sizes of
[2, 3, 5, 6, 7]. A window size of 2 allows for the network to be a Markov process, with the model
predicting the acceleration at a time step from the corresponding acceleration at the previous time
step. This can be leveraged for interactive manipulation of the material within the simulation.
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Figure 9: Hyperparameters with minimal impact The above graphs show minimal effects of some
of the hyperparameters on the rollout loss on the WaterDrop dataset.

Number of MLP layers in NOT We experimented with [1, 2, 4, 8, 10] as the number of layers
within the architecture. The accuracy decreased slightly with more MLPs.

Graph reduction and discretization invariance We approximately account for the integration
weights of the GNO in equation 7 by computing the mean of the kernel values in each neighborhood.
Note that we would not obtain a neural operator when using a sum as a reduction method since the
values would diverge in the limit of finer discretizations.

GNO hidden layer size We tried three configurations of GNO hidden layers for both the non-linear
kernel and the linear kernel, i.e, [32, 64], [512, 256], and [64, 512, 1024, 256]. In the latter cases, the
models became significantly bulkier without a noticeable change in performance.

Number of transformer layers We experimented with [1, 2, 4] layers of the transformer and found
that a single layer outperformed the rest. As the architecture became bulkier, the model’s tendency to
converge at local minima slightly increased.

Number of attention heads The performance of the model improved with more attention heads,
however, it became a little worse after increasing the number of heads beyond 4.

Number of experts The model performed optimally with 2 experts and the performance slightly
degraded for all other settings.

GNO radius We experimented with the following radii - [0.0004, 0.0015, 0.015, 0.045, 0.100]. In
each of these cases, there wasn’t a noticeable change in the performance or the inference times. x

Projection layers We experimented with three configurations for projection layers, i.e., [1, 2, 5],
and observed only minor variations in the performance. To optimize for the parameter count, we
chose a single projection layer in the final model.
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