
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

REDUCED-ORDER NEURAL OPERATORS: LEARNING
LAGRANGIAN DYNAMICS ON HIGHLY SPARSE GRAPHS

Anonymous authors
Paper under double-blind review

ABSTRACT

We propose accelerating the simulation of Lagrangian dynamics, such as fluid flows,
granular flows, and elastoplasticity, with neural-operator-based reduced-order mod-
eling. While full-order approaches simulate the physics of every particle within the
system, incurring high computation time for dense inputs, we propose to simulate
the physics on sparse graphs constructed by sampling from the spatially discretized
system. Our discretization-invariant reduced-order framework trains on any spatial
discretizations and computes temporal dynamics on any sparse sampling of these
discretizations through neural operators. Our proposed approach is termed Graph
Informed Optimized Reduced-Order Modeling or GIOROM. Through reduced
order modeling, we ensure lower computation time by sparsifying the system by
6.6-32.0×, while ensuring high-fidelity full-order inference via neural fields. We
show that our model generalizes to a range of initial conditions, resolutions, and
materials.

1 INTRODUCTION

Simulating the dynamics of physical systems is crucial in fields like computational fluid mechanics,
digital twins, graphics, and robotics. These spatio-temporal dynamics are often described by partial
differential equations (PDEs) in the following form:

J (ϕ,∇ϕ,∇2ϕ, . . . , ϕ̇, ϕ̈, . . .) = 0, ϕ(X, t) : Ω× T → Rd , (1)

where ϕ represents a multidimensional vector field that depends on both space and time. The symbols
∇ and ˙(·) signify the spatial gradient and time derivative, respectively. Here, Ω ⊂ Rd and T ⊂ R
denote the spatial and temporal domains, respectively. In this work, we focus on the deformation map
arising from continuum mechanics (Gonzalez & Stuart, 2008), i.e., the position field x = ϕ(X, t). Its
first and second temporal derivatives denote “velocity” v = ϕ̇ and “acceleration” a = ϕ̈ respectively.

To computationally solve 1, the system is discretized both temporally and spatially. Temporal
discretization ({tn}Nn=0) breaks down the system’s continuous evolution into discrete time steps.
After introducing a temporal discretization {tn}Nn=0, we solve for a sequence of spatial functions
{ϕtn(X)}Nn=0, where ϕtn(X) = ϕ(X, tn). Similarly, spatial discretization partitions the phys-
ical domain into a discrete set of spatial points, denoted as {Xj}Pj=1, representing the P -point
discretization.

Deep-learning-based methods have emerged as an efficient tool for solving these spatio-temporal
systems (Azizzadenesheli et al., 2024; Zhang et al., 2023; Cuomo et al., 2022). Instead of solving the
PDE explicitly at every time-step, these deep-learning methods implicitly time-step the system via
neural network evaluations. Graph Neural Network-based models, such as GNS (Sanchez-Gonzalez
et al., 2020), have shown promise in simulating a diverse range of physical systems. A salient feature
of GNS is that after training on particular spatial discretizations of the system, it can generalize to
other discretizations. However, scaling GNS to large-scale systems can be challenging due to the
message-passing operations, which aggregate information between all the neighbors. Furthermore,
using a large number of message passing layers leads to over-smoothing. Neural operators Li
et al. (2020a); Lu et al. (2021); Kovachki et al. (2023), which learn the mappings between infinite-
dimensional function spaces, offer a principled way of dealing with input and output data at arbitrary
resolution. In particular, graph-based neural operators Li et al. (2020b;c; 2024) can be applied to

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: The overall architecture of GIOROM. The neural operator Gθ predicts the acceleration
of a Lagrangian system Atk at time tk from the past w velocity instances Vtk−w:k

. The positions
are derived through Euler integration. The neural field is used to efficiently evaluate the deformation
field at arbitrary locations.

graphs of any resolution by taking special care of the construction and aggregation of neighborhoods.
However, these methods still have to operate on a very high number of spatial points to ensure high
fidelity, just as their classic numerical counterparts. As such, these deep learning models still incur
large computation times when operating on highly dense full-order systems (e.g., point clouds).

Reduced-order methods aim to address this computational challenge by operating on reduced-order
systems (e.g., a subset of the full-order point clouds) (Benner et al., 2015). In particular, continuous
reduced-order modeling approaches (Pan et al., 2023; Chen et al., 2023) create a reduced-order
representation for the continuous PDE themselves, not their discretizations. As such, these methods
generalize across various spatial discretizations of the system. However, these discretization-agnostic
ROM methods are intrusive, in the sense that they require exact PDE information due to the need to
solve the PDEs explicitly at every time step, thereby preventing them from being applied to problems
where the PDEs are unknown (Lusch et al., 2018).

While, reduced-order methods such as CROM Chen et al. (2023) address computational costs by
operating in reduced-order spaces, their flexibility and speed for solving spatio-temporal dynamics is
still limited by their reliance on classical numerical PDE solvers. To overcome these limitations, we
use the data-driven capabilities of neural operators, which have shown significant accelerations for
solving PDEs on different geometries. Specifically, we leverage the graph neural operator as in Li
et al. (2024) to handle irregular point clouds. However, the latter model is designed to learn Eulerian
formulations of computational fluid dynamics problems without temporal dynamics. Lagrangian
dynamics, on the other hand, is influenced by inter-particle interactions, such as collisions. Thus, we
propose a discretization-agnostic Interaction Operator, which allows for local interactions within the
graph neural operator (see Section 4). Moreover, we propose a transformer neural operator in latent
space to efficiently model global interactions, see also Figure 1. In summary, we introduce a novel
method for learning Lagragian dynamics that reduces the cost for both spatial (via neural fields) and
temporal (via neural operators) modeling in a fully discretization-agnostic manner.

Our key contributions can be summarized as follows

• A framework to learn Lagrangian dynamics on highly sparse graphs: We propose a
spatial-sampling-based reduced order modeling strategy that can accurately and efficiently
learn temporal dynamics on very sparse graphs, achieving 6.6-32× reduction in input size
over full-order neural physics solvers, while also delivering high fidelity performance on
diverse systems.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

• Graph-based neural operator: To learn the temporal dynamics, we present a graph-based
neural operator transformer that is discretization agnostic.We refer to this model as the
time-stepper.

• Arbitrary spatial evaluation using neural fields: We leverage continuous reduced-order
modeling techniques to evaluate the full-order system at arbitrary spatial points through
neural fields.

2 RELATED WORKS

Neural physics solvers Neural network-based solvers have shown great success in accelerating
physical simulations, including problems in fluid dynamics Sanchez-Gonzalez et al. (2020); Kochkov
et al. (2021); Vinuesa & Brunton (2021); Mao et al. (2020); Shukla et al. (2024); Hao et al. (2024),
solid mechanics Geist & Trimpe (2021); Capuano & Rimoli (2019); Jin et al. (2023), climate modeling
Pathak et al. (2022), and robotics Ni & Qureshi (2022); Kaczmarski et al. (2023). Such approaches
can be purely data-driven or physics-informed, i.e., leveraging an underlying PDE Raissi et al. (2019);
Sirignano & Spiliopoulos (2018); Richter & Berner (2022); Nam et al. (2024). Moreover, different
architectures have been proposed for the neural networks. Approaches based on convolutional neural
networks can be used to numerically solve systems of PDE on fixed regular grids Lee & Carlberg
(2020a); Maulik et al. (2021); Stoffel et al. (2020); Bamer et al. (2021). For more general meshes,
graph neural networks (GNNs) have been proposed, e.g., in the context of mesh-based physics Cao
et al. (2022); Pfaff et al. (2020); Han et al. (2022); Fortunato et al. (2022), Lagrangian dynamics
Sanchez-Gonzalez et al. (2020), parametric PDEs Pichi et al. (2024), and rigid body physics Kneifl
et al. (2024). GNNs can efficiently capture spatial interactions between particles. However, their
time complexity scales with the size of the graph since they require message-passing operations on
every node. For finer resolutions, this can be computationally prohibitive. Moreover, in their standard
formulation, they do not generalize to graphs that have significantly different sizes than the ones seen
during training.

Neural operator models Neural operators are a class of discretization agnostic neural network
architectures that can generalize to arbitrary discretization of input data. These architectures have
been used in solving parametric PDEs Lu et al. (2021); Li et al. (2020c; 2023); Azizzadenesheli
et al. (2024); Rahman et al. (2024); Liu-Schiaffini et al. (2024); Kovachki et al. (2023); Rahman et al.
(2022a); Liu et al. (2022); Viswanath et al. (2023); Shih et al. (2024); Goswami et al. (2023), fluid
dynamics Di Leoni et al. (2023); Wang et al. (2024); Peyvan et al. (2024), protein interactions Liu
et al. (2024b;a); Dharuman et al. (2023), 3D physics Xu et al. (2024); White et al. (2023); Bonev et al.
(2023); Rahman et al. (2022b); He et al. (2024); Rahman et al. (2022b), weather modeling Bire et al.
(2023); Pathak et al. (2022), robotics Bhaskara et al. (2023); Peng et al. (2023), and computer vision
Guibas et al. (2021); Rahman & Yeh (2024); Viswanath et al. (2022). In our work, we propose a new
parameterization for the graph neural operator to efficiently capture spatial dynamics in Lagrangian
systems and generalize to different discretizations of reduced-order inputs.

Reduced-order model Reduced-order models (ROMs) simplify high-dimensional dynamic sys-
tems by projecting them onto a lower-dimensional manifold, resulting in faster and less expensive
computations (Berkooz et al., 1993; Holmes et al., 2012; Lee & Carlberg, 2020a; Peherstorfer, 2022).
These methods gain computational efficiency by simulating a subset of the original spatial samples
(An et al., 2008). Recent neural field-based ROMs (Pan et al., 2023; Yin et al., 2023; Wen et al.,
2023; Chen et al., 2023) demonstrate the ability to train a discretization-agnostic low-dimensional
representation, allowing the trained model to generalize over various geometric discretizations. We
extend these ROMs by using a neural operator to compute the dynamics of the spatial samples, such
that the model is a non-intrusive and discretization-agnostic ROM system. This combination creates
a machine-learning model that generalizes across geometries while being significantly faster than
traditional models.

3 METHOD: SPATIAL DIMENSION REDUCTION

In this section, we introduce the formulation for spatial-reduction and reduced-order representation
of the input point-cloud. As shown in Figure 1., the input, represented as a point-cloud, is reduced
into a sparse graph. We define the neural field formulation to recover the points not present within

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

the sparse graph. In this situation, discretization invariance refers to the model’s agnosticism to the
choice of points used in the sparse graph.

Full-order system Let {Xj}Pj=1 be the P -point discretization of the spatial domain Ω, where P is
the number of full-order spatial points. Traditional full-order numerical PDE solvers directly operate
on these spatial discretizations (Hughes, 2012) and are therefore prohibitively slow when P is large.

Reduced-order system ROM techniques leverage a Q-point discretization of the spatial domain
{Xk}Qk=1, where Q≪ P . In particular, by leveraging neural fields and projection-based ROM, the
work by Chang et al. (2023) proposes a technique that can infer the continuous spatial function at
arbitrary spatial locations from just a few spatial samples, i.e., the Q-point discretization. To evolve
these Q-point discretizations over time, we seek a mapping between {ϕk

tn}
Q
k=1 and {ϕk

tn+1
}Qk=1,

where ϕk
tn = Xk

tn = ϕtn(X
k).

Sampling-based reduction The Q-point discretization, {Xk}Qk=1 ∈ Rd is obtained by applying
farthest point sampling on the P -point discretization of the system. This ensures an even distribution
of points, reduced redundancy in closely clustered regions and preservation of geometric features.
This system is then converted to a sparse radius-graph, connecting all the points in a neighborhood
defined by a ball of radius r. This process is illustrated in Figure 1.

Time Integration In the discrete setting, we leverage an explicit Euler time integrator (Ascher &
Petzold, 1998) with step-size ∆t,

ϕj
tn+1

= ϕj
tn +∆t ϕ̇j

tn (2)

ϕ̇j
tn+1

= ϕ̇j
tn +∆t ϕ̈j

tn (3)

As such, the one and only unknown in the equation above is the acceleration Aj
tn = ϕ̈j

tn , which is
necessary for computing the velocity Vj

tn+1
= ϕ̇j

tn+1
. We propose to predict the acceleration field

from the current and past velocity fields via neural operators to ensure discretization invariance (see
Section 4).

Full-order inference using neural fields Equipped with the next time-step positions ϕtn+1
(Xk)

at the reduced-order Q-point discretizations {Xk}Qk=1, we will compute the next time-step positions
ϕtn+1

(Xj) at the full-order P -point discretizations {Xj}Pj=1. To do so, we leverage a neural
representation of projection-based reduced-order models (ROM) (Benner et al., 2015). ROM assumes
that ϕtn+1(X

j) can be represented as a weighted sum of a small number of basis functions U with
weights qtn+1

: ϕtn+1
(Xj) = Xj +U(Xj)qtn+1

.

We emphasize that U is not restricted to a specific location in space and can be evaluated at any
arbitrary point, making it independent of any particular discretization.

The basis functions are implemented using neural fields whose weights are learnable. We follow the
same training procedure as described in Chang et al. (2023). After training, the basis U stays fixed
over time while the weights qtn+1 change at each time step.

When we have the function ϕtn+1
(Xk) for the sub-sampling Xk ∈ {Xk}Qk=1, we can calculate

qtn+1
by solving the least squares problem:

min
qtn+1

Q∑
k=1

∥ϕtn+1
(Xk)− (Xk +U(Xk)qtn+1

)∥22. (4)

After qtn+1 is obtained, we are able to calculate ϕtn+1(X
j) by:

ϕtn+1(X
j) = Xj +U(Xj)qtn+1 , ∀Xj ∈ {Xj}Pj=1. (5)

4 METHOD: TEMPORAL DYNAMICS

The reduced-order representation of the system forms the backbone of the time-stepper model, which
is represented in Figure 1. as the encoder-processor-decoder. In this section, we discuss how the

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

neural operator learns the time-stepping temporal dynamics of the reduced-order system represented
by the sparse graph.

To learn the temporal dynamics, i.e., computing ϕ̈j
tn in Equation (3), we use a discretization-invariant

neural operator architecture that follows the encode-process-decode setup. We propose a graph-based
neural operator architecture called Interaction Operator as the encoder and the decoder, while we use
a neural operator transformer (NOT) as the processor.

Neural operators are a class of machine learning models that learn to map functions in infinite-
dimensional function spaces using a finite collection of discretized input-output pairs. In particular,
we want to learn the mapping from the current and past velocity fields (ϕ̇ti)

n
i=n−w to the current

acceleration field ϕ̈tn . The hyperparameter w defines the time window given by the past w time steps.
In practice, we use a finite collection of spatially discretized input-output pairs, as, e.g., provided by
the Q-point discretization. However, importantly, the output of the neural operator will be consistent
across different discretizations.

4.1 BACKGROUND: OPERATOR LEARNING

Many neural physics simulators model spatial interactions between particles using graph neural
networks (GNNs). While applicable to different number of particles, GNNs struggle if there is a
significant difference between training and inference sizes. To this end, we will use neural operators
that are agnostic to the underlying resolution, i.e., the number of particles, by construction.

A graph neural operator (GNO) operates on a radius graph, where a point x is connected to all points
within a ball Br(x) of a certain radius r Li et al. (2020b;c; 2024). This can be understood as a
discretization of an integral transform

GNO(v)(x) =

∫
Br(x)

κθ(x, y, v(y))dy, (6)

where v denotes a suitable input function and κ is a learnable kernel, parametrized by a neural network.
If the input function v is discretized at points yi ∈ Br(x), the integral transform in equation 6 can be
approximated by

GNO(v)(x) ≈
∑

yi∈Br(x)

κθ(x, yi, v(yi))∆yi, (7)

where ∆yi are suitable integration weights.

While geometries in the physical domain are complex and irregular, we follow Li et al. (2024) and
efficiently learn the global spatio-temporal dynamics on a coarse uniform grid in latent space. To
switch between the given discretization and a uniform grid, we note that the output function GNO(v)
in equation 7 can be evaluated on points x different from the discretization points {yi}i. We leverage
this property to evaluate the output on a uniform grid, which is used as the latent space to learn the
spatio-temporal dynamics.

4.2 ENCODING AND DECODING LOCAL SPATIAL FEATURES

To capture the local spatial features of the discretized input, we define a graph-based neural operator,
termed Interaction Operator, which performs two tasks. It captures the point interactions using
a discretization-agnostic adaptation of message passing and leverages a GNO layer to project the
features to a regular grid. The general formulation of the message-passing operator is defined as

MPk(v)(x) = fθ

(
v(x),

∫
Br(x)

κθ(k(x, y), v(x), v(y))dy
)
. (8)

In contrast to existing GNOs as in equation 6, we let the kernel κθ in equation 8 depend on v(x) and
an additional function k representing edge features. Moreover, we allow for residual connections
through fθ, which is parametrized by a neural network. The term v(x) represents the local interactions
between the nodes of the input graph. We can discretize equation 8 similar to equation 7 but require
the evaluation point x to be included in the set of discretization points {yi}i at which we know the
value of the input function v and the edge features k. To this end, we use the same discretization
for the input and output functions of the message-passing operator. To be able to use a uniform

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

discretization in the latent space, we define the interaction operators as compositions with GNO
layers as in equation 6, i.e., IOenc = GNO ◦MPh and IOdec = MPk ◦GNO.

For the edge features h and k, we choose h(x, y) = gθ((x − y)/r) and k(x, y) = h(x, y) +
κθ(h(x, y), v(x), v(y)), where gθ is parametrized by a neural network and κθ is the kernel of MPh.
This effectively creates a residual connection between the interaction operators. In summary, using
the interaction operators IOenc and IOdec as encoder and decoder allows us to map from an arbitrary
discretization of the input and output fields to a uniform discretization in the latent space.

4.3 GLOBAL SPATIO-TEMPORAL PROCESSING

To learn the spatio-temporal evolution of the system in the latent space, we use a neural operator
transformer (NOT). The transformer can be viewed as a sequence of global GNO layers as in
equation 6 with a specific choice of kernel Kovachki et al. (2023). It processes the output of the
interaction operator, which is a function discretized on a coarse regular grid. These inputs are
first transformed to embeddings through pointwise MLPs. Then, heterogeneous attention blocks
as proposed in Hao et al. (2023) are used to compute the normalized self-attention between the
embeddings. The overall architecture of the neural operator Gθ mapping the past velocity fields to the
current acceleration field can then be defined as Gθ(v) = IOdec ◦NOT ◦ IOenc

The pseudocode is provided in Appendix D. To summarize, the model learns the instantaneous
acceleration, denoted as Atn = Gθ(Vtn−w:n

), where, w is the window used for past time step
instances and Vtn−w:n

denotes the velocity sequence.

5 EXPERIMENTS

Figure 2: Performance against different systems: The figure shows the full-order rollout perfor-
mance on Water, Sand, Elasticity and Plasticine

5.1 DATASET

We trained our model on four 3-dimensional physical systems - Newtonian fluids (Water), Drucker-
Prager elastoplasticity (Sand), von Mises yield (Plasticine) and purely Elastic deformations. We
assume that all these materials follow the elastodynamic equation, given by

ρ0ϕ̈ = ∇ ·P+ ρ0b (9)

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

where, P is the first Piola-Kirchoff stress, ρ0 is the initial density, b is the body force and ϕ is the
deformation map.

We used the nclaw simulator (Ma et al., 2023) to generate 100 trajectories for each of these systems
with random initial velocity conditions and a fixed boundary [0, 1], [0, 1], [0, 1], with a free-slip
boundary condition. The ∆t between consecutive time frames was 5e−3s. We additionally trained
our model on four 2-D systems provided by Sanchez-Gonzalez et al. (2020) - WaterDrop, Sand, Goop
and MultiMaterial.

5.2 MODEL SETUP AND HYPERPARAMETERS

Data Representation To train the time-stepper model, we create a window of w point cloud position
sequences as the input, with the pointwise acceleration as the output. We define Xtn ∈ RQ×d to
be the pointwise positions of Q particles within a d-dimensional system at time n. A sequence of
N time steps is denoted as Xt0:N = (Xt0 , . . . ,XtN ). In particular, {X0

tn , . . . ,X
Q
tn} ∈ Xtn are the

individual particles within the system. We define velocity at time n as Vtn ∈ RQ×d as Xtn −Xtn−1
.

Similarly, acceleration at time n is defined as Atn = Vtn−Vtn−1
or Atn = Xtn+1

−2Xtn +Xtn−1
.

In all these cases, ∆t is set to one for simplicity. In case of water and sand, the velocity sequence is
perturbed with noise. The particle types (water, sand, plasticine, etc.) are represented as embeddings.

Boundary Representation To enforce the boundaries of the system, the node feature includes the
past w velocity fields as well as the distance of the most recent position field to the upper (bu) and
lower (bl) boundaries of the computational domain, given by D = [(xi − bl)/r, (bu − xi)/r], where
r is the radius of the graph.

Sampling and Graph Construction To reduce the point cloud to ROM space, we use farthest
point sampling to achieve an even spatial distribution of points. These sampled points are represented
as the vertices of a radius graph, whose neighbors are defined as the points within the specified radius.
The radius is tuned to ensure that the reduced-order graph has the same number of components as the
full-order graph. We show that if the number of components increases, it leads to unphysical volume
collapse. These effects are shown in Figure 3 and Table 13 in Appendix G.1.

Figure 3: Our method operates on a reduced-order graph. (a) depicts the graph with all the points.
(b) When the reduced-order graph has more components than the full-order graph, it leads to volume
collapse in simulations. (c) We improve the prediction of the dynamics by choosing a radius that
induces the same number of components. (d) FPS based sampling has similar performance but the
system is more uniformly distributed. (e) Delaunay Graph causes the system to break. (N: No. of
Nodes, E: No. of Edges, R: Graph Radius)

Loss Function The time stepper model predicts per-particle acceleration from a sequence of past
velocities of the samples. The loss is defined as the mean squared error between the predicted
acceleration and the ground-truth acceleration in the simulation sequence. To account for the impact
of noise and normalization, we compute the weighted average between acceleration loss and the

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

MSE on the predicted and the expected positions. We choose a large β in the order of 1e5. For a
consecutive pair of positions Xtn and Xtn+1

, with corresponding velocities Vtn and Vtn+1
, the

corresponding acceleration is defined as Âtn = (Vtn+1
−Vtn)/∆t. The loss is thus given as

L(θ) = ∥Gθ(Vtn−w:n
)− Âtn∥22 + β∥X̂tn+1

−Xtn+1
∥22 (10)

The neural field is trained using the reconstruction loss (Chang et al., 2023), given by

L(θ) =

N∑
n=0

P∑
j=1

∥Xj +Uθ(X
j)qtn+1

− ϕGT
tn+1

(Xj)∥22 (11)

and ϕGT
tn+1

is the ground truth deformation map at time tn+1 and at spatial sample Xj . Additional
training details and model hyperparameters can be found in Appendix C.1.

5.3 RESULTS

Performance on different physical systems We evaluate our model on previously unseen trajecto-
ries of different physical systems (validation dataset) in Table 1, which presents the mean-squared
error MSE loss over one time-step and over several time-steps accumulated auto-regressively (“roll-
out”). The loss is computed on the position vector, which is computed by applying Euler integration
on the model generated acceleration vector. Figure 2 visually depicts the outputs rolled out by the
model. Figure 5b shows the model-generated point-clouds, where the points shown are the spatial
locations of the system. Figure 4 depicts the performance w.r.t the ground truth point clouds in 2D
settings.

Table 1: This table showcases the performance of GIOROM on several physical systems, These
results are computed on the full-order system.

PHYSICAL SYSTEM DURATION
(5e−3s) # POINTS

SPARSE
GRAPH
SIZE

SCALE NOISE ONE STEP-MSE
(×e−9)

ROLLOUT MSE
(×e−3)

WATER-3D 1000 55k 1.7k 32× 3e−4 5.23 0.386
WATER-2D 1000 1k 0.12k 8.3× 0 0.524 6.7
SAND-3D 400 32k 1k 32× 3e−7 4.87 0.0025
SAND-2D 320 2k 0.3k 6.6× 0 8.5 1.34
GOOP-2D 400 1.9k 0.2k 9.5× 0 1.31 0.94
PLASTICINE 320 5k 1.1k 4.5× 0 0.974 0.5
ELASTICITY 120 78k 2.6k 30× 0 0.507 0.2
MULTI-MATERIAL 2D 1000 2k 0.25k 8× 0 2.3 9.43

Table 2: This table highlights resolution invariance and discretization invariance of GIOROM in
different settings of the Elasticity dataset.

SETTING AVERAGE
NUM. POINTS

SCALE W.R.T
TRAINING DATA

ONE-STEP MSE
(x e−9)

ROLLOUT MSE
(x e−3)

DIFFERENT DISC. 2.5k 1.25 0.8 0.2
LOWER RES. 1k 0.5 1.9 0.5
LOWER RES. 0.5k 0.25 2.34 0.6
HIGHER RES. 5k 2 0.319 0.7
HIGHER RES. 10k 4 0.88 0.9
DIFFERENT GEOMETRY 98k 32 10.7 5.7
FULL ORDER INFERENCE
WITH IO 78k 52 94.4 2

Discretization invariance We evaluate the discretization invariance through the experiments
presented in Table 2. These were performed on the elasticity dataset, due to its full-order size of
78k particles. The first row shows the performance on a validation dataset, measured as the MSE
between Euler integrated positions and the expected positions. Each input comprises 1.2× the number
of points used in the corresponding training dataset. This ensures that the input has comparable
resolution but different spatial instantiations of the same input. However, we test on previously
unseen trajectory (inital condition) in all of these cases We perform two sets of experiments on lower

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

resolution inputs (0.25× and 0.5×) and higher ones (2×, 4×). We also test generalization to unseen
geometries, as shown in the sixth row of Table 2, and lastly, to justify the need for neural field, we
infer the full-order system using the time-stepper and observe a slight degradation in performance
compared to the neural field. Discretization invariance is illustrated in Figure 5a.

5.4 BASELINES

ROM baselines We evaluate our proposed neural field against Proper Orthogonal Decomposition
(POD) and MLP based autoencoder models similar to those proposed in Lee & Carlberg (2020b). We
observe that when the discretization is changed, these models struggle to infer the spatial locations
of the system. However, our approach is agnostic to the spatial indices of the sampled system. On
randomized sub-samples of the same input point-cloud from the elasticity dataset (78k points), we
observed that POD had an MSE of 6.00e-4, while the Autoencoder had an MSE of 2.10e-4. Our
model achieved an MSE of 7.59e-7, highlighting discretization invariance.

Neural Operator baselines Table 3 represents the rollout performance of different Neural Operator
models on reduced-order graphs. The performance is measured as the average MSE accumulated
over the entire duration. We compare against GINO Li et al. (2024), General Neural Operator
Transformer GNOT Hao et al. (2023) and Inducing Point Operator Transformer Lee & Oh (2024).
Additionally, we compare against two graph neural network based models GAT, GNN, similar to the
model proposed in Sanchez-Gonzalez et al. (2020).

Table 3: This table compares the rollout MSE of GIOROM time-stepper against other neural physics
solvers. These results were computed on the reduced-order system, which is the training setting for
all these models

MODEL WATER-3D PLASTICINE ELASTIC SAND-3D
GNN 0.011 0.0038 0.0019 0.0008
GAT 0.06 0.0083 0.0097 0.011
GINO 0.38 0.09 0.18 0.07
GNOT 0.046 0.0052 0.0028 0.0085
IPOT 0.15 0.097 0.084 0.0075
OURS 0.0106 0.0008 0.0004 0.0009

6 DISCUSSION

Architecture Choice The architecture contains 3 elements - the Interaction Operator, the Neural
Operator Transformer and the Neural Field. To underscore the importance of each of these com-
ponents, we perform several ablations. In the absence of the Interaction Operator, the model fails
to capture local spatial interactions effectively. The Neural Operator Transformer ensures that the
model can generalize to longer trajectories, without requiring the velocity to be injected with noise,
unless the system is highly dynamic, as in the case of 3D water and sand simulations. We present
the ablations in Table 4. As shown in tables 2 and 9, the use of neural fields speeds up the inference,
however, it doesn’t significantly improve the accuracy.

Compatibility With Various Neural Physics solvers The core aspect of our framework is that
it enables learning physics in a reduced order setting, allowing for inference at any spatial point
with arbitrary resolution or discretization. Besides the Interaction Operator and Neural Operator
Transformer integrated into our model, other discretization-agnostic methods for learning temporal
dynamics are also applicable. As illustrated in Table 5, our setup achieves strong performance when
substituting the Neural Operator Transformer with a Fourier Neural Operator, though the inclusion of
noise during training is necessary for all physical systems. Additionally, GNS Sanchez-Gonzalez
et al. (2020) can be utilized as a time stepper, but the computational speed decreases due to the ten
message-passing blocks.

Justification of Neural Fields as a key factor in achieving speedup In Table 10., we highlight
how the inference time increases with the increase in the size of the input graphs. To overcome this

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: This table experimentally shows the importance of each component within the architecture.
These numbers were computed on the Plasticine dataset. It can be observed, that NOT reduces the
dependency on noise, while IO improves the accuracy

SETUP NOISE 1-step MSE Rollout MSE
Ours 0 1.17e-9 0.0008
NOT w/o IO 0 3.35e-9 0.05
IO + FNO + IO 0 2.1e-9 0.117
IO + FNO + IO 3e-4 3.4e-9 0.0032
2 GNO + FNO + 2 GNO 3e-4 1.9e-7 0.09
GNO + FNO + GNO 0 8.0e-9 21.84
GNO + FNO + GNO 3e-6 9.5e-9 16.70
GNO + FNO + GNO 3e-4 2.8e-7 0.36
GNO + FNO + GNO 3e-3 2.67e-5 2.85

Table 5: This table shows the performance of different neural physics solvers as the time stepper. The
time complexity of GNS and FNO’s dependency on training noise are the two tradeoffs that were
considered while choosing our architecture.

TIME STEPPER WATER-3D SAND-3D PLASTICINE ELASTICITY
OURS 0.0106 0.0009 0.0008 0.0004
GNS 0.011 0.0008 0.0038 0.0019
IO + FNO + IO 0.025 0.0067 0.0072 0.0058

bottleneck, we propose using smaller graphs for time-stepping and the neural field to recover the
full-order system. The neural field exhibits a near constant time complexity across different sizes of
the input point cloud. This is empirically shown in Table 5, where the upscale time of the neural field
is nearly the same for different densities of full-order systems.

Computation of Neural Field weights in Practice Equation 4 presents the least-squares expression
for computing the weights qtn+1 . In practice, this is formulated as solving a symmetric positive
linear system using a single Cholesky factorization, as shown in Chang et al. (2023). Therefore, this
does not include expensive computation overheads. This is shown in Table 9.

Handling self-contact in Materials The training data for the model is generated using MPM
solvers, which do not explicitly check for self-collision, but rather implicitly handle them through a
background grid, for both solids and fluids. Being data-driven, this phenomenon is learned by the
model implicitly. Better fine-grained self-contact sampling is an exciting future work direction.

7 CONCLUSION

In conclusion, our proposed GIOROM, can implicitly learn PDEs over several physical systems.
Utilizing a reduced-order modeling approach on sparse graphs, GIOROM is faster than previous
neural network-based physics solvers while achieving high fidelity simulations. Moreover, our neural-
operator-based model generalizes well across different initial conditions, velocities, discretizations,
and geometries.

Despite its promising performance, GIOROM has limitations that warrant further exploration. While
GIOROM is capable of generalizing across different settings, like many machine learning and
reduced-order methods, it struggles with extreme out-of-distribution scenarios (Li et al., 2020b; Chen
et al., 2023). Moreover, while GIOROM is primarily designed for continuous systems, future research
might explore mechanisms to explicitly handle discontinuities (Belhe et al., 2023; Goswami et al.,
2022).

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Steven S An, Theodore Kim, and Doug L James. Optimizing cubature for efficient integration of
subspace deformations. ACM transactions on graphics (TOG), 27(5):1–10, 2008.

Uri M Ascher and Linda R Petzold. Computer methods for ordinary differential equations and
differential-algebraic equations. SIAM, 1998.

Kamyar Azizzadenesheli, Nikola Kovachki, Zongyi Li, Miguel Liu-Schiaffini, Jean Kossaifi, and
Anima Anandkumar. Neural operators for accelerating scientific simulations and design. Nature
Reviews Physics, pp. 1–9, 2024.

Franz Bamer, Denny Thaler, Marcus Stoffel, and Bernd Markert. A monte carlo simulation
approach in non-linear structural dynamics using convolutional neural networks. Frontiers
in Built Environment, 7, 2021. ISSN 2297-3362. doi: 10.3389/fbuil.2021.679488. URL
https://www.frontiersin.org/articles/10.3389/fbuil.2021.679488.

Peter Battaglia, Razvan Pascanu, Matthew Lai, Danilo Jimenez Rezende, et al. Interaction networks
for learning about objects, relations and physics. Advances in neural information processing
systems, 29, 2016.

Yash Belhe, Michaël Gharbi, Matthew Fisher, Iliyan Georgiev, Ravi Ramamoorthi, and Tzu-Mao Li.
Discontinuity-aware 2d neural fields. ACM Transactions on Graphics (TOG), 42(6):1–11, 2023.

Peter Benner, Serkan Gugercin, and Karen Willcox. A survey of projection-based model reduction
methods for parametric dynamical systems. SIAM review, 57(4):483–531, 2015.

Gal Berkooz, Philip Holmes, and John L Lumley. The proper orthogonal decomposition in the
analysis of turbulent flows. Annual review of fluid mechanics, 25(1):539–575, 1993.

Rashmi Bhaskara, Hrishikesh Viswanath, and Aniket Bera. Trajectory prediction for robot navigation
using flow-guided markov neural operator. arXiv preprint arXiv:2309.09137, 2023.

Suyash Bire, Björn Lütjens, Kamyar Azizzadenesheli, Anima Anandkumar, and Christopher N Hill.
Ocean emulation with fourier neural operators: Double gyre. Authorea Preprints, 2023.

Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik Kashinath,
and Anima Anandkumar. Spherical fourier neural operators: Learning stable dynamics on the
sphere. In International conference on machine learning, pp. 2806–2823. PMLR, 2023.

Yadi Cao, Menglei Chai, Minchen Li, and Chenfanfu Jiang. Efficient learning of mesh-based physical
simulation with bsms-gnn. arXiv preprint arXiv:2210.02573, 2022.

German Capuano and Julian J Rimoli. Smart finite elements: A novel machine learning application.
Computer Methods in Applied Mechanics and Engineering, 345:363–381, 2019.

Yue Chang, Peter Yichen Chen, Zhecheng Wang, Maurizio M. Chiaramonte, Kevin Carlberg, and
Eitan Grinspun. Licrom: Linear-subspace continuous reduced order modeling with neural fields.
In SIGGRAPH Asia 2023 Conference Papers, SA ’23, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400703157. doi: 10.1145/3610548.3618158. URL
https://doi.org/10.1145/3610548.3618158.

Peter Yichen Chen, Jinxu Xiang, Dong Heon Cho, Yue Chang, G A Pershing, Henrique Teles Maia,
Maurizio M Chiaramonte, Kevin Thomas Carlberg, and Eitan Grinspun. CROM: Continuous
reduced-order modeling of PDEs using implicit neural representations. In The Eleventh Interna-
tional Conference on Learning Representations, 2023. URL https://openreview.net/
forum?id=FUORz1tG8Og.

Salvatore Cuomo, Vincenzo Schiano Di Cola, Fabio Giampaolo, Gianluigi Rozza, Maziar Raissi,
and Francesco Piccialli. Scientific machine learning through physics–informed neural networks:
Where we are and what’s next. Journal of Scientific Computing, 92(3):88, 2022.

11

https://www.frontiersin.org/articles/10.3389/fbuil.2021.679488
https://doi.org/10.1145/3610548.3618158
https://openreview.net/forum?id=FUORz1tG8Og
https://openreview.net/forum?id=FUORz1tG8Og


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Gautham Dharuman, Logan Ward, Heng Ma, Priyanka V Setty, Ozan Gokdemir, Sam Foreman,
Murali Emani, Kyle Hippe, Alexander Brace, Kristopher Keipert, et al. Protein generation via
genome-scale language models with bio-physical scoring. In Proceedings of the SC’23 Workshops
of The International Conference on High Performance Computing, Network, Storage, and Analysis,
pp. 95–101, 2023.

Patricio Clark Di Leoni, Lu Lu, Charles Meneveau, George Em Karniadakis, and Tamer A Zaki.
Neural operator prediction of linear instability waves in high-speed boundary layers. Journal of
Computational Physics, 474:111793, 2023.

Meire Fortunato, Tobias Pfaff, Peter Wirnsberger, Alexander Pritzel, and Peter Battaglia. Multiscale
meshgraphnets. arXiv preprint arXiv:2210.00612, 2022.

A René Geist and Sebastian Trimpe. Structured learning of rigid-body dynamics: A survey and
unified view from a robotics perspective. GAMM-Mitteilungen, 44(2):e202100009, 2021.

Oscar Gonzalez and Andrew M Stuart. A first course in continuum mechanics, volume 42. Cambridge
University Press, 2008.

Somdatta Goswami, Minglang Yin, Yue Yu, and George Em Karniadakis. A physics-informed
variational deeponet for predicting crack path in quasi-brittle materials. Computer Methods in
Applied Mechanics and Engineering, 391:114587, 2022.

Somdatta Goswami, Aniruddha Bora, Yue Yu, and George Em Karniadakis. Physics-informed
deep neural operator networks. In Machine Learning in Modeling and Simulation: Methods and
Applications, pp. 219–254. Springer, 2023.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catan-
zaro. Adaptive fourier neural operators: Efficient token mixers for transformers. arXiv preprint
arXiv:2111.13587, 2021.

Xu Han, Han Gao, Tobias Pfaff, Jian-Xun Wang, and Li-Ping Liu. Predicting physics in mesh-reduced
space with temporal attention. arXiv preprint arXiv:2201.09113, 2022.

Zhongkai Hao, Zhengyi Wang, Hang Su, Chengyang Ying, Yinpeng Dong, Songming Liu, Ze Cheng,
Jian Song, and Jun Zhu. Gnot: A general neural operator transformer for operator learning. In
International Conference on Machine Learning, pp. 12556–12569. PMLR, 2023.

Zhongkai Hao, Chang Su, Songming Liu, Julius Berner, Chengyang Ying, Hang Su, Anima Anandku-
mar, Jian Song, and Jun Zhu. DPOT: Auto-regressive denoising operator transformer for large-scale
pde pre-training. arXiv preprint arXiv:2403.03542, 2024.

Junyan He, Seid Koric, Diab Abueidda, Ali Najafi, and Iwona Jasiuk. Geom-deeponet: A point-
cloud-based deep operator network for field predictions on 3d parameterized geometries. arXiv
preprint arXiv:2403.14788, 2024.

Philip Holmes, John L Lumley, Gahl Berkooz, and Clarence W Rowley. Turbulence, coherent
structures, dynamical systems and symmetry. Cambridge university press, 2012.

Thomas JR Hughes. The finite element method: linear static and dynamic finite element analysis.
Courier Corporation, 2012.

Steeven Janny, Madiha Nadri, Julie Digne, and Christian Wolf. Space and time continuous physics
simulation from partial observations. In International Conference on Learning Representation,
Vienna, Austria, May 2024. URL https://hal.science/hal-04464153.

Joongoo Jeon, Juhyeong Lee, Ricardo Vinuesa, and Sung Joong Kim. Residual-based physics-
informed transfer learning: A hybrid method for accelerating long-term cfd simulations via deep
learning. International Journal of Heat and Mass Transfer, 220:124900, 2024.

Ruoxi Jiang, Peter Y Lu, Elena Orlova, and Rebecca Willett. Training neural operators to preserve
invariant measures of chaotic attractors. Advances in Neural Information Processing Systems, 36,
2024.

12

https://hal.science/hal-04464153


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hanxun Jin, Enrui Zhang, and Horacio D Espinosa. Recent advances and applications of machine
learning in experimental solid mechanics: A review. Applied Mechanics Reviews, 75(6):061001,
2023.

Bartosz Kaczmarski, Alain Goriely, Ellen Kuhl, and Derek E Moulton. A simulation tool for physics-
informed control of biomimetic soft robotic arms. IEEE Robotics and Automation Letters, 8(2):
936–943, 2023.

Jonas Kneifl, Jörg Fehr, Steven L Brunton, and J Nathan Kutz. Multi-hierarchical surrogate learning
for structural dynamics of automotive crashworthiness using graph convolutional neural networks.
arXiv preprint arXiv:2402.09234, 2024.

Dmitrii Kochkov, Jamie A Smith, Ayya Alieva, Qing Wang, Michael P Brenner, and Stephan Hoyer.
Machine learning–accelerated computational fluid dynamics. Proceedings of the National Academy
of Sciences, 118(21):e2101784118, 2021.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with
applications to pdes. Journal of Machine Learning Research, 24(89):1–97, 2023.

Kookjin Lee and Kevin T. Carlberg. Model reduction of dynamical systems on nonlinear mani-
folds using deep convolutional autoencoders. Journal of Computational Physics, 404:108973,
2020a. ISSN 0021-9991. doi: https://doi.org/10.1016/j.jcp.2019.108973. URL https:
//www.sciencedirect.com/science/article/pii/S0021999119306783.

Kookjin Lee and Kevin T Carlberg. Model reduction of dynamical systems on nonlinear manifolds
using deep convolutional autoencoders. Journal of Computational Physics, 404:108973, 2020b.

Seungjun Lee and Taeil Oh. Inducing point operator transformer: A flexible and scalable architecture
for solving pdes. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
153–161, 2024.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations.
arXiv preprint arXiv:2010.08895, 2020a.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for partial differential
equations. arXiv preprint arXiv:2003.03485, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik
Bhattacharya, and Anima Anandkumar. Multipole graph neural operator for parametric partial
differential equations. Advances in Neural Information Processing Systems, 33:6755–6766, 2020c.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural operator
with learned deformations for pdes on general geometries. Journal of Machine Learning Research,
24(388):1–26, 2023.

Zongyi Li, Nikola Kovachki, Chris Choy, Boyi Li, Jean Kossaifi, Shourya Otta, Mohammad Amin
Nabian, Maximilian Stadler, Christian Hundt, Kamyar Azizzadenesheli, et al. Geometry-informed
neural operator for large-scale 3d pdes. Advances in Neural Information Processing Systems, 36,
2024.

Bjoern List, Li-Wei Chen, Kartik Bali, and Nils Thuerey. How temporal unrolling supports neural
physics simulators. arXiv preprint arXiv:2402.12971, 2024.

Burigede Liu, Nikola Kovachki, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, An-
drew M Stuart, and Kaushik Bhattacharya. A learning-based multiscale method and its application
to inelastic impact problems. Journal of the Mechanics and Physics of Solids, 158:104668, 2022.

Shengchao Liu, Weitao Du, Yanjing Li, Zhuoxinran Li, Vignesh Bhethanabotla, Nakul Rampal,
Omar Yaghi, Christian Borgs, Anima Anandkumar, Hongyu Guo, et al. A multi-grained sym-
metric differential equation model for learning protein-ligand binding dynamics. arXiv preprint
arXiv:2401.15122, 2024a.

13

https://www.sciencedirect.com/science/article/pii/S0021999119306783
https://www.sciencedirect.com/science/article/pii/S0021999119306783


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Shengchao Liu, Yanjing Li, Zhuoxinran Li, Zhiling Zheng, Chenru Duan, Zhi-Ming Ma, Omar Yaghi,
Animashree Anandkumar, Christian Borgs, Jennifer Chayes, et al. Symmetry-informed geometric
representation for molecules, proteins, and crystalline materials. Advances in Neural Information
Processing Systems, 36, 2024b.

Yuying Liu, Aleksei Sholokhov, Hassan Mansour, and Saleh Nabi. Physics-informed koop-
man network for time-series prediction of dynamical systems. In ICLR 2024 Workshop on
AI4DifferentialEquations In Science, 2024c.

Miguel Liu-Schiaffini, Julius Berner, Boris Bonev, Thorsten Kurth, Kamyar Azizzadenesheli, and
Anima Anandkumar. Neural operators with localized integral and differential kernels. arXiv
preprint arXiv:2402.16845, 2024.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learning
nonlinear operators via deeponet based on the universal approximation theorem of operators.
Nature machine intelligence, 3(3):218–229, 2021.

Bethany Lusch, J Nathan Kutz, and Steven L Brunton. Deep learning for universal linear embeddings
of nonlinear dynamics. Nature communications, 9(1):4950, 2018.

Pingchuan Ma, Peter Yichen Chen, Bolei Deng, Joshua B Tenenbaum, Tao Du, Chuang Gan, and
Wojciech Matusik. Learning neural constitutive laws from motion observations for generalizable
pde dynamics. In International Conference on Machine Learning, pp. 23279–23300. PMLR, 2023.

Qilong Ma, Haixu Wu, Lanxiang Xing, Jianmin Wang, and Mingsheng Long. Eulagnet: Eulerian
fluid prediction with lagrangian dynamics. arXiv preprint arXiv:2402.02425, 2024.

Harris Abdul Majid and Francesco Tudisco. Mixture of neural operators: Incorporating historical
information for longer rollouts. In ICLR 2024 Workshop on AI4DifferentialEquations In Science,
2024.

Zhiping Mao, Ameya D Jagtap, and George Em Karniadakis. Physics-informed neural networks for
high-speed flows. Computer Methods in Applied Mechanics and Engineering, 360:112789, 2020.

Romit Maulik, Bethany Lusch, and Prasanna Balaprakash. Reduced-order modeling of advection-
dominated systems with recurrent neural networks and convolutional autoencoders. Physics
of Fluids, 33(3):037106, 03 2021. ISSN 1070-6631. doi: 10.1063/5.0039986. URL https:
//doi.org/10.1063/5.0039986.

Hong Chul Nam, Julius Berner, and Anima Anandkumar. Solving Poisson equations using neural
walk-on-spheres. arXiv preprint arXiv:2406.03494, 2024.

Ruiqi Ni and Ahmed H Qureshi. Ntfields: Neural time fields for physics-informed robot motion
planning. arXiv preprint arXiv:2210.00120, 2022.

Shaowu Pan, Steven L Brunton, and J Nathan Kutz. Neural implicit flow: a mesh-agnostic dimen-
sionality reduction paradigm of spatio-temporal data. Journal of Machine Learning Research, 24
(41):1–60, 2023.

Jaideep Pathak, Shashank Subramanian, Peter Harrington, Sanjeev Raja, Ashesh Chattopadhyay,
Morteza Mardani, Thorsten Kurth, David Hall, Zongyi Li, Kamyar Azizzadenesheli, et al. Fourcast-
net: A global data-driven high-resolution weather model using adaptive fourier neural operators.
arXiv preprint arXiv:2202.11214, 2022.

Benjamin Peherstorfer. Breaking the kolmogorov barrier with nonlinear model reduction. Notices of
the American Mathematical Society, 69(5):725–733, 2022.

Juntong Peng, Hrishikesh Viswanath, Kshitij Tiwari, and Aniket Bera. Graph-based decentralized
task allocation for multi-robot target localization. arXiv preprint arXiv:2309.08896, 2023.

Ahmad Peyvan, Vivek Oommen, Ameya D Jagtap, and George Em Karniadakis. Riemannonets:
Interpretable neural operators for riemann problems. arXiv preprint arXiv:2401.08886, 2024.

14

https://doi.org/10.1063/5.0039986
https://doi.org/10.1063/5.0039986


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Tobias Pfaff, Meire Fortunato, Alvaro Sanchez-Gonzalez, and Peter W Battaglia. Learning mesh-
based simulation with graph networks. arXiv preprint arXiv:2010.03409, 2020.

Federico Pichi, Beatriz Moya, and Jan S Hesthaven. A graph convolutional autoencoder approach
to model order reduction for parametrized pdes. Journal of Computational Physics, 501:112762,
2024.

Md Ashiqur Rahman and Raymond A Yeh. Truly scale-equivariant deep nets with fourier layers.
Advances in Neural Information Processing Systems, 36, 2024.

Md Ashiqur Rahman, Manuel A Florez, Anima Anandkumar, Zachary E Ross, and Kamyar Aziz-
zadenesheli. Generative adversarial neural operators. arXiv preprint arXiv:2205.03017, 2022a.

Md Ashiqur Rahman, Jasorsi Ghosh, Hrishikesh Viswanath, Kamyar Azizzadenesheli, and Aniket
Bera. Pacmo: Partner dependent human motion generation in dyadic human activity using neural
operators. arXiv preprint arXiv:2211.16210, 2022b.

Md Ashiqur Rahman, Robert Joseph George, Mogab Elleithy, Daniel Leibovici, Zongyi Li, Boris
Bonev, Colin White, Julius Berner, Raymond A Yeh, Jean Kossaifi, et al. Pretraining codomain
attention neural operators for solving multiphysics pdes. arXiv preprint arXiv:2403.12553, 2024.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear partial
differential equations. Journal of Computational Physics, 378:686–707, 2019.

Lorenz Richter and Julius Berner. Robust sde-based variational formulations for solving linear pdes
via deep learning. In International Conference on Machine Learning, pp. 18649–18666. PMLR,
2022.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International conference
on machine learning, pp. 8459–8468. PMLR, 2020.

Rajat Sarkar, Krishna Sai Sudhir Aripirala, Vishal Sudam Jadhav, Sagar Srinivas Sakhinana, and
Venkataramana Runkana. Pointsage: Mesh-independent superresolution approach to fluid flow
predictions. In ICLR 2024 Workshop on AI4DifferentialEquations In Science, 2024.

Benjamin Shih, Ahmad Peyvan, Zhongqiang Zhang, and George Em Karniadakis. Transformers as
neural operators for solutions of differential equations with finite regularity, 2024.

Khemraj Shukla, Vivek Oommen, Ahmad Peyvan, Michael Penwarden, Nicholas Plewacki, Luis
Bravo, Anindya Ghoshal, Robert M Kirby, and George Em Karniadakis. Deep neural operators
as accurate surrogates for shape optimization. Engineering Applications of Artificial Intelligence,
129:107615, 2024.

Justin Sirignano and Konstantinos Spiliopoulos. DGM: A deep learning algorithm for solving partial
differential equations. Journal of computational physics, 375:1339–1364, 2018.

Breannan Smith, Fernando De Goes, and Theodore Kim. Stable neo-hookean flesh simulation. ACM
Transactions on Graphics (TOG), 37(2):1–15, 2018.

Marcus Stoffel, Franz Bamer, and Bernd Markert. Deep convolutional neural networks in structural
dynamics under consideration of viscoplastic material behaviour. Mechanics Research Com-
munications, 108:103565, 2020. ISSN 0093-6413. doi: https://doi.org/10.1016/j.mechrescom.
2020.103565. URL https://www.sciencedirect.com/science/article/pii/
S0093641320300938.

Benjamin Ummenhofer, Lukas Prantl, Nils Thuerey, and Vladlen Koltun. Lagrangian fluid simulation
with continuous convolutions. In International Conference on Learning Representations, 2020.
URL https://openreview.net/forum?id=B1lDoJSYDH.

Ricardo Vinuesa and Steven L Brunton. The potential of machine learning to enhance computational
fluid dynamics. arXiv preprint arXiv:2110.02085, pp. 1–13, 2021.

15

https://www.sciencedirect.com/science/article/pii/S0093641320300938
https://www.sciencedirect.com/science/article/pii/S0093641320300938
https://openreview.net/forum?id=B1lDoJSYDH


810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Hrishikesh Viswanath, Md Ashiqur Rahman, Rashmi Bhaskara, and Aniket Bera. Adafnio:
Adaptive fourier neural interpolation operator for video frame interpolation. arXiv preprint
arXiv:2211.10791, 2022.

Hrishikesh Viswanath, Md Ashiqur Rahman, Abhijeet Vyas, Andrey Shor, Beatriz Medeiros,
Stephanie Hernandez, Suhas Eswarappa Prameela, and Aniket Bera. Neural operator: Is data all
you need to model the world? an insight into the impact of physics informed machine learning.
arXiv preprint arXiv:2301.13331, 2023.

Sifan Wang, Jacob H Seidman, Shyam Sankaran, Hanwen Wang, George J Pappas, and Paris
Perdikaris. Bridging operator learning and conditioned neural fields: A unifying perspective. arXiv
preprint arXiv:2405.13998, 2024.

Tianshu Wen, Kookjin Lee, and Youngsoo Choi. Reduced-order modeling for parameterized pdes via
implicit neural representations. arXiv preprint arXiv:2311.16410, 2023.

Colin White, Julius Berner, Jean Kossaifi, Mogab Elleithy, David Pitt, Daniel Leibovici, Zongyi
Li, Kamyar Azizzadenesheli, and Anima Anandkumar. Physics-informed neural operators with
exact differentiation on arbitrary geometries. In The Symbiosis of Deep Learning and Differential
Equations III, 2023.

Alexander Wikner, Joseph Harvey, Michelle Girvan, Brian R Hunt, Andrew Pomerance, Thomas
Antonsen, and Edward Ott. Stabilizing machine learning prediction of dynamics: Novel noise-
inspired regularization tested with reservoir computing. Neural Networks, 170:94–110, 2024.

Hao Wu, Fan Xu, Yifan Duan, Ziwei Niu, Weiyan Wang, Gaofeng Lu, Kun Wang, Yuxuan Liang,
and Yang Wang. Spatio-temporal fluid dynamics modeling via physical-awareness and parameter
diffusion guidance. arXiv preprint arXiv:2403.13850, 2024.

Minkai Xu, Jiaqi Han, Aaron Lou, Jean Kossaifi, Arvind Ramanathan, Kamyar Azizzadenesheli,
Jure Leskovec, Stefano Ermon, and Anima Anandkumar. Equivariant graph neural operator for
modeling 3d dynamics. arXiv preprint arXiv:2401.11037, 2024.

Yuan Yin, Matthieu Kirchmeyer, Jean-Yves Franceschi, Alain Rakotomamonjy, and patrick gallinari.
Continuous PDE dynamics forecasting with implicit neural representations. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=B73niNjbPs.

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
Lin, Zhao Xu, Keqiang Yan, et al. Artificial intelligence for science in quantum, atomistic, and
continuum systems. arXiv preprint arXiv:2307.08423, 2023.

Qingnan Zhou and Alec Jacobson. Thingi10k: A dataset of 10,000 3d-printing models, 2016.

16

https://openreview.net/forum?id=B73niNjbPs
https://openreview.net/forum?id=B73niNjbPs


864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

A ADDITIONAL RELATED WORKS

Time series dynamical systems Simulating temporal dynamics in an auto-regressive manner is a
particularly challenging task due to error accumulations during long rollout Wikner et al. (2024); List
et al. (2024). There have been many works that learn temporal PDEs and CFD, including Majid &
Tudisco (2024); Liu et al. (2024c); Sarkar et al. (2024); Wu et al. (2024); Jeon et al. (2024); Jiang
et al. (2024); Ma et al. (2024); Janny et al. (2024). Some works have proposed neural network-based
approaches to model 3D Lagrangian dynamics, such as Ummenhofer et al. (2020), who propose
a convolutional neural network-based approach to model the behavior of Newtonian fluids in 3D
systems. Sanchez-Gonzalez et al. (2020) propose a more general graph-based framework, but the
network suffers from high computation time on very dense graphs and is restricted to learning physics
in the full-order setting.

B OPERATOR LEARNING

B.1 BACKGROUND

Here, we summarize the important ingredients of neural operators. For more details, please refer to
Li et al. (2020a). Operator learning is a machine learning paradigm where a neural network is trained
to map between infinite-dimensional function spaces. Let G : V → A be a nonlinear map between
the two function spaces V and A. A neural operator is an operator parameterized by a neural network
given by

Gθ : V → A, θ ∈ RP , (12)
that approximates this function mapping in the finite-dimensional space. The learning problem can
be formulated as

min
θ∈RP

Ev∼D

[
∥Gθ(v)− G(v)∥2V

]
, (13)

where ∥·∥V is a norm on V and D is a probability distribution on V . In practice, the above optimization
is posed as an empirical risk-minimization problem, defined as

min
θ∈RP

1

N

N∑
i=1

∥Gθ(v(i))− a(i)∥2V . (14)

A neural operator Gθ learns the mapping between two functions through a sequence of point-wise
and integral operators, defined as

Gθ = L ◦ J1 ◦ ... ◦ JL ◦ P (15)

The lifting and projection layers L and P are learnable pointwise operators that output a function
with a higher and lower-dimensional co-domain, respectively. The intermediate layers Jℓ perform
kernel integration operations with a learnable kernel function as in equation 6.

C INTERACTION NETWORK

The interaction network proposed in Battaglia et al. (2016) learns a relation-centric function f that
encodes spatial interactions between the interacting nodes within a system as a function of their
interaction attributes r . This can be represented as

et+1 = fR(x1,t, x2,t, r) (16)

A node-centered function predicts the temporal dynamics of the node as a function of the spatial
interactions as follows

x1,t+1 = fo(et+1, x1,t) (17)
In a system of m nodes, the spatial interactions are represented as a graph, where the neighborhood
is defined by a ball of radius r. This graph is represented as G(O,R), where O is the collection of
objects and R is the relationships between them. The interaction between them is defined as

I(G) = fo(a(G,X, fR(⟨xi, xj , rij⟩))) (18)

Where a is an aggregation function that combines all the interactions, X is the set of external effects,
not part of the system, such as gravitational acceleration, etc.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C.1 HYPERPARAMETERS

The models were implemented using Pytorch library and trained on CUDA. The graphs were built
using Pytorch Geometric module. All models were trained on NVIDIA RTX 3060 GPUs
for 5e6 steps.

The input to the model is a state vector matrix corresponding to w = 6 previous time steps of each
particle, along with features that represent the material of each particle. A radius graph is constructed
for the set of particles within the input space, such that edges are added between particles that are
within the radius r. The nodes of the graph are the velocity sequences for all the particles within the
sparse graph.

The graph is constructed using radius graph defined in Pytorch Geometric. The node
features and the edge features, which include the distance from the boundary points, are encoded
into latent vectors of size 128 using 2 MLPs. The encoder uses two layers of interaction operator.
The latents are then processed by two layers of Neural Operator Transformer. The decoder layers are
symmetric to the encoder layers. However, the decoder uses an additional projection layer with 16
channels that lifts the output to 128 channels, which is then projected back to the physical dimensions
of the input graph (2D or 3D). All MLPs within the GNO and FNO framework use gelu activation
function.

Training noise In more dynamic systems such as Water-3D and Sand-3D, to prevent noise
accumulation during long rollouts, the velocity sequence is corrupted with random walk noise during
training. The noise is sampled from a normal distribution N (0, σ2). Systems like Plasticine or
Elasticity did not require any training noise.

Normalization All velocity sequences are standardized to zero mean and unit standard deviation.
The dataset statistics are computed during training. Global mean and variance values from the training
dataset are used to compute statistics.

Optimizers Optimization is done with Adamax optimizer, with an initial learning rate of 1e-4,
weight decay of 1e-6 and a batch size of 4. The learning rate was decayed exponentially from 10−4

to 10−6 using a scheduler, with a gamma of 0.11/5e6

D PSEUDOCODE

Algorithm 1 Predicting Lagrangian dynamics with GIOROM

Input: Reduced-order velocities Vtn−w:n = {Vk
tn−w:n

}Qk=1, full-order points X̄ = {Xj}Pj=1

Output: Full-order deformation X̄tn+1 = {Xj
tn+1
}Pj=1 = {ϕtn+1(X

j)}Pj=1

1: Atn ← Gθ (Vtn−w:n
) ▷ See Section 4

2: Vtn+1
←Vtn +∆tAtn ▷ See Equation equation 3

3: Xtn+1
←Xtn +∆tVtn+1

▷ See Equation equation 2
4: X̄tn+1 ← NeuralField(Xtn+1 , X̄) ▷ See Section 3

E ADDITIONAL DATASET DETAILS

We model the following classes of materials - elastic, plasticine, granular, Newtonian fluids, non-
Newtonian fluids, and multi-material simulations.

Plasticine (von Mises Yield) Using the NCLAW simulator, we generated 100 trajectories of 400 time
steps (dt = 5e−4) with random initial velocities and 4 different geometries - Stanford bunny, Stanford
armadillo, blub (goldfish), and spot (cow). The trajectories are modeled using Saint Venant-Kirchoff
elastic model, given by

P = U(2µϵ+ λtr(ϵ))UT (19)

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 2 Training of the neural operator

Input: Reduced-order position sequence Xtn−w:n
, ground truth acceleration Âtn

Output: Reduced-order acceleration Atn

1: Vtn−w:n
← (Xtn−w:n

−Xtn−w:n−1
)/∆t

2: Ṽtn−w−1:n ← Vtn−w:n +N (0, σ2) ▷ As explained in Section C.1
3: edges← radius graph(Xtn , radius)
4: edge feats← MLP(Xtn , edge)
5: node feats← MLP(Ṽtn−w:n)
6: node feats, edge feats← MP(node feats, edge feats) ▷ Message Passing As in equation 8
7: lgrid← linspace ([min, max])
8: latents← IT(Xtn , lgrid, node feats) ▷ Integral Transform See equation 7
9: acc← NOT (latents)

10: acc spatial← IT (lgrid, Xtn , acc)
11: Atn ← MP (acc spatial, edge feats)
12: loss← MSE(Atn , Âtn )

where λ and µ are Lamé constants, P is the second Piola-Kirchoff stress and ϵ is the strain. U is
obtained by applying SVD to the deformation gradient F = UΣVT. The von Mises yield condition
is denoted by

δγ = ∥ϵ̂∥ − τY
2µ

(20)

where ϵ is the normalized Henky strain, τY is the yield stress.

Granular material (Drucker Prager sand flows) We trained the model on 2 datasets to simulate
granular media. We generated 100 trajectories at 300 time steps, using NCLAW simulator and on the
2D Sand dataset released by Pfaff et al. (2020). The Drucker-Prager elastoplasticity is modeled by the
same Saint Venant–Kirchhoff elastic model, given by Equation 19. Additionally, the Drucker-Prager
yield condition is applied such that

tr(ϵ) > 0 or δγ = ∥ϵ̂∥+ α
(3λ+ 2µ)tr(ϵ)

2µ
> 0 (21)

where, α =
√
2/3 2sinθ

3−sinθ and θ is the frictional angle of the granular media.

Elasticity To simulate elasticity, we generated simulations using meshes from Thingi10k dataset
Zhou & Jacobson (2016). We generated 24 trajectories, with 200 time steps, for 6 geometries to train
the model. The elasticity is modeled using stable neo-Hookean model, as proposed in Smith et al.
(2018). The energy is denoted by

Ψ =
µ

2
(IC − 3) +

λ

2
(J − α)2 − µ

2
log(IC + 1) (22)

where IC refers to the first right Cauchy-Green invariant and J is the relative volume change. µ and
λ are Lamé constants. The corresponding Piola-Kirchoff stress is given by

P = µ
(
1− 1

IC + 1

)
F+ λ(J − α)

∂J

∂F
(23)

where F is the deformation gradient.

Newtonian Fluids For Newtonian fluids, In the 2D setting, we use WaterDrop dataset created by
Pfaff et al. (2020), which is generated using the material point method (MPM). For the 3D setting,
we generated 100 trajectories with random initial velocity, each spanning 1000 time steps at a dt
of 5e − 3. This dataset was prepared using the NCLAW framework. These are modeled as weakly
compressible fluids, using fixed corotated elastic model with µ = 0. The Piola-Kirchoff Stress is
given by

P = λJ(J − 1)F−T (24)

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Non-Newtonian fluids To train the model on non-Newtonian fluids, we used the Goop and
Goop-3D datasets.

Multimaterial We simulated multi-material trajectories in 2D using the dataset published by Pfaff
et al. (2020).

F TRAINING DETAILS

Ground truth acceleration is computed from position sequences before adding noise to the input
(in case of systems that required training noise). This is adjusted by removing the velocity noise
accumulated at the end of the random walk. This ensures that the model corrects the noise present in
the velocity.

It is to be noted that this loss is defined as a 1-step loss function over a pair of consecutive time steps
k and k+1, imposing a strong inductive bias towards a Markovian system. Optimizing the model for
rollout over K steps would overlook the effects of instantaneous physical states (influence of gravity,
etc.), thus resulting in greater one-step errors, which would eventually accumulate and result in larger
errors during rollout.

The model was validated by full rollouts on 10 held-out validation sets per material simulation, with
performance measured by the MSE between predicted particle positions and ground-truth particle
positions.

We test our model on multiple materials, ranging from Newtonian fluids to elastic solids, in both 2D
and 3D settings. We empirically show that our model is at least 2-4x faster than graph neural network-
based solvers with comparable parameter counts on the same simulation trajectory. Furthermore, we
show that this speed-up doesn’t compromise the accuracy of rollout predictions. We also highlight
the generalization capability of our model to unseen initial trajectories and graph densities.

Table 6: The table denotes the various training and testing geometries.

SHAPE PARAMS ARMADILLO BUNNY SPOT BLUB
MEAN CURVATURE 2.9e-3 1.1e-2 1.3e-2 5.9e-3
DIRICHLET ENERGY 2.3e-4 2.5e-3 2.4e-3 8.1e-4

Evaluation The evaluation metrics used to evaluate the models are particle-wise one-step MSE and
rollout MSE on the held-out evaluation sets. The rollout velocity and positions are computed using
semi-implicit Euler integration as

Vtk+1
=

∆Xtk

∆t
+∆t · Gθ(Vtk−C:k

) (25)

Xtk+1
= Xtk +∆t ·Vtk+1

(26)

In our calculations, we assume ∆t to be 1.

G ABLATIONS

Speedup against graph neural networks Graph neural networks can effectively capture spatial
interactions in point clouds. However, the message passing operation adds a computational overhead
that we overcome with neural operator layers. We show, in Table 7 and Table 8, that our model has
faster inference times compared to graph based neural networks.

Generalizability to degree of sparsity We tested the model against different degrees of sparsity,
while maintaining the number of connected components, with respect to the full-order system.
We observed, that the model performed consistently when the system was super-sampled, but the
performance degraded when the system had fewer than 375 points or 0.25× the average training data
size. The results are visualized in Figure 6.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 4: The above figures depict full-order inference by GIOROM on 2D point clouds. (a)
depicts granular flow, (b) represents the trajectory of jelly-like substance under gravity. (c) shows the
effects of external force on a highly elastic object. (d) depicts the interaction of granular media and
Newtonian fluid.

(a) Discretization agnosticism. (b) Point-cloud outputs from the time-stepper

Figure 5: Discretization Invariance and visualization of different physical systems inferred by
the model.

Table 7: Contrasting the change in computation time with the increase in connectivity radius for a
graph with 7056 points. The times shown represent the overall time needed to infer all 200 time steps.
We compare our time-stepper with other neural network based physics solvers.

MODEL TIME STEPS NUMBER OF SPATIAL POINTS CONNECTIVITY RADIUS
0.040 0.050 0.060 0.070 0.080 0.090 0.100

OURS 200 7056 points 20.1s 34.3s 47.6s 65.8s 89.7s 104.1s 109.3s
GNS 200 7056 points 43.5s 73.5s 111.6s 162s 226.2s 305.9s 386.0s
GAT 200 7056 points 146.5s 236.5s 394.2s 532.8s 645.2s 733.8s 812.5s

Table 8: Contrasting the change in computation time with an increase in graph size at a fixed radius
of 0.060. The times shown represent the overall time needed to infer all 200 time steps. We compare
our time-stepper against other neural network based physics solvers

MODEL PARAMETERS CONNECTIVITY MATERIAL TIME STEPS GRAPH SIZE
1776 POINTS 4143 POINTS 5608 POINTS 7056 POINTS

OURS 4,312,247 0.060 Plasticine 200 3.9s 14.5s 27.3s 47.6s
GNS 1,592,987 0.060 Plasticine 200 7.8 s 38.3s 68.7s 111.6s
GAT 1,999,003 0.060 Plasticine 200 71.1s 153.4s 295.3s 394.2s

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 9: Contrasting the inference times (in seconds) for highly dense point clouds up-sampled from
highly sparse graphs (1776 points).

TIME STEPS ROLLOUT SIZE ROLLOUT TIME (s) FULL-ORDER SIZE UPSCALE TIME (s)
200 1776 3.9 7,000 5e-5
200 1776 3.9 40,000 3e-4
200 1776 3.9 60,000 8e-4
200 1776 3.9 100,000 9e-4

Figure 6: Effects of sparsity on Rollout Loss on the Elasticity dataset (78k) The above graphs
highlight how the time-stepper performance at different sparsity settings (as a ratio of 78k). The
graph of sparsity vs. GPU usage highlights the highest GPU usage at the specified radius of the input
graph. The Sparsity vs. Time graph highlights the computation time as a function of sparsity, at the
specified input graph radius. The Sparsity vs. Rollout MSE graph shows that the at 0.125x, 0.062x
and 0.031x, the model achieves a rollout loss of the order of 1e-4. To show that increasing the radius
doesn’t always improve performance, we show in the bottom right graph that on the sparsest graph
(0.007x), the MSE increases when the radius is increased beyond 0.06.

Number of message-passing layers We show that the key bottleneck in terms of speed is the
message-passing operation within the interaction network. This operation scales with the number of
edges as E = O(K2), where K is the number of nodes.

Table 10: This table shows that the number of message-passing layers results in a negligible improve-
ment in rollout Loss.

NUM. MESSAGE PASSING LAYERS CONNECTIVITY INPUT SIZE INFERENCE TIME/STEP LOSS
2 0.077 2247 3.6 0.0008
4 0.077 2247 3.8 0.0009
6 0.077 2247 4.2 0.0014
8 0.077 2247 4.3 0.0009

Graph radius and viscosity We observed that during inference, larger neighborhoods resulted
in greater rigidity within the system. The following table highlights the changes in viscosity as the

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

graph radius varies during inference. We measure viscosity by the highest average velocity attained
by the particles and the lowest average distance between them.

Figure 7: The figure highlights the increase in viscosity as the radius increases, due to a larger
neighborhood, (a) with a radius of 0.010, (b) 0.015, (c) 0.025, (d) 0.040, (e) 0.055.

Table 11: This table highlights the increase in viscosity, measured by the average minimum inter-
particle distance over 200 time steps and the average maximum velocity over 200 time steps. Higher
values of minimum inter-particle distance denote a more rigid graph where the particles don’t collide
with each other as often, and a lower average particle velocity indicates a more constrained flow

RADIUS AVG. MIN INTER-PARTICLE DIST. AVG. MAX PARTICLE VELOCITY
0.015 6.06e-5 1.7e-2
0.020 6.32e-5 8.1e-3
0.025 6.4e-5 7.6e-3
0.030 6.42e-5 6.6e-3
0.035 6.51e-5 5.7e-3
0.040 6.58e-5 5.0e-3
0.045 6.71e-5 4.6e-3
0.050 7.04e-5 4.2e-3

Discretization invariance w.r.t the latent grid We show that the model is agnostic to the resolution
of the latent grid during inference. If the latent grid is too small, the performance degrades due to
data loss. However, with larger latent grid sizes, there is no significant improvement in performance.
The model was tested on latent grid dimensions of 8, 16, 32, 64, and 128. The results are shown in
Figure 9.

Effects of latent grid The latent grid allows the Fourier neural operator to learn the temporal
dynamics on a regular grid of fixed size. This allows it to learn the dynamics of non-uniform and
complex geometries. Table 12 shows the performance of the model in the absence of the latent grid.

Table 12: The table showcases invariance to grid sizes greater than 8. At sizes less than 16, the model
fails to perform as well due to data loss

GRID SIZE ROLLOUT LOSS
128 0.0072
64 0.0074
32 0.0081
16 0.0075
8 0.0110

G.1 SAMPLING STRATEGY VS. ROLLOUT LOSS

We compared different sampling strategies against the rollout Loss (MSE). The results are presented
in Table 13.

Table 13: Comparison of different sampling and graph construction strategies against Rollout MSE
on Water-2D dataset

SAMPLING STRATEGY GRAPH TYPE ROLLOUT MSE
RANDOM RADIUS 0.0098
RANDOM DELAUNAY 7.017
FPS RADIUS 0.0097
FPS DELAUNAY 8.04

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

G.2 EFFECTS OF NOISE ON ROLLOUT ACCURACY

Temporal auto-regressive models suffer from corruption of simulations due to noise accumulation.
The attention mechanism used in this architecture helps mitigate this issue to an extent. However,
when the system is too chaotic, such as 3D water simulations, it is important to choose the right noise
scale to ensure that the model is robust to this noise accumulation. We experimented with different
noise standard deviations and found that values between 1e-4 and 3e-4 resulted in the most stable
rollouts for 3D Water simulations. This can be observed in Figure 8.

Figure 8: Effects of noise on different physical systems

Effect of training dataset size on generalizability We performed experiments to see if the
performance would improve significantly with the addition of new trajectories in the WaterDrop2D
dataset. We observed that the rollout loss steadily decreases with the addition of new trajectories.
However, this decrease is less apparent after 200 trajectories. The loss is much higher when the
number of trajectories is less than 100.

Table 14: This table shows the trends in rollout loss with the number of training trajectories for the
Water-2D dataset. The model generalizes fairly well when trained on 150 trajectories, after which
there’s a gradual improvement in performance

TRAINING SIZE (# TRAJS) ROLLOUT LOSS (MSE)
50 0.010
150 0.0067
200 0.0064
400 0.0061

1000 0.0059

G.3 DESIGN DECISIONS WITH MINIMAL IMPACT

We performed hyper-parameter tuning on WaterDrop dataset and found that the following param-
eters have the least impact on the overall model performance. The results are illustrated in Figure
9.

Time window for input velocity sequence The window used for input velocity sequence didn’t
affect the accuracy of the output by a significant amount. We experimented with window sizes of
[2, 3, 5, 6, 7]. A window size of 2 allows for the network to be a Markov process, with the model
predicting the acceleration at a time step from the corresponding acceleration at the previous time
step. This can be leveraged for interactive manipulation of the material within the simulation.

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 9: Hyperparameters with minimal impact The above graphs show minimal effects of some
of the hyperparameters on the rollout loss on the WaterDrop dataset.

Number of MLP layers in NOT We experimented with [1, 2, 4, 8, 10] as the number of layers
within the architecture. The accuracy decreased slightly with more MLPs.

Graph reduction and discretization invariance We approximately account for the integration
weights of the GNO in equation 7 by computing the mean of the kernel values in each neighborhood.
Note that we would not obtain a neural operator when using a sum as a reduction method since the
values would diverge in the limit of finer discretizations.

GNO hidden layer size We tried three configurations of GNO hidden layers for both the non-linear
kernel and the linear kernel, i.e, [32, 64], [512, 256], and [64, 512, 1024, 256]. In the latter cases, the
models became significantly bulkier without a noticeable change in performance.

Number of transformer layers We experimented with [1, 2, 4] layers of the transformer and found
that a single layer outperformed the rest. As the architecture became bulkier, the model’s tendency to
converge at local minima slightly increased.

Number of attention heads The performance of the model improved with more attention heads,
however, it became a little worse after increasing the number of heads beyond 4.

Number of experts The model performed optimally with 2 experts and the performance slightly
degraded for all other settings.

GNO radius We experimented with the following radii - [0.0004, 0.0015, 0.015, 0.045, 0.100]. In
each of these cases, there wasn’t a noticeable change in the performance or the inference times. x

Projection layers We experimented with three configurations for projection layers, i.e., [1, 2, 5],
and observed only minor variations in the performance. To optimize for the parameter count, we
chose a single projection layer in the final model.

25


	Introduction
	Related Works
	Method: Spatial Dimension reduction
	Method: Temporal Dynamics
	Background: Operator Learning
	Encoding and decoding local spatial features
	Global spatio-temporal Processing

	Experiments
	Dataset
	Model setup and Hyperparameters
	Results
	Baselines

	Discussion
	Conclusion
	Additional related works
	Operator Learning
	Background

	Interaction network
	Hyperparameters

	Pseudocode
	Additional dataset details
	Training details
	Ablations
	Sampling strategy vs. Rollout Loss
	Effects of noise on rollout accuracy
	Design decisions with minimal impact


